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ﬁ = Games in Strategic Form & Nash Equilibrium
33 ~ ° What is rational to do?

p— ﬁ B ® No matter what player 1 does: R gives L M R

== o player 2 a strictly higher payoff than M.

- »M is strictly dominated by R“ u 4,3 5,1 6,2
345 - ® 3 player 1 knows that player 2 will
o ﬁ = not play M = U is better than M or D M 2,1 8,4 3,6
‘ : B *> player 2 knows that plaver 1 knows
< that player 2 will not play M = player 2 D 3,0 9,6 2,8
g - o knows that player 1 will play U =* player 2
- ~ will play L
- ® This elimination process: ,iterated strict dominance”
+
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Games in Strategic Form & Nash Equilibrium

)
New example:

® Player 1: M not dominated by U

and M not dominated by D
° 2,0 -1,0
But: If Player 1 plays 04 =(1/2, 0, 1/2)

he will get u(g4)=1/2 regardless how
player 2 plays s

®>a3 pure strategy may be dominated
by a mixed strategy even if it is not strictly

dominated by any pure strategy

More Notation:

® Discussing player i‘s strategy-options, holding other player’s options
fixed:

® s;€ S;: ,,other player’s strategies” &
® Short notation: (5,5 ):=(51 y- ,5i1 5" sSis1 soS) )
i

] . .
Same for mixed strategies: (o*,,0, ):=(07 ,-.- ,0i.1 ,0"} 0141 ,---,0) )

Definition:

® pure strategy s; is strictly dominated for player i if o*; exists so that
ui(o’,s;) > uils;,s;) foralls;es;

®. weakly dominated:

ui(o’i,s) 2 u(s;,s;) foralls;€S; (and > foratleastones;)

®if ui(o’,s;5) > ui(s;,s;) foralls; €S, we also have
u(o,0 ) >uls;,0;) forallo €S, because
ui(o’, o) is a convex function of u(c’,s ), ulo’, s ), wlo’, s ),
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® Discussing player i‘s strategy-options, holding other player’s options
fixed:

® s;€5;, Strictly Convex function:

® Shortno|  f(tx+(1-t)y) < tf(x) +(1-t)f(y)
® same for
Definition:

® purest
ui(o,55) 3
®

... weak &

More Notation:
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® What about dominated mixed strategies?

® Easy: A mixed strategy that assigns positive probabilities to pure
strategies that are dominated is dominated

® But: A mixed strategy may be dominated even if it assigns positive
probabilities to pure strategies that are not even weakly dominated:

Example: U 1,3 -2,0

® U and M are not dominated by D for player 1

°® M -2,0 1,3
But: Playing 0,=(%, %, 0) gives expected utility

u; (o5, *) =- 1/2 no matter what 2 plays =2

D (o,=(0, 0, 1)) dominates o, D 0,1 0,1

® What about dominated mixed strategies?

¢ Easy: A mixed strategy that assigns positive probabilities to pure
strategies that are dominated is dominated

® But: A mixed strategy may be dominated even if it assigns positive
probabilities to pure strategies that are not even weakly dominated:

L
Example: U 13 2.0
® U and M are not dominated by D for player 1
® But: Playing 0,=(1, %, 0) gives expected utility -2,0 1k3
*) = _
D0 o o T 5 o1 0
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A note on rationality
® What about dominated mixed strategies?

® Easy: A mixed strategy that assigns positive probabilities to pure L R
strategies that are dominated is dominated k

® But: A mixed strategy may be dominated even if it assigns positive

u 8,10 -100, 9
probabilities to pure strategies that are not even weakly dominated:

Example: U 1,3 -2,0

® U and M are not dominated by D for player 1

° . .
® But: Playing 0,=(%, %, 0) gives expected utility Iterated strict dominance 2 (U,L)

u; (o5, *) =- 1/2 no matter what 2 plays =2

® BUT: psychology = play D instead of U because ,,U is unsafe”

D (o,=(0, 0, 1))%:10minates g, D 0.1 g1
Games in Strategic Form & Nash Equilibrium Games in Strategic Form & Nash Equilibrium
A note on rationality A note on rationality
L& R L R
U 8,10 -100, 9 U 8, 10% -100, 9 s
D 7,6 6,5 D 7,6 6,5
® |terated strict dominance = (U,L) ® |terated strict dominance > (u,L)

® BUT: psychology = play D instead of U because ,U is unsafe” ® BUT: psychology = play D instead of U because ,,U is unsafe”
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L R
U 8,10 -100, 9
D 7,6 6,5

® |terated strict dominance = (U,L)

® BUT: psychology => play R} instead of U because ,U is unsafe”
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L R
u 8,10 -100, 9
Ly
D 7,6 6,5

® |terated strict dominance > (u,L)

® BUT: psychology = play D instead of U because ,,U is unsafe”
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A note on rationality

L R
U 8,10 -100, 9
By
D 7,6 6,5
t

® |terated strict dominance = (U,L)

® BUT: psychology = play D instead of U because ,U is unsafe”

Game Theory €= Decision Theory

® Exa mple

® Iterated strict dominance = (U,L)

®f player 1 reduces his payoff for U by 2:

° .
decison theory: no use

® game theory: new iterated strict
dominance = (D,R)

1,3

0,2

-1,3

2,1

0,2

3,4
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Game Theory €= Decision Theory

® Example

® |terated strict dominance > (U,L)

® player 1 reduces his payoff for U by 2:
® decison theory: no use N

¢ game theory: new iterated strict
dominance =2 (D,R)
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L R

1,3 4,1

0,2 3,4
1

L R

-1,3 2,1

0,2 3,4

Game Theory €= Decision Theory

® Exa mple

® |terated strict dominance = (U,L)

®f player 1 reduces his payoff for U by 2:
® decison theory: no use

® game theory: new iterated strict
dominance = (D,R)
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L R
1,3 4,1
3

0,2 3,4
L R
-1,3 2,1
0,2 3,4

Prisoner’s dilemma & Iterated dominance

® |terated strict dominance = (D,D)

Prisoner’s dilemma & Iterated dominance

® |terated strict dominance = (D,D)
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Vickrey Auction & Iterated dominance

® Good's valuations: v; ; Assume common knowledge for the moment
® Bids: s;
® Second price:
¢ winning condition: s; > max j; s;
r; is the price havi%g to be paid

o .
let r; == max ;5

® winneri’s utility: u;=v,—r;; other players utility =0

® for each player bidding true valuation is weakly dominant:

® case s; > v; : (overbidding)

®Ifr,>s; : looses > u; =0

-> could have bidden v, as well
®ifr,<v, :wins > u=v,—r,

—> could have bidden v, as well

v

Games in Strategic Form & Nash Equilibrium
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® Bids: 5
o L
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® Good's valuations: v; ; Assume common knowledge for the moment
® Bids: 5; [N
° .
Second price:
¢ winning condition: s; > max j; s;
r; is the price having to be paid

o .
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ke

® for each player bidding true valuation is weakly dominant:

® case s; > v; : (overbidding)
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—> could have bidden v, as well
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Vickrey Auction & Iterated dominance

® Good's valuations: v; ; Assume common knowledge for the moment
® Bids: s; B
® Second price:

¢ winning condition: s; > max j; s;

® let ri i=max, s

;i is the price having to be paid

® winneri’s utility: u;=v,—r;; other players utility =0 N

® for each player bidding true valuation is weakly dominant:

® case s; > v; : (overbidding)

®Ifr,>s; : looses > u; =0
-> could have bidden v, as well

° .
Ifr, < v : wins = u; = vi-r,

—> could have bidden v, as well
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v

Vickrey Auction & Iterated dominance

® Good's valuations: v; ; Assume common knowledge for the moment
® Bids: 5
o .
Second price:
o . . N
winning condition: s; > max ;5

o -
letr; :=max;,s;

;  r;is the price having to be paid

® winneri’s utility: u; = v;—r, ; other players utility =0

® for each player bidding true valuation is weakly dominant:

® case s; > v; : (overbidding)

®fr,>s :looses > u;=0
—> could have bidden v; as well

o .
Ifr;<v;:wins > u;=v,—r,

—> could have bidden v, as well
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Vickrey Auction & Iterated dominance

°
case V< r<s;:

® i wins > u;=v;—r; <0 (winner’s curse)
—> should have bidden v; =r; =2 u; = 0 at least

® case s, < V; : (underbidding)

v

® Ifr,<s,orrzv :
u; is unchanged if he
bids v;instead of s;

°
If s;<r<v;:

A 4

bidder forgoes positive
winning chances by underbidding

® Assumption of common knowledge my be dropped because bidding
own valuation is weakly dominant for each player

A 4

Vickrey Auction & Iterated dominance

o
case Vv;<r<s;:

® i wins > u; = v;— r; < 0 (winner‘s curse)
- should have bidden v;=r; 2 u; = 0 at least

® case s, < V; : (underbidding)

i (n)

A J

¢ Ifr,ss,orrzv :
u; is unchanged if he
bids v;instead of s;

o
If sj<ri<v:

v

bidder forgoes positive
winning cliances by underbidding

¢ Assumption of common knowledge my be dropped because bidding
own valuation is weakly dominant for each player

v
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Vickrey Auction & Iterated dominance

v

°
case V< r<s;:

®iwins > u;=v;—r;< 0 (winner‘s curse)
—> should have bidden v; =r; =2 u; = 0 at least

® case s, < V; : (underbidding)

A 4

® Ifr,<s,orrzv :
u; is unchanged if he
bids v;instead of s;

®if 5 <<V

A 4

bidder forgoes positive
winning chances by underbidding

® Assumption of common knowledge my be dropped because bidding

own valuation is weakly dominant for each player
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Vickrey Auction & Iterated dominance

° v, I 5 o
case v;<r;<s;: "
®iwins > u;=Vv;—r; < 0 (winner’s curse)
- should have bidden v;=r; 2 u; = 0 at least
® case s, < V; : (underbidding)
r. S \TA r:
®lfr<sorrnzy, : — (r) >
u; is unchanged if he
bids v;instead of s; I
® .
If si<r<y: S h v

bidder forgoes positive
winning chances by underbidding

¢ Assumption of common knowledge my be dropped because bidding
own valuation is weakly dominant for each player
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Vickrey Auction & Iterated dominance

v

°
case V< r<s;:

® i wins > u;=v;—r; <0 (winner’s curse)
—> should have bidden v; =r; =2 u; = 0 at least

® case s, < V; : (underbidding)

A 4

® Ifr,<s,orrzv :
u; is unchanged if he
bids v;instead of s;

°
If s;<r<v;:

bidder forgoes positive
winning chances by underbidding

A 4

® Assumption of common knowledge my be dropped because bidding

own valuation is weakly dominant for each player

Nash Equilibrium

® Nash Equilibrium : strategy profile: each player’s strategy is optimal
response to all other player’s strategies:

® Mixed strategy profile o* is Nash Equilibrium if
foralli: u(g*, o*;) = ui(S-& ag*;) foralls;es;

(Pure strategy profiles also possible - ,pure strategy NE“)

¢ Strategy profile s* is Strict Nash Equilibrium: if it is a NE and
foralli: u(s*, s*;) > ui(s;, s*;) foralls;zs* .

Strict NE is necessarily a pure strategy NE by definition.
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Nash Equilibrium

® Nash Equilibrium : strategy profile: each player’s strategy is optimal
response to all other player’s strategies:

® Mixed strategy profile o* is Nash Equilibrium if
foralli: u(0*, 0*;) 2 uys;, 0*;) foralls;es;

(Pure strategy profiles also%possible — ,pure strategy NE“)

® Strategy profile s* is Strict Nash Equilibrium: if it is a NE and
foralli: uys*, s*;) > ui(s;, s*,;) foralls; =zs* .

Strict NE is necessarily a pure strategy NE by definition.
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Nash Equilibrium

® From previous slide: o* is Nash Equilibrium if
for all i: (o™, 0*;) 2 ui(s;, o*;) foralls,€S;

¢ Expected utilities are ,linear in the probabilities”
—> in NE def we must only check for pure alternatives s,

- In a (non-degenerate) mixed strategy Nash Equilibrium a player must be
(a priori) indifferent between all pure strategies
to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)
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® From previous slide: o* is Nash Equilibrium if
for all i: (o™, 0*;) 2 ui(s;, o*;) foralls,€S;

¢ Expected utilities are ,linear in the probabilities”
—> in NE def we must only check for pure alternatives s,

- In a (non-degenerate) mixed strategy Nash Equilibrium a player must be
(a priori) indifferent between all pure strategies I;
to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)



Indifference condition: more detailed explanation: Indifference condition: more detailed explanation:

For player I's utility, we have: For player I's utility, we have:
Hl‘((T): E (T,‘(.‘-il")flj(h'.i.ﬂ'_i) with E r;'-1‘(""'1') =1 u,-(rr}: E (}'.i(.w.l“)ll..lj(.‘i,‘.(T_i) with E (Ti(""i)_
S;GSu % «“'1.652: Si ESH % “‘iESu
forthe NE @ we thus have: for the NE @ we thus have:

—1 —1

ui(o*) = Z of(si)ui(si,or;)  with Z oi(si) =1 wi(o*) = Z ol (si)ui(si,0%,)  with Z oi (i)

N Hzesu - HEEE;H
Siesu Sie"-"u
. “-((;r*) . B B . ”‘((}'*) . . .
since @ is the best outcome, i can achieve, when the others since t is the best outcome, i can achieve, when the others
* . * .
play rr*_.,- , allthe 15 ( s, (T_,) with  @;(8;)>0 must be play (T*_,» , allthe 1;(s;. (T_J-) with  ;(5;)>0 must be
equal, equal,
and equal to u;(c™). and equal to tu; (") .
why? = no 1;(s;, 0" ) can be greater than 11; (%) otherwise the why? = no 1;(s;. 0" ) can be greater than 1; (") otherwise the
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Indifference condition: more detailed explanation:

Nash Equilibrium

® From previous slide: o* is Nash Equilibrium if
for alli: uj(c™;, o*;) 2 uj(s;, o*;) foralls; €S

® Expected utilities are , linear in the probabilities”

—> in NE def we must only check for pure alternatives s

- In a (non-degenerate) mixed strategy Nash Equilibrium a player must be

(a priori) indifferent between all pure strategies
to which he assigns positive probability (Indifference condition)

(we will analyze this in more depth later)
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Nash Equilibrium

® Strict equilibria need not exist. However each finite strategy form
game has a mixed strategy equilibrium.

® In NE no player has incentive to deviate from NE

®in reality: If rationality is ,non-strict” (mistakes a%re made): deviations
cah occur

® If one round of elimination of strictly dominated strategies yields
unique strategy profile, this strategy profile is a strict NE (unique)

®In NE, positive probabilities may only be assigned to not-strictly
dominated strategies (Otherwise profit may be increased by choosing a
dominating strategy ).
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dominating strategy ).
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Nash Equilibrium: Example: Cournot Competition

® Cournot model: Duopoly. Each of two firms (players) i produces same
good.

® Output levels g;are chosen from sets Q;

i

® Cost of production is ¢;(q;)
® Market price is p(q) = p(d,+d5)
® Firm i's profit is then u; (q,, ,) = q;p(q) - ci(q)

® Cournot reaction functions r,:Q, 2> Q andr,:Q; 2 Q, specify
optimal reaction on output level of opponent
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Nash Equilibrium: Example: Cournot Competition

® Under certain reasonable assumptions (see [1]) we can maximize e.g.
u,(9y, ;) by solving d/dq, u,(qy, g,) = 0 which yields

d/da, [a; p(ay,d2) - ¢2(a2)] = plas,a5) + p(a1,a2) a5 - ¢;'(@;) = 0.
Inserting r, (g4) for q, B

p(g1+ 1, (a4)) + p (a1 +12 (94)) 12 (9) — &5'(r> (q4)) = 0

gives the defining equation forr, (.) .

(analogous forry (.) ).

® The intersections of the functions r, and r, are the NE of the Cournot
game.

® Example: Linear demand p(q) = max(0, 1-q); linear cost: ¢(q;) = c q;:
2 1;(94) =1/2 (1- 9, —¢); 14 (q;) =1/2 (1- q;, —=);
= NE: g*;=r, (q*;) =1/3 (1-¢) = g*, =r, (q*,)
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Nash Equilibrium: Example: Cournot Competition

® Under certain reasonable assumptions (see [1]) we can maximize e.g.
u,(qy, ;) by solving d/dq, u;(qs, g,) = 0 which yields
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Nash Equilibrium: Example: Hotelling Competition

® Two firms, 1 (at x=0) and 2 (at x=1) sell same good

® Unit cost of product := c; price for product of firm i :=p;

® Customers: uniformly distributed over [0,1] with probability density 1
® Customer transportation cost: t per length unit

® Customers: have unit demand;
buy good if price + transportation_cost < max_price=5 ;
buy good from overall cheaper firm

% g

x=0 x=1
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Nash Equilibrium: Example: Hotelling Competition

® Demand for firm 1 is Di(py,p;) =x where pj+tx = p,+t(1-x)

® > Di(pups) = (Prpitt) / (21)

° Dy(p1,p3) =1 = Dy(p4,p,)

® Nash Equilibirium (p*.,p*,): Foreachi: p*,c argmax {(p; - cﬁDi(pi, p*.)}
® Denoting the reaction functions by r;(p, ) and r,(p; ) we get for e.g. firm 2:

d/dp,{(p; - c) D,(p* p,)} =0 + afterwards insertr,(p,)forp, =2

Dy(py, ra(py ) + (ra(py )-¢) &/0p, Dolpy, ra(py )) =0 >

p*=p*,=c+t for c+3/2t<s
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¢ D1(p1,p3) =1 = Dy(py,py)
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¢ Denoting the reaction functions by r;(p, ) and r,(p; ) we get for e.g. firm 2:
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Nash Equilibrium: Example: Hotelling Competition

® Demand for firm 1 s Di(py,p;) =x where pj+tx = p,+t(1-x)

® > Di(pups) = (Prpitt) / (21)

° Dy(p1,p3) =1 = Dy(p4,p,)

® Nash Equilibirium (p*.,p*,): Foreach i: p*,c argmax {(p;- c) D;(p;, p* )}
® Denoting the reaction functions by r;(p, ) and r,(p; ) we get for e.g. firm 2:

d/dp,{(p; - c) D,(p* p,)} =0 + afterwards insertr,(p,)forp, =2

Dy(py, ra(py ) + (ra(py )-¢) &/0p, Dolpy, ra(py )) =0 >
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Nash Equilibrium: Non-Existence-of Pure NE-Example

® Ssome games may have more than one pure strategy NE
® Not all games have a pure strategy NE:

¢ Example: Matching pennies:

® Both players simultaneously announce
Head or Tails: IF match = 1 wins; If differ = 2 wins

® No pure NE;
but mixed strategy NE: ((1/2, 1/2); (1/2, 1/2)) :

Ly

H T

1,-1 -1,1
T -1,1 1,-1

¢ Reasoning: If player 2 plays (1/2, 1/2) then player 1‘s expected payoff is
% *1+ % *(-1) = 0 when playing H and % *(-1) + % *1 = 0 when playing T 2

player 1 is also indifferent
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Nash Equilibrium: Non-Existence-of Pure NE-Example

® Some games may have more than one pure strategy NE

® Not all games have a pure strategy NE:

® Example: Matching pennies:

® Both players simultaneously announce
Head or Tails: IF match = 1 wins; If differ = 2 wins

® No pure NE;
but mixed strategy NE: ((1/2, 1/2); (1/2, 1/2)) :

H T
H 1,-1 -1,1
T -1,1 1,-1

easoning: If player 2 plays , then player 1's expected payoff is
*Rr ing: If player 2 plays (1/2, 1/2) then player 1° d ffi
% *1+ % *(-1) = 0 when playing H and % *(-1) + % *1 = 0 when playing T =2

player 1 is also indifferent

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

® Another example: Inspection game

® Worker: work or shirk; Employer: Inspect
or not inspect

® Worker: working costs g, produces value v;
gets wage w b S

0,-h

¢ Employer: Inspection costs h

® We assume w>g>h>0

w-g, v-w-h

w-g, v-w

® If not inspect = worker shirks = better
inspect = if inspect 2 worker always works
-2 better not inspect = ...: No pure NE

*> Employer must randomize
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Nash Equilibrium: Non-Existence--of Pure NE-Example 2

® |f worker plays (x, 1-x) and employer plays (y, 1-y)
® |ndifference condition in mixed strategy NE =

® > For worker indifferent between S and W :
gain from shirlgng == expected income loss:

Oy+(1-y)w=y(w-g)+(1-y)(w-g)
2 g=yw 2 y=g/w

® S For employer indifferent between | and NI:

inspection costs == expctd. wage savings:

x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)
W w-g, v-w-h| w-g, v-w

2h =xw = x= h/w

Nash Equilibrium: Example: Hotelling Competition

® Two firms, 1 (at x=0) and 2 (at x=1) sell same good

® Unit cost of product := c; price for product of firm i :=p;

® Customers: uniformly distributed over [0,1] with probability density 1

® Customer transportation cost: t per length unit

® Customers: have unit demand; 5

buy good if price + transportation_cost < max_price=5 ,

buy good from overall cheaper firm

K.
LA/

o
0

x=1

ry

X=
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Nash Equilibrium: Non-Existence--of Pure NE-Example 2

® |f worker plays (x, 1-x) and employer plays (y, 1-y)
® |ndifference condition in mixed strategy NE =

® > For worker indifferent between S and W :

gain from shirking == expected income loss:

Oy+(1-y)w=y(w-g)+(1-y)(w-g)

Nash Equilibrium: Non-Existence--of Pure NE-Example 2

® If worker plays (x, 1-x) and employer plays (y, 1-y)
® Indifference condition in mixed strategy NE =2

® > For worker indifferent between S and W :

gain from shirking == expected income loss:

Oy+{1-y)w=y(w-g)+(1-y)(w-g)

2 g=yw > y=g/w g 2 g=yw > y=g/w
K
® o I NI ° . | NI
— For employer indifferent between | and NI: - For employer indifferent between | and NI:
inspection costs == expctd. wage savings: 0-h Ww inspection costs == expctd. wage savings: 0-h W
x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w) X(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)
w-g, v-w-h| w-g, v-w w-g, v-w-h| w-g, v-w
2h =xw = x= h/w 2h =xw = x= h/w
Games in Strategic Form & Nash Equilibrium Games in Strategic Form & Nash Equilibrium
Nash Equilibrium: Non-Existence--of Pure NE-Example 2 Nash Equilibrium: Non-Existence--of Pure NE-Example 2
® |f worker plays (x, 1-x) and employer plays (y, 1-y) ® If worker plays (x, 1-x) and employer plays (y, 1-y)
® |ndifference condition in mixed strategy NE = ® |ndifference condition in mixed strategy NE =2
® > For worker indifferent between S and W : ® > For worker indifferent between S and W :
gain from shirking == expected income loss: gain from shirking == expected income loss:
Oy+(1-y)w=y(w-g)+(1-y)(w-g) Oy+(1-y)w=y(w-g)+(1-y)(w-g)
2 g=yw > y=g/w 2 g=yw > y=g/w
® o I NI ° . | NI
— For employer indifferent between | and NI: - For employer indifferent between | and NI:
inspection costs == expctd. wage savings: 0-h Ww inspection costs == expctd. wage savings: 0-h W
. " % . "
x(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w) X(-h)+(1-x)(v-w-h) = x (-w) + (1-x) (v-w)
w-g, v-w-h| w-g, v-w w-g, v-w-h| w-g, v-w

2h =xw = x= h/w

2h =xw = x= h/w
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Nash Equilibrium: More than one NE

Nash Equilibrium: More than one NE

B F B F
® Another example: Battle of the sexes ® Another example: Battle of the sexes
® Man & Woman; Ballet or Football 0,0 2,1 ® Man & Woman; Ballet or Football F 0,0 2,1
L
1,2 0,0 B 1,2 0,0
By
T W T w
® Another example: Game of chicken ® Another example: Game of chicken
® Driver 1 & Driver 2; Tough or Weak -1 21 ® Driver 1 & Driver 2; Tough or Weak T 11 21
1,2 0,0 W 1,2 0,0
Games in Strategic Form & Nash Equilibrium Games in Strategic Form & Nash Equilibrium
Nash Equilibrium: More than one NE Nash Equilibrium: More than one NE
B F B “F
® Another example: Battle of the sexes by ® Another example: Battle of the sexes b
® Man & Woman; Ballet or Football 0,0 2,1 ® Man & Woman; Ballet or Football F 0,0 2,1
1,2 0,0 B 1,2 0,0
T W T w
® Another example: Game of chicken ® Another example: Game of chicken
® Driver 1 & Driver 2; Tough or Weak -1 21 ® Driver 1 & Driver 2; Tough or Weak T 11 21
1,2 0,0 W 1,2 0,0
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Nash Equilibrium: More than one NE

Nash Equilibrium: More than one NE

B F B F
® Another example: Battle of the sexes ® Another example: Battle of the sexes
® Two pure NE: (F;F) and (B;B) 0,0 2,1 ® Two pure NE: (F;F) and (B;B) F 0,0 2,1
® One mixed NE: Indifference condition 1 0.0 ® One mixed NE: Indifference condition . B 19 0.0
= Let o,(F)=x and 0,(B)=y =2 ! ! - Let 0,(F)=x and o,(B)=y =2 ! !
Player 1's indifference: Player 1's indifference:
Oy+2(1y) =1y +0(1y) = y=2/3 Oy+2(1y) =1y+0(1lvy) = y=2/3
Player 2’s indifference: Player 2's indifference:
Ox+2(1-x)=1x+0(1-x) = x=2/3 O0x+2(1-x)=1x+0(1-x) = x=2/3
- Mixed NE: ((2/3, 1/3); (2/3, 1/3)) = Mixed NE: ((2/3, 1/3); (2/3, 1/3))
T W T w
® Another example: Game of chicken ® Another example: Game of chicken
® (same reasoning) > -1 21 ® (same reasoning) > T 11 21
Mixed NE: ((1/2, 1/2); (1/2, 1/2)) Mixed NE: ((1/2, 1/2); (1/2, 1/2))
1,2 0,0 w 1,2 0,0
Games in Strategic Form & Nash Equilibrium Games in Strategic Form & Nash Equilibrium
Nash Equilibrium: More than one NE Nash Equilibrium: More than one NE
B F Focal points
® Another example: Battle of the sexes P
®
Two pure NE: (F;F) and (B;B) 0,0 21 ® Some games have more than qpe NE = which
® One mixed NE: Indifference condition 1 0.0 will be chosen?
= Let oy(F)=xand o,(B)=y 2 ’ ’ ® Theory of ,focalness” of NE (,focal points*):
Player 1‘s indifference: Example: Chose time of day simultaneously;
Oy+2(1y) =1y+0(1-y) 2 y=2/3 reward if match: 12 noon is focal, 15:37 is not
Player 2’s indifference:
Ox+2(1-x)=1x+0(1-x) = x=2/3
- Mixed NE: ((2/3, 1/3); (2/3, 1/3)) Risk Dominance Hunt Hunt
T W ¢ Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto- stag (C)| Hare (D)
® \nother example: Game of chicken dominant = (C;C) might be chosen if p(C)>0.5 Hunt 5 9 0.1
® -1-1 21 BUT Stag (C) ! !
{same reasoning) 2> ’ : °
Mixed NE: ((1/2, 1/2); (1/2, 1/2)) more than two players: ALL have to agree on C Hunt
12 0.0 - p(C)?>0.5 = p(C)>0.93 = (D;D) ,risk Hare (D 1,0 1,1

dominates” (C;C)
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Nash Equilibrium: More than one NE

Focal points I

® Some games have more than one NE = which
will be chosen?

® Theory of ,,focalness” of NE (,,focal points“):
Example: Chose time of day simultaneously; &
reward if match: 12 noon is focal, 15:37 is not

Nash Equilibrium: More than one NE

Focal points

® Some games have more than one NE = which
will be chosen?

¢ Theory of ,focalness” of NE (,,focal points”):
Example: Chose time of day simultaneously;
reward if match: 12 noon is focal, 15:37 is not

dominates” (C;C)

dominates” (C;C)

; A
Risk Dominance Hunt Hunt Risk Dominance Hunt Hunt
® Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto- Stag (C)| Hare (D) ¢ Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto- stag (C)| Hare (D)
dominant = (C;C) might be chosen if p(C)>0.5 Hunt 5 5 01 dominant = (C;C) might be chosen if p(C)>0.5 Hunt 5 5 01
BUT Stag (C) ’ ’ BUT Stag (C) ’ ’
® more than two players: ALL have to agree on C Hunt ® more than two players: ALL have to agree on C Hunt
- p(C)¥>0.5 = p(C)>0.93 = (D;D) ,risk Hare (D 1,0 1,1 - p(C)?>0.5 = p(C)>0.93 = (D;D) ,risk Hare (D 1,0 1,1
dominates” (C;C) dominates” (C;C)
Games in Strategic Form & Nash Equilibrium Games in Strategic Form & Nash Equilibrium
Nash Equilibrium: More than one NE Nash Equilibrium: More than one NE
Focal points Focal points
® Some games have more than one NE = which ® Some games have more than one NE = which
will be chosen? will be chosen?
® Theory of ,,focalness” of NE (,,focal points“): ¢ Theory of ,focalness” of NE (,,focal points”):
Example: Chose time of day simultaneously; Example: Chose time of day simultaneously;
reward if match: 12 noon is focal, 15:37 is not reward if match: 12 noon is focal, 15:37 is not
Risk Dominance Hunt Hunt Risk Dominance Hunt Hunt
® Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto- Stag (C)| Hare (D) ¢ Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto- stag (C)| Hare (D)
dominant = (C;C) might be chosen if p(C)>0.5 Hunt 5 5 01 dominant = (C;C) might be chosen if p(C)>0.5 Hunt 5 5 01
BUT Stag (C) " ’ BUT Stag (C) ’ ’
® more than two players: ALL have to agree on C Hunt ® more than two players: ALL have to agree on C Hunt
- p(C)¥>0.5 = p(C)>0.93 = (D;D) ,risk Hare (D 1,0 1,1 - p(C)?>0.5 = p(C)>0.93 = (D;D) ,risk Hare (D 1,0 1,1
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Nash Equilibrium: More than one NE Nash Equilibrium: More than one NE
Focal points Risk Dominance / Pareto Optimality L R
(] ,
Some games have more than one NE = which ™ .
In this game: (Among others) two pure NE:
will be chosen? & ( & ) P u 9,9 0,8

(U,L) and (D,R); (U,L): Pareto dominates (D,R)

® Theory of ,,focalness” of NE (,,focal points“):

) i ® But: For player 1 D is safer (guarrantees min D 8,0 7,7
Example: Chose time of day simultaneously;

payoff of 7) = If p(R) > 1/8 don‘t go for (U,L) =

reward if match: 12 noon is focal, 15:37 is not .
no certainty!

] .
Pregame-communication / agreement on

Risk Dominance Hunt Hunt (u,L) ?! [
No: player 2 gains if player 1 plays U = player 2
® Stag Hunt: NE: (C;C) and (D;D); (C;C) is pareto- Stag (C)| Hare (D) . piay 8 “ Piay piay . P y
i - i will always tell ,,l” regardless of true intentions
dominant = (C;C) might be chosen if p(C)>0.5 Hunt .
2,2 0,1 - agreement is worthless
BUT Stag (C)
® more than two players: ALL have to agree on C Hunt
- p(C)¥>0.5 = p(C)>0.93 = (D;D) ,risk Hare (D 1,0 1,1
dominates” (C;C) K
Games in Strategic Form & Nash Equilibrium Games in Strategic Form & Nash Equilibrium
Nash Equilibrium: More than one NE Nash Equilibrium: More than one NE
Risk Dominance / Pareto Optimality
Risk Dominance / Pareto Optimality %_ R
L R L R
® In this game: (Among others) two pure NE: U 9,9 0,8
(U,L) and (D,R); (U,L): Pareto dominates (D,R) U 0,%,10 -5,-5,0 U -2,-2,0| -5,-5,0
® But: For player 1 D is safer (guarrantees min D 8,0 7,7 :
payoff of 7) = If p(R) > 1/8 don‘t go for (U,L) = D |-5-50 | 1,15 D |-5-50 | -1,-15
no certainty!
Al B

® Pregame-communication / agreement on

(U,L) ?!

No: player 2 gains if player 1 plays U = player 2

will always tell ,L” regardless of true intentions

= agreement is worthless ®f player 3s choice is fixed=> Two player game = (D,R) is pareto-
dominant = if players 1 and 2 expect A : coordinate on (D,R).

® Three player game: Two pure NE: (U,L,A) and (D,R,B); (and one mixed) ;
(U,L,A) pareto-dominates (D,R,B)

*> concept of ,coalition proof eq.” (here (D,R,B))(see [1])
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Nash Equilibrium: More than one NE
Risk Dominance / Pareto Optimality

L R L R

U] 0,0,10 | -5,-5,0 U] -2,-2,0| -5,-5,0

D |-5-50 1,1,-5 D |-5-50| -1,-1,5

A B

® Three player game: Two pure NE: (U,L,A) and (D,R,B); (and one mixed) ;

(U,L,A) pareto-dominates (D,R,B)

® player 3’s choice is fixed= Two player game = (D,R) is pareto-

dominant = if players 1 and 2 expect A : coordinate on (D,R). s
*> concept of ,coalition proof eq.” (here (D,R,B))(see [1]}
i
Games in Strategic Form & Nash Equilibrium
Player B

Mixed Nash Equilibrium: General Analysis for 2 x 2 Games 1-
(see [2]) ) !

L R
® Pure NE: One cell >
For A: cell’s payoff for A must be (weak) P U |ay, by | aur bur
maximum over rows in that column Player A

For-B: cell’s payoff for B must be (weak) 1p D |apy, bo, | aps bos

maximum over column in that row
® Example: (U,R) is pure NE if ayg2 apgand by 2 N

bUL

Player B
Mixed Nash Equilibrium: General Analysis for 2 x 2 Games 1-
(see [2]) ) q
L R

® Pure NE: One cell >

For A: cell’s payoff for A must be (weak) P U |ay, by |aug bur
maximum over rows in that column Player A

For.B: cell’s payoff for B must be (weak) 1p D |apybo | aps bos
maximum over column in that row

¢ Example: (U,R) is pure NE if a g2 apgand b g2
by,




