Script generated by TTT

Title: groh: profile1 (25.06.2014)

Date: Wed Jun 25 08:16:07 CEST 2014

Duration: 92:37 min

Pages: 33

- First step: Face detection
 - Naive apprach: simple pixel based binary classifier.
 Problem: too many possibilities for non-faces
 - Other approaches:
 - detect correct relatively positioned patches of skin, eyes or other face elements. Advantage; relatively robust against rotations
 - •Approach [6]: Use special features instead of pixels (advantage: domain knowledge can be encoded into features), Intelligent feature selection / combination of simple binary classifiers that work on single features (AdaBoost)
- (optional second step: face recognition(e.g. via Eigenfaces (via PCA) [5])

Person Detection from Audio

"Speaker Diarization / Segmentation": given multi-party audio data (possibly with background noise):

- → who talks when?
- Typically 3 steps:
 - --segmentation into speech / non-speech
 - --detection of speaker transitions
 - --clustering of speaker segments (+ classification of speaker)
- Segmentation into speech / non-speech:
 - -- Generate features:
 - ++ digital signal (pre-) processing (involving e.g. sub-division signal into overlapping samples of typically several ms, Fourier-transform etc.)
 - ++ MEL filters → MEL cepstrum coefficients
 - ++ Further Fourier- and other transformations
 - ++ additional features: zero-crossing rates, energy statistics etc.

Person Detection from Video

- First step: Face detection
 - Naive apprach: simple pixel based binary classifier.
 Problem: too many possibilities for non-faces
 - Other approaches:
 - detect correct relatively positioned patches of skin, eyes or other face elements. Advantage; relatively robust against rotations
 - •Approach [6]: Use special features instead of pixels (advantage: domain knowledge can be encoded into features), Intelligent feature selection / combination of simple binary classifiers that work on single features (AdaBoost)
- (optional second step: face recognition(e.g. via Eigenfaces (via PCA) [5])

- First step: Face detection
 - Naive apprach: simple pixel based binary classifier.
 Problem: too many possibilities for non-faces
 - Other approaches:

**

- detect correct relatively positioned patches of skin, eyes or other face elements. Advantage; relatively robust against rotations
- •Approach [6]: Use special features instead of pixels (advantage: domain knowledge can be encoded into features), Intelligent feature selection / combination of simple binary classifiers that work on single features (AdaBoost)
- (optional second step: face recognition(e.g. via Eigenfaces (via PCA) [5])

λ .

1

Person Detection from Video

- Human figure detection:
 - Main problem: too many options (clothes, accessoires)→ pixels as features won't work
 - Approaches:

Ŗ

features: histograms of directions of detected edges

Fig. 8. People detection. Examples of people detection in public spaces (pictures from [216]).

[1]

Person Detection from Video

- First step: Face detection
 - Naive apprach: simple pixel based binary classifier.
 Problem: too many possibilities for non-faces
 - Other approaches:

5

- detect correct relatively positioned patches of skin, eyes or other face elements. Advantage; relatively robust against rotations
- •Approach [6]: Use special features instead of pixels (advantage: domain knowledge can be encoded into features), Intelligent feature selection / combination of simple binary classifiers that work on single features (AdaBoost)
- optional second step: face recognition(e.g. via Eigenfaces (via PCA) [5])

Detecting Social Signals: Physical Appearance

- No specific studies in direct view of interpretation / effect as social signals; however: general investigations:
 - Beauty assessment
 - -- via face symmetries as features + classifiers or
 - -- via distance to "ideal" faces

morphed images taken from [7]

Detecting Social Signals: Physical Appearance

- No specific studies in direct view of interpretation / effect as social signals; however: general investigations:
 - Beauty assessment
 - -- via face symmetries as features + classifiers or
 - -- via distance to "ideal" faces

morphed images taken from [7]

Detecting Social Signals: Gaze and Face

- AU: smallest discernable temporal feature sequence: sequence of geometry or appearance features (modeled e.g. via Dynamic Bayesian Networks (DBN))
- Detection: example: basic integrative methods based on optical flow on detected faces:
 - --optical flow: motion pattern of picture elements (e.g. pixels): represented by vector field of velocity V(x,y,t) or intensity:

$$I(x+dx,y+dy,t+dt) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + O(d^2)$$

$$\implies \frac{\partial I}{\partial x}V_x + \frac{\partial I}{\partial y}V_y + \frac{\partial I}{\partial t} = 0 \quad \text{(optical flow equation)}$$

use numeric methods to compute solutions

Detecting Social Signals: Gaze and Face

- AU: smallest discernable temporal feature sequence: sequence of geometry or appearance features (modeled e.g. via Dynamic Bayesian Networks (DBN))
- Detection: example: basic integrative methods based on optical flow on detected faces:
 - --optical flow: motion pattern of picture elements (e.g. pixels): represented by vector field of velocity V(x,y,t) of intensity:

$$I(x+dx,y+dy,t+dt) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + O(d^2)$$

$$\implies \frac{\partial I}{\partial x}V_x + \frac{\partial I}{\partial y}V_y + \frac{\partial I}{\partial t} = 0 \quad \text{(optical flow equation)}$$

use numeric methods to compute solutions

Detecting Social Signals: Gaze and Face

- AU: smallest discernable temporal feature sequence: sequence of geometry or appearance features (modeled e.g. via Dynamic Bayesian Networks (DBN))
- Detection: example: basic integrative methods based on optical flow on detected faces:
 - --optical flow: motion pattern of picture elements (e.g. pixels): represented by vector field of velocity V(x,y,t) of intensity:

$$I(x + dx, y + dy, t + dt) = I(x, y, t) + \frac{\partial I}{\partial x} dx + \frac{\partial I}{\partial y} dy + \frac{\partial I}{\partial t} dt + O(d^{2})$$

$$\implies \frac{\partial I}{\partial x} V_{x} + \frac{\partial I}{\partial y} V_{y} + \frac{\partial I}{\partial t} = 0 \quad \text{(optical flow equation)}$$

use numeric methods to compute solutions

Detecting Social Signals: Gaze and Face

- AU: smallest discernable temporal feature sequence: sequence of geometry or appearance features (modeled e.g. via Dynamic Bayesian Networks (DBN))
- Detection: example: basic integrative methods based on optical flow on detected faces:
 - --optical flow: motion pattern of picture elements (e.g. pixels): represented by vector field of velocity V(x,y,t) of intensity:

$$I(x+dx,y+dy,t+dt) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + O(d^{2})$$

$$\longrightarrow \frac{\partial I}{\partial x}V_{x} + \frac{\partial I}{\partial y}V_{y} + \frac{\partial I}{\partial t} = 0 \quad \text{(optical flow equation)}$$

use numeric methods to compute solutions

Detecting Social Signals: From Audio

- Vocal features: up to now: mostly investigated for speech detection
- Prosody: pitch, tempo, energy
 - --pitch: first fundamental frequency (1st maximum in Fourier transform (e.g. 30ms frames)
 - --tempo: vowels / sec.; vowel: phonetically relevant unit
 - --energy E of signal s(t): $E = \sum_{i} s(t_i)^2$
- Few efforts so far in analysis of non-linguistic vocalizations

 --example: laughter detection (e.g. via SVMs)

 and linguistic vocalizations
- silence detection: e.g. via energy as feature (often as by-product of speaker diarization)

Detecting Social Signals: Gaze and Face

- AU: smallest discernable temporal feature sequence: sequence of geometry or appearance features (modeled e.g. via Dynamic Bayesian Networks (DBN))
- Detection: example: basic integrative methods based on optical flow on detected faces:
 - --optical flow: motion pattern of picture elements (e.g. pixels): represented by vector field of velocity V(x,y,t) of intensity:

$$I(x+dx,y+dy,t+dt) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + O(d^2)$$

$$\longrightarrow \frac{\partial I}{\partial x} V_x + \frac{\partial I}{\partial y} V_y + \frac{\partial I}{\partial t} = 0 \ \ \text{(optical flow equation)}$$

use numeric methods to compute solutions

Detecting Social Signals: From Audio

- Vocal features: up to now: mostly investigated for speech detection
- Prosody: pitch, tempo, energy
 - --pitch: first fundamental frequency (1st maximum in Fourier transform (e.g. 30ms frames)
 - --tempo: vowels / sec.; vowel: phonetically relevant unit
 - --energy E of signal s(t): $E = \sum_{i} s(t_i)^2$
- Few efforts so far in analysis of non-linguistic vocalizations
 --example: laughter detection (e.g. via SVMs)
 - and linguistic vocalizations
- silence detection: e.g. via energy as feature (often as by-product of speaker diarization)

Important issue: behavioral cues can have different meaning if happening in different outer contexts

• Example: temporal dynamics of behavioral cues / social signals (e.g. relative person–person timing, person-environment timing etc.)

 Other important issue: multi-modal combination / fusion of social signals (e.g. audio and interaction geometry)

1/2

Social Situation:

Co-located social interaction with full mutual awareness

Simplified Social Situation Model:

- Participating persons: P: set of IDs
- Spatio-temporal reference: X: sub-set of $\mathbb{R} \times \mathbb{R}^3$

Social Situation Models as Models of Social Context

 \rightarrow S = (P, X)

Technische Universität Münche

3 / 25

pplied Informatics / Cooperative Systems AICOS

Social Situation Models as Models of Social Context

Social Situation:

Co-located social interaction with full mutual awareness

for

Social Situation:

Co-located social interaction with full mutual awareness

Simplified Social Situation Model:

- Participating persons: P: set of IDs
- Spatio-temporal reference: X: sub-set of $\mathbb{R} \times \mathbb{R}^3$
- \rightarrow S = (P, X)

Simplified Social Situation Model:

- Participating persons: P: set of IDs
- Spatio-temporal reference: X: sub-set of R x R³
- → S = (P, X)

Social Situation detection

persons

Social Situation understanding

Detecting Social Situations: Mobile Social Signal Processing

- Social Situations: detection and understanding: Social Signal Processing (see work by A. Vinciarelli et al.)
- Social signal processing: deriving higher level social models from low level social signal-sources (audio, video, etc.)
- Use sensors in mobile devices (see work by A. Pentland et al.)

Mobile Social Signal Processing

Detecting Social Situations: Mobile Social Signal Processing

4 / 18

5 / 18

Geometry of Social Interaction

of person(s)

Interpersonal distances

- Hall: "general quality" of social relation → 4 personal zones
- Other influences (?): social context:

architectural environment (socio-petal, socio-fugal forces (Watson)), density, gender, etc.

Detecting Social Situations: Mobile Social Signal Processing

diarization → set of interacting persons

Example: microphone → audio-signals → speaker

• Example: gyroscope, accelerometer, ultrasound-s. →

relative body distance & orientation → set of interacting

Example: microphone → audio-signals → analysis of prosody → emotion detection → model of state of mind

individual context:

culture, age, self-esteem, disabilities,

Body angles

Dir.

Kendon: F-Formations [8]

Social Situation detection

- Example: microphone → audio-signals → speaker diarization → set of interacting persons \alpha
- Example: gyroscope, accelerometer, ultrasound-s. → relative body distance & orientation → set of interacting persons

Social Situation understanding

Example: microphone → audio-signals → analysis of prosody → emotion detection → model of state of mind of person(s)

Geometry of Social Interaction

Interpersonal distances

- Hall: "general quality" of social relation → 4 personal zones
- Other influences (?):

social context:

architectural environment (socio-petal, socio-fugal forces (Watson)), density, gender, etc.

individual context:

culture, age, self-esteem, disabilities,

Body angles

6 / 18

Technische Universität Münch

Model for Human Social Int. Geometry: Function $p(\delta\theta, \delta d)$

- Idea: Reduce n-ary social interaction to binary; infer n-ary by graph clustering
- Binary: $p(\delta\theta, \delta d)$
 - $\delta d(t) = \pm |P_{x,y} s_1(t) P_{x,y} s_2(t)|$
 - $\delta\theta(t) = \theta_z \left(R_{12}(t) \right) = \theta_z \left(\left(R_1(t) \left(R_2(t) \right)^T \right) \right)$
- Optional: $p(\delta\theta, \delta d, \overline{\delta d})$

Experiment

pplied Informatics /
Cooperative Systems
AICOS

Technische Universität Münche

Experiment data: Manual annotation

 $|S^{\oplus}| = 321307 \ (\delta\theta, \delta d)$ pairs corresponding to "in a social situation"

B

 $|S^{\Theta}| = 398335 \ (\delta\theta, \delta d)$ pairs corresponding to "not in a social situation"

 $\pi/2$

(*) w. 10-fold cross validation

 $\pi/2$

 $\pi/2$

11 / 18

0.5%

0.0%₋

 $-\pi/2$

2.2%

0.0% L -3m

Reconstructing Social Situations

• For each t: complete weighted Graph G(V.E.w.t) with V=set of persons.

$$w((s_1, s_2)) = \frac{p^{\bigoplus}(\delta\theta_{s_1s_2}, \delta d_{s_1s_2})}{p^{\bigoplus}(\delta\theta_{s_1s_2}, \delta d_{s_1s_2}) + p^{\bigoplus}(\delta\theta_{s_1s_2}, \delta d_{s_1s_2})}$$

- Average Link Clustering of *G(V,E,w,t)* + Maximum Modularity Dendrogram Cut \rightarrow Partition X of V
- Compare X with annotation X' via $RAND(X,X') \rightarrow$ Accuracy of Social Situation Detection for each t
- Average over all t: RAND ~ 0.76 Adj.Rand ~0.529

Reconstructing Social Situations

• For each t: complete weighted Graph G(V.E.w.t) with V=set of persons.

$$w((s_1, s_2)) = \frac{p^{\bigoplus}(\delta\theta_{s_1s_2}, \delta d_{s_1s_2})}{p^{\bigoplus}(\delta\theta_{s_1s_2}, \delta d_{s_1s_2}) + p^{\bigoplus}(\delta\theta_{s_1s_2}, \delta d_{s_1s_2})}$$

- Average Link Clustering of G(V,E,w,t) + Maximum Modularity Dendrogram Cut \rightarrow Partition X of V
- Compare X with annotation X' via $RAND(X,X') \rightarrow$ Accuracy of Social Situation Detection for each t
- Average over all t: RAND ~ 0.76 Adj.Rand ~0.529