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Watts Strogatz MOdelfi

- Models of Network Growth

: ® Random Graphs, Watts-Strogatz etc: Medels aimed at reproducing
& properties of real world NW;

: BUT: not really generative models / models of network arowth.

: ® > Models of Price and Barabasi & Albert
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Price's Model

® Basic principle:
sthe rich get richer”
,,Matthew effect” (.For to every one that hath shall be given...” Bible: Mt25:29)

Lpreferential attachment®

® Assume directed citation NW:
® p,: fraction of nodes with in-degree k,
® each node (paper) has av. out degree m
® mean out-deg. S mean in-deg. 2> Zk kpr, =m

¢ iteratively build graph by adding new vertices (and associated
directed (out)edges from these nodes)
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® Basic principle:
sthe rich get richer”
,Matthew effect”
Lpreferential attachment®

(.For to every one that hath shall be given...” Bible: Mt25:29)

® Assume directed citation NW:
® p,: fraction of nodes with in-degree k, N
® each node (paper) has av. out degree m
® mean out-deg. £ mean in-deg. = Zk kpr = m

¢ iteratively build graph by adding new vertices (and associated
directed (out)edges from these nodes)

Price’'s Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)
s s
® initial .starting in-degree” ky=1
*> prob. that new edge attaches to any node with in-deg. k ==

(k + 1)ps _ (k+ 1)pr
>k +1)py m—+ 1

® Since mean number of out-edges per added vertex==m =
mean number of new in-edges to nodes with current in-degree K is ==

(k+Vpr
m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1
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1
;:?er:ious
*“ ® mean number of nodes with in-degree k (which is np,) decreases

by x because their in-degree changes to k+1

® mean number of nodes with in-degree Kk also increases because of
nodes having previously k-1 and now have k

® > the net change in the quantity np, per added vertex satisfies:

m
(” + 1)3)1.!,11—1 — NPrn = [k:pk—l.n - ('Il + 1)}')1\',-11} m
for k = 1, or

m

n+Dponet —mpon=1—pon—0.
( )I 0,n+1 Po.n Pon m 1

for £ = 0.
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from
previous

s ® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

® mean number of nodes with in-degree k also increasgs because of
nodes having previously k-1 and now have k

® > the net change in the quantity np, per added vertex satisfies:

m

(n+ D)prnst = Pk = [kpr—1.n — (kb + 1)pp.n]

from
previous

s ® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1

® mean number of nodes with in-degree k also increases because of
nodes having previously k-1 and now have k

® > the net change in the quantity np, per added vertex satisfies:

1

(” + 1)pknet — nprn = [A:pk—l.n - ('l‘ + 1)}-’1{.11}

m+ 1 m+ 1
for k > 1, or for k = 1, or
T m
(n+ Dponsr — npon =1 *Pu.n.mf (7 + 1)pons1 —npon =1 — pon mk
for £ = 0. for £ = 0.
Price’s Model Barabasi-Albert Model
® Computing stationary solutions Phkntl = Pkon = Pk ® same principles as Price's but use undirected edges, intended as
of this equation we find: . model for the WWW
—(2+1/m) ‘ ® nodes with fixed degree m are added to thie network at each
Pk~ k for N>« iteration

® > the desired power law distribution

® we see: ,the rich get richer" - power law

¢ edges connect to nodes with probability proportional to current
degree of node

*> analogous analysis as for Price‘'s leads to &

—3
PE =~ k for n>=
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Barabasi-Albert Model

® same principles as Price‘s but use undirected edges, intended as
model for the WWW N

® hodes with fixed degree m are added to the network at each
iteration Iz

° edges connect to nodes with probability proportional to current
degree of node

*> analogous analysis as for Price's leads to

—3
Pr =~ ]1 for N>«
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® same principles as Price's but use undirected edges, intended as
model for the WWW N

® hodes with fixed degree m are added to the network at each
iteration K

¢ edges connect to nodes with probability proportional to current
degree of node

*> analogous analysis as for Price’s leads to

—3
PE =~ k for n>=
ks

Barabasi-Albert Model and Price‘s Model

® same principles as Price‘s but use undirected edges, intended as
model for the WWW

® hodes with fixed degree m are added to the[%network at each
iteration

° edges connect to nodes with probability proportional to current
degree of node

*> analogous analysis as for Price's leads to

—3
Pr ~~ ]1 for N>«

® crucial: linear preferential attachment

K
® found in a number of real world NW (e.g. citation NW)
® Barabasi-Albert: undirected (not like WWW)

® directed version of Barabasi Albert: attachment prop to s%um of out
and in- degree: not realistic for e.g. the WWW but for social NW?!

® Price: generates directed acyclic graph: not realistic for SN
and WWW

® out-degree of WWW: power-law, Price + BA: constant
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® Assume structure of NW known: what about processes on networks
(e.g. spread of info in SN)?

® Percolation: Randomly assign states ,occupied” and ,not occupied*
to either edges or vertices = investigate occupied and un-occupied
.parts” separately

® Similarly: Take out nodes / edges, ask for petwork resilience. E.g.
measure resilience via connectednes (e.g. existence of giant
component) e

® Example: configuration random graph model with power law degree
distribution p,~k® ; investigate phase transition to / from existing
giant component when ,occupying” nodes
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Processes on Networks: Percolation

° degree distr.: p~k< ;

® let g be the constant fraction of occupied (,functional”/ ,working*)
vertices

® > for vertex with degree k: fraction of occupied neighbors:
pl k)= (5)a* (1—q)*=*

*> probability that any node is connected to k™ occupied nodes is

, > AT N L1t
P = p(k’)zzp(k’\k)pac){p(k b k=" pi ( A,,) ¢ (1—gh "
k k

=k

® > (analysis similar to slide 29 / 30) = for a < 3 : independent
of positive q: giant component always exists - random
~rfemoval“ of (1-q) nodes leaves NW ,,unimpr%ssed"

¢ degree distr.: p~k* ;

® let g be the constant fraction of occupied (,functional” / ,working*)
vertices N

® > for vertex with degree k: fraction of occupied neighbors:
p o= (3)a" (1—q)*=*
*> probability that any node is connected to k™ occupied nodes is
, > Jl‘f A N N
pr = p(kj:zp(k’lk) p,ﬂf):ZPﬁC k) pk= Z Pk (A-’) ¢ (1 -t "
k K

k=k'

® > (analysis similar to slide 29 / 30) > for a < 3 : independent
of positive q: giant component always exists - random
zremoval“ of (1-q) nodes leaves NW ,unimpressed*
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Processes on Networks: Percolation

° degree distr.: p~k< ;

® let g be the constant fraction of occupied (,functional”/ ,working*)
vertices

® > for vertex with degree k: fraction of occupied neighbors:
pl k)= (5)a* (1—q)*=*

*> probability that any node is connected to k™ occupied nodes is

, > AT N L1t
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® > (analysis similar to slide 29 / 30) = for a < 3 : independent
of positive q: giant component always exists - random
.rfemoval“ of (1-q) nodes leaves NW ,unimpressed* [N

¢ degree distr.: p~k* ;

® let gy be the fraction of occupied vertices dependent on k (e.g.
remove F‘occupy only high degree nodes)

* > (analysis) = only a small fraction of the high degree nodes
needs to be removed to destroy the giant component

0.03

0.02

critical fraction

0.01

I 35
cxponent o [1]



Processes on Networks: Percolation

Processes on Networks: Percolation

° degree distr.: p~k< ;

® let qx be the fraction of occupied vertices dependent on k (e.g.
remove / occupy only high degree nodes)

* > (analysis) = only a small fraction of the high degree nodes
needs to be removed to destroy the giant component

0.03

0.02

critical fraction

0.01

ol o
L 25 3 3.5

exponent o [ 1 ]

Processes on Networks: Epidemiology

¢ degree distr.: p,;k'“lk ;

® let gy be the fraction of occupied vertices dependent on k (e.g.
remove / occupy only high degree nodes)

* > (analysis) = only a small fraction of the high degree nodes
needs to be removed to destroy the giant component

0.03

0.02

critical fraction

0.01

35

cxponent o [ 1 ]

Processes on Networks: Epidemiology

® disease: nodes V = susceptibles U infectivei W recoveredr

* susceptibles: can be infected,;
infective: have the disease and are contageous,
recovered: have had the disease and are immune (or dead)

® infection probability / rate B , recovering probability y

® > SIR model (,fully mixed®):

ds . di 3i ) dr

—_— = — 918, — = 218 — Y1, —_ = %

dt dt : dt ‘
&

® disease: nodes V = susceptible s U infectivei W recovered r

* susceptibles: can be infected;
infective: have the disease and are contageous,
recovered: have had the disease and are immune (or dead)

® infection probability / rate B , recovering probability y

® 5 SIR model (,fully mixed®):

ds ) di ) ) dr
—Fis, — = Jis — ~i, = ~i

at s a0 dt
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® disease: nodes V = susceptible s U infectivei W recovered r

* susceptibles: can be infected;
infective: have the disease and are contageous,
recovered: have had the disease and are immune (or dead)

® infection probability / rate B , recovering probability y

® 5 SIR model (,fully mixed®):

ds ) di ) ) dr
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Processes on Networks: Epidemiology

° degree distr.: p~k< ;

® let qx be the fraction of occupied vertices dependent on k (e.g.
remove / occupy only high degree nodes)

* > (analysis) = only a small fraction of the high degree nodes
needs to be removed to destroy the giant component

0.03

0.02

critical fraction

0.01

35

exponent o [ 1 ]

ds ) di . ) dr )
— = —[Jis, — = Fis — i, — =i
dt de ' dt

® now: Jplay” the model on a network (e.g. human contact network) and
investigate perlocation effects:

° B (infection probability per unit time) and vy (recovery prob. p.u.t.):
drawn from probability distributions P;(#) and P;(y) --> problem is
equivalent to edge-percolation problem with edge occupation
probability o0 By
r=1- [ Pi(B)Pr(7) /7 dg3 dn.
JO
° investigate dissociation into components (internally connected by

unoccupied egdes)

® corresp. phase transitions: transitions from epidemic outbreak

(giant component) vs. controlled state (small components)

®result: power law with a<3-> giant component also always exists
here
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ds ) di . . dr
—Fis — = [3is — i, 8%)

EZ o dt : EZ‘
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here
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Processes on Networks: Searching and Navigating

® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of

vertex i (neglecting heuristic corrections):

€r; = A1 Zj AU.J'J- for some A\ > 0 > Ax=)\x
ks
® instead of only looking at in-degrees also look at high out-degree

® node with high in-degree ,from*
highly (out-degree-)weighted nodes == Authority“ :

® node with high out-degree ,to" e
highly (in-degree-)weighted nodes == ,Hub")

® in-degree based weights: x; out-degree-based weights y

Ay = \x, ATx = py > AATx = \ux
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2> Ax=)x
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® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of

vertex i (neglecting heuristic corrections):

zi= A1 > Aija; for some A >0 > Ax=)x
® instead of only looking at in-degrees also look at high out-degree
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® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of

vertex i (neglecting heuristic corrections):

;= AL >, Aijxj for some A >0

® instead of only looking at in-degrees also look at high out-degree
® node with high in-degree ,from*“
highly (out-degree-)weighted nodes == Authority“ :
® hode with high out-degree ,to"
highly (in-degree-)weighted nodes == jHub®)
¢ in-degree based weights: x; out-degree-based weights y
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® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of ® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of
vertex i (neglecting heuristic corrections): vertex i (neglecting heuristic corrections):
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® instead of only looking at in-degrees also look at high out-degree ® instead of only looking at in-degrees also look at high out-degree
® node with high in-degree ,from* ® node with high in-degree ,from*“
highly (out-degree-)weighted nodes == Authority“ : highly (out-degree-)weighted nodes == Authority“ :
® node with high out-degree ,to" ® hode with high out-degree ,to"
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Processes on Networks: Searching and Navigating Processes on Networks: Searching and Navigating
® We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of ® Instead of ,Search engine“-type of network search (one big crawl),
vertex i (neglecting heuristic corrections): perform local crawls
;= bt ZJ Aij-l'j for some \ >0 > Ax=)\x ® especially suitable in decentralized scenarios
¢ example: BFS: ,do you have the info“? either ,yes” or ,no, but will
® instead of only looking at in-degrees also look at high out-degree forward to my nighbors* b
® node with high in-degree ,from* ® variant by Adamic: instead of asking all neighbors : answer will be ;no
highly (out-degree-)weighted nodes ==  Authority“: but i have k neighbors = asker can choose highest degree node to ,pass
® ode with high out-degree ,to* on the qlrery baton to“ = if e.g. power law: high degree nodes cover NW
highly (in-degree-)weighted nodes == ;Hub") very wetl. s
® in-degree based weights: x; out-degree-based weights y ®other variants: see next chapter

Ay = \x, ATx = py > AATx = \ux
ks



Processes on Networks: Searching and Navigating Processes on Networks: Searching and Navigating

® Instead of ,Search engine“-type of network search (one big crawl), ¢ Navigation in Networks: Milgram experiment showed: Short paths exist
perform local crawls and people can find them = some notion of distance / measure of

° : . . _ i relatedness obviously necessary
especially suitable in decentralized scenarios

L] - - H ur) H [ H
example: BFS.' .do y?u have the info? either ,yes" or ,no, but will ® Poisson random graph = easy to achieve: short paths exist;
forward to my nighbors ke .

® variant by Adamic: instead of asking all neighbors : answer will be ,no
but i have k neighbors < asker can choose highest degree node to  pdss
on the query baton to“ = if e.g. power law: high degree nodes cover NW

¢ Open question: how do people find these paths? nodes i.g. do not
,know“ shortest paths to any other node --> routing strategy

very well. L
K
®other variants: see next chapter ¢ Kleinberg Model [3]: Variation of Watts Strogatz Model respecting
spatial distance: investigate question of navigation in networks
Processes on Networks: Searching and Navigating Kleinberg Model

® Navigation in Networks: Milgram experiment showed: Short paths exist
and people can find them - some notion of distance / measure of
relatedness obviously necessary r(i,j) = |x,— Xj| + |y, — yj|

® Put nodesonanxn grid. Distance: Manhattan:

® Each node i: Connected to all nodes with r(i,j) < q1 (regular local contacts)

® Poisson random graph = easy to achieve: short paths exist; ® cach node i- Additional q2 other ,long range* edges:
Probability of edge to node j:
P() ~ r(i,j)°
° Open question: how do people find these paths? nodes i.g. do not 0) (1))
,know" shortest paths to any other node --> routing strategy examples:
A) B)

(o]
o ©
o ©

o 0 0 0O
<
O O 0ol0 ©
(o]
c
o e}

(o]
O 0O 0 0O 0 O©0

® Kleinberg Model [3]: Variation of Watts Strogatz Model respecting
spatial distance: investigate question of navigation in networks

o
o 0o 0o o o

i

edges for one node u: (g1 =1, g2 =2)
(3]
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Kleinberg Model

® Putnodesonanxn grid. Distance: Manhattan:
r(i) = Ix=xl + lyi—yjl
® Each node i Connected to all nodes with r(i.j) < q1 (regular local contacts)

ks
® Each node i Additional g2 other ,long range“ edges:
Probability of edge to node |:

T
P() ~ r(i)
examples:
A) B)
o 0 0 0o 0 O
O 0O 0 0o 0 O
0,0 o ﬁ\‘ow
o o o
u

o o0 o o o
0O 0 0 O 0 O

edges forone node u: (g1 =1, g2 =2)
[3]

Kleinberg Model

® Put nodesonanxn grid. Distance: Manhattan:
r(ij) = X =x| + lyi = yjl
® Each node i: Connected to all nodes with r(i,j) < q1l% (regular local contacts)

® Each node i: Additional g2 other ,long range® edges:
Probability of edge to node j:

N g
PG) ~ r(i.J)
examples: By
A) B)
0O 0 0 0 0 ©
0O 0 0 0 0 ©
o, 0 o ﬁ\‘ow
o o o
u
o o o o o
0O 0 0 0o 0 o

edges for one node u: (g1 =1, g2=2)
(3]

Kleinberg Model

® Putnodesonanxn grid. Distance: Manhattan:
r(i) = Ix=xl + lyi—yjl
® Each node i Connected to all nodes with r(i.j) = q1 (regular local contacts)

® Each node i Additional g2 other ,,Iong range“ edges:
Probability of edge to node |:

T
P() ~ r(i)
examples:
A) B)
o 0o 0o o o o
O 0O 0 0o 0 O
0,0 o ﬁ\‘ow
o o o
u

o o0 o o o
0O 0 0 O 0 O

edges foronenode u: (g1 =1, g2 =2)
[3]

® Put nodesonanxn grid. Distance: Manhattan:
r(ij) = X =x| + lyi = yjl
® Each node i: Connected to all nodes with r(i,j) < q1 (regular local contacts)

® Each node i: Additional g2 other ,long range® edges:
Probability of edge to node j:

PG) ~r(ijye "

examples:
A) B)
o o o o o o
o o o o o o
o, 0 o© ﬂ\‘o w
o o o
yu
o o0 o o o
o o 0 o o o

edges for one node u: (g1 =1, g2 =2)
(3]
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® Putnodesonanxn grid. Distance: Manhattan:
r(i) = Ix=xl + lyi—yjl
® Each node i Connected to all nodes with r(i.j) < q1 (regular local contacts)

® Each node i Additional g2 other ,long range“ edges:
Probability of edge to node |:
PQ) ~r@ij)e

examples:
A) B)
o 0 0 0o 0 O
O 0O 0 0o 0 O
0,0 o ﬁ\‘o w
o o o
u
o o0 o o o
0O 0 0 O 0 O

edges forone node u: (g1 =1, g2 =2)
[3]

Homophily and Distance

® local (decentralized) knowledge:
® Each node only knows only:
®its adjacent nodes
® The grid's principle structure .
® Position of target node on the grid

® Positions and long-range contacts of nodes
on the message path so far

¢ (Search-) algorithm with only local knowledge: ,decentralized”

Homophily and Distance

® Homophily: supports triadic closure and thus high clustering in SN

&

° Homophily principle: route questions, information Milgram letters etc. to
nodes that are similar to you (socially, geographically, profession-wise) .

Ik

° Homophily principle alone is not sufficient for routing: if you only know
,your kind“ (socially, geographically, profession-wise) no efficient routing
(searching for information, information dissemination etc.) is possible >
suitable distribution®, jheterogenity necessary = (compare short-cuts and
local (cluster) edges in Watts-Strogatz model)

° Example geographic homophily: geographical distribution of social
relations: if too local: too many steps required, if too scattered: no efficient
,greedy” decentralized routing possible

¢ Homophily: supports triadic closure and thus high clustering in SN
s

¢ Homophily principle: route questions, information Milgram letters etc. to
nodes that are similar to you (socially, geographically, profession-wise) .

¢ Homophily principle alone is not sufficient for routing: if you only know
,2your kind“ (socially, geographically, profession-wise) no efficient routing
(searching for information, information dissemination etc.) is possible =
suitable ,distribution”, Jheterogenity” necessary = (compare short-cuts and
local (cluster) edges in Watts-Strogatz model)

¢ Example geographic homophily: geographical distribution of social
relations: if too local: too many steps required, if too scattered: no efficient
,greedy” decentralized routing possible
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Homophily and Distance

® Homophily: supports triadic closure and thus high clustering in SN

® Homophily principle: route questions, information Milgram letters etc. to
nodes that are similar to you (socially, geographically, profession-wise) .

° Homophily principle alone is not sufficient for routing: if you only know
,your kind“ (socially, geographically, profession-wise) no efficient routing
(searching for information, information dissemination etc.) is possible >
suitable ,distribution”, ,heterogenity” necessary = (compare short-cuts and
local (cluster) edges in Watts-Strogatz model) s

° Example geographic homophily: geographical distribution of social
relations: if too local: too many steps required, if too scattered: no efficient
,greedy” decentralized routing possible

Homophily and Distance

¢ Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.g. filenames) (,keys®) and host-IDs (e.g. IP-addresses) (,nodes")
hashed into the same m-dim key-space, &

®Key k is assigned to node successor(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n + 2/~ ') mod 2™) > routing in log(N) steps possible

Kel.

T Finger Table of N§
N57 Idx | Target ID | Successor

(KL 0 |NS+1 N10
e 1 [N§+2 N10
A T 2 Ins+a | s
3 [N8+8§ NI18

4 [N8+16 N24

5 [N8+32 N43

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,

[8]

Homophily and Distance

® Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.g. filenames) (,keys*) and host-IDs (e.g. IP-addresses) (,nodes®)
hashed into the same m-dim key-space, &

®Key kis assigged to node successor(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n +2'~7) mod 2m) —» routing in log(N) steps possible

LO

A e Finger Table of N8

N57 NS § ‘ Idx | Target ID | Successor
:_K—‘l/ j}m 0 |Ns+1 NIO
ki | an. 1 [NS+2 NIO

$ N4g \ \‘ o |2 |Ns+4 | wis

\ \NIS,/' 3 |Ns+s NIS
fas QN4 N24 4 [NS+16 | N2

M N '}':: 5 |ns+32 | N

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,

(8]

¢ Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.g. filenames) (,keys®) and host-IDs (e.g. IP-addresses) (,nodes)
hashed into the same m-dim key-space,

®Key k is assigned to node successdr(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n + 2/~ ') mod 2™) > routing in log(N) steps possible

Finger Table of N8
Idx | Target ID | Successor
0 [NS+1 N10

1 [N§+2 N10

2 [NS+4 NI15

3 [N8+8§ NI§

4 [N8+16 N24

5 |N8+32 N43

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,

[8]
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® Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.qg. filenames) (,keys®) and host-IDs (e.g. IP-addresses) (,nodes")
hashed into the same m-dim key-space,

®Key k is assigned to node successor(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n + 2/~ T) mod 2"’) - routing in log(N) steps possible

Khl
Finger Table of N8
N:T NS Idx | Target ID | Successor
Nl(} 0 |N§+1 NI10
5 8 +2
K4(J$N43 Nl I NS+ NI10
‘ 2 |NS+4 NIS
N lﬁf 3 |NS+8 NIS
N”-* 4 |NS+16 | N4
35 5 |N8+32 N43
N"‘)
K38 S K26

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,
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Homophily and Distance

¢ Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.g. filenames) (,keys*) and host-IDs (e.g. IP-addresses) (,nodes")
hashed into the same m-dim key-space,

®Key k is assigned to node successor(k),
®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n + 2/~ ') mod 2™) > routing in log(N) steps possible

K6l

Finger Table of N8
Idx | Target ID | Successor %
0 |N8+1 NI10
1 [N8+2 NIO
2 [NS+4 NI5
3 |NE+S NI§
4 |N8+16 N24
5 |N8+32 N43

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,

[8]

Homophily and Distance

® Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.g. filenames) (,keys*) and host-IDs (e.g. IP-addresses) (,nodes®)
hashed into the same m-dim key-space,

®Key k is assigned to node successor(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n + 2/~ T) mod 2"’) - routing in log(N) steps possible

Khl
Finger Table of N8 %
NN Idx | Target ID | Successor
Nl(} 0 |N§+1 NI10
S 8 +2
K4()$N43 Nl I NS+ NI10
‘ 2 |NS+4 NIS
N lﬁf 3 |NS+8 NI8
N”-* 4 [NS+16 N24
35 5 [N8+32 N43
N"‘)
K38 — K26

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,
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¢ Example for this principle: Early P2P file sharing protocols based on
Distributed Hash Tables: Example: Chord:

®data (e.g. filenames) (,keys®) and host-IDs (e.g. IP-addresses) (,nodes)
hashed into the same m-dim key-space,

®Key k is assigned to node successor(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address
of node successor((n + 2/~ ') mod 2™) > routing in log(N) steps possible

Finger Table of N8

Idx | Target ID | Successor
0[N8B+l N10
My

1 [N§+2 N10
2 [NS+4 NI15
3 [N8+8§ NI18
4 [N8+16 N24
5 |N8+32 N43

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,

[8]
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Kleinberg Model

® Example for this principle: Early P2P file sharing protocols based on

Distributed Hash Tables: Example: Chord:

® local (decentralized) knowledge:

° .
®data (e.qg. filenames) (,keys®) and host-IDs (e.g. IP-addresses) (,nodes") Each node only knows only:

hashed into the same m-dim key-space,
®Key k is assigned to node successor(k),

®each node n maintains finger table (length up to m): m-th entry: IP-address

®its adjacent nodes

® The grid's principle structure

of node successor((n + 2/~ T) mod 2"’) - routing in log(N) steps possible ® Position of target node on the grid

Khl
Finger Table of N8
N\‘i Idx | Target ID | Successor
N“, 0 |NS+1 NIO
35 842
K4()$N43 NI’. 1 |NS+ NIO
‘ 2 [NS+4 NI5
N lﬁf 3 |NS+8 NIS
N”-* 4 |N§+16 N24
- 35 5 |N§+32 N43
N‘“)
K}S — K26

® Positions and long-range contacts of nodes
on the message path so far

¢ (Search-) algorithm with only local knowledge: ,decentralized”

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host
which keys. Black lines represent the fingers of node N8,

Kleinberg Model

(8]

Kleinberg Model

® Now: Send message with local (decentralized) knowledge only ® Now: Send message with local (decentralized) knowledge only

® Given: Decentralized greedy

message delivery algorithm: &
measure number of expected Jower bonad T
delivery steps s: on delivery time
[% (givenas log T)
®0<a<2 : s atleast
~c1(a,q1,q2) n@r
®a=2 . s at most g
~c2(a,q1,92) (log n)? k&
®a>2 s at least %

~ ¢3(a,q1,q2) nledia)

® Given: Decentralized greedy

5 message delivery algorithm: sr
measure number of expected o
X ower bound T
delivery steps s: on delivery time
(givenaslog T)
®0<a<2 : s atleast
~c1(a,q1,g2) nZas
o _ _ .
. > 5 P a=2 s at most 0 1 2 3 4
- 2
clustering exponent @ C2(a1q1 !q2) (Iog n) clustering exponent [
®a>2 - s &t least D

(closely after [3] ~ ¢3(a,q1,q2) nle-2)(en (closely after [3]
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® Putnodesonanxn grid. Distance: Manhattan:
r(i) = Ix=xl + lyi—yjl
® Each node i Connected to all nodes with r(i.j) < q1 (regular local contacts)

® Each node i Additional g2 other ,long range“ edges:
Probability of edge to node |:

T

P() ~ r(i,))

examples:

A) B)
o 0 0 0o 0 O
O 0O 0 0o 0 O
0,0 o mow
o o o
u

o o0 o o o

o O 0O 0o O o

edges forone node u: (g1 =1, g2 =2)
[3]

Kleinberg Model

® Put nodesonanxn grid. Distance: Manhattan:
r(ij) = X =x| + lyi = yjl
® Each node i: Connected to all nodes with r(i,j) <= q1 (regular local contacts)

® Each node i: Aditional g2 other ,long range® edges:
Probability of edge to node j:
P() ~ r(ij)*

examples:

A) B)

(o]
o O
o ©

o 0 0 0 O
<
0O O 0ol0 O
(o]
c
o e}

O 0O 0 0O 0 o0

o
o 0o 0o o o

edges for one node u: (g1 =1, g2=2)
(3]

Kleinberg Model

® Putnodesonanxn grid. Distance: Manhattan:
r(i) = Ix=xl + lyi—yjl
® Each node i Connected to all nodes with r(i.j) = q1 (regular local contacts)

® Each node i Additional g2 other ,long range“ edges:
Probability of edge to node |:

P@) ~ r(ij)e
B

examples:
A) B)
o 0o 0o o o o
O 0O 0 0o 0 O
0,0 o ﬁ\‘o w
o o o
u
o o0 o o o
0O 0 0 O 0 O

edges foronenode u: (g1 =1, g2 =2)
[3]

¢ Effectively: Only a notion of distance (not neccess. spatiall) is necessary to
routel

¢ Applications in P2P Systems (see [2])

¢ Explanation for the dependency of a=D on the grid‘s dimension D for
efficient delivery:

® start from node u

¢ partition the set of other nodes into sets 'j{;:' e 2
Ao, Ay, Ay, ., Aggn, Where A, has a distance e —
to u between 2i and 2+ Ay R T e = =

® proven in [3]: only a=D ensures that
the g2 ,long-range” contacts are
evenly distributed over the A;

® for a>D : bias towards smaller distances;
for a<D : bias towards larger distances
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¢ Effectively: Only a notion of distance (not neccess. spatiall) is necessary to
routel

® Applications in P2P Systems (see [2])

® Explanation for the dependency of a=D on the grid‘s dimension D for
efficient delivery:

® start from node u

® partition the set of other nodes into sets R e
Ag, A, Ay, ..., Aiggn, Where A has a distance e
to u between 2 and 2+ o N

® proven in [3]: only a=D ensures that
the g2 ,long-range” contacts are
evenly distributed over the A;

® for a>D : bias towards smaller distances;
for a<D : bias towards larger distances

Geographic Distance as Routing Metric

¢ Effectively: Only a notion of distance (not neccess. spatiall) is necessary to
routel

® Applications in P2P Systems (see [2])

® Explanation for the dependency of a=D on the grid‘s dimension D for
efficient delivery:

® start from node u

® partition the set of other nodes into sets e e
Ag, A, Ay, ..., Aggn, Where A has a distance — e
to u between 2! and 2+ S et i

® proven in [3]: only a=D ensures that
the 92 ,long-range” cqntacts are
evenly distributed over the A;

® for a>D : bias towards smaller distances;
for a<D : bias towards larger distances

Geographic Distance as Routing Metric

® In analysis of Milgram's experiment: %

¢ People early in the resp. path: often cite geographic proximity as
main forwarding criterion;

¢ People late in the path: chose similarity of occupation

® [6]: Study ,Kleinberg-like* distributions / effects on real social NW:
® LifeJournal.com : locate ~ 108 users (long/lat of their hometown)

® Simulate Milgram on friendship NW
with greedy decentralized forwarding
and geographical proximity as criterion

® Result: efficient routing is possible on
average (see [6]) .

Fig, 2 The LiveJoumal social netwerk [32]. A dot is shown for each geographic locatioa that was
declan Bometown the =2300,000 Livelournal wsers whoms we were able to
inental United States. A random D 1% of the Biendships

®in analysis of Milgram's experiment:

° People early in the resp. path: often cite geographic proximity as
main forwarding criterion;

° People late in the path: chose similarity of occupation

¢ [6]: Study ,Kleinberg-like* distributions / effects on real social NW:
° LifeJoumaI.Goml%: locate ~ 10° users (long/lat of their hometown)

® Simulate Milgram on friendship NW
with greedy decentralized forwarding
and geographical prli\:g)ximity as criterion

® Result: efficient routing is possible on
average (see [6])

Fig. 2 The LiveJoumal social network [32]. A dot is shown for each geographic locatica that was

declared as the hometown of at least one of the =300,000 LiveJonmal users whom we ableto

Tocate ata in the continental United States. A randem 0.1%of the Siendslips
i




Geographic Distance as Routing Metric

Geographic Distance as Routing Metric

®In analysis of Milgram's experiment:

¢ People early in the resp. path: often cite geographic proximity as
main forwarding criterion;

¢ People late in the path: chose similarity of occupation

® [6]: Study ,Kleinberg-like* distributions / effects on real social NW:
® LifeJournal.com : locate ~ 108 users (long/lat of their hometown)

® Simulate Milgram on friendship NW
with greedy decentralized forwarding
and geographical proximity as criterion

® Result: efficient routing is possible on
average (see [6])

Fig, 2 The LiveJoumal social setwark [32]. A dot is shown for each geographic locatio that was
declared a5 the hometcmwn of at least cue of the =500,000 LiveJournal users whom we were able to
locate at a longitude and latimde m the contmental Unted States. A random 0.1% of the fiendships

i the wetwork are overlaid o these locations.

Geographic Distance as Routing Metric

|
® But: Investigate Kleinberg's a =2 claim: result: probability of

friendship as a function of distance reveals a = 1
i

NS

P(d)=¢e+0(1/d)

link probability

L
10 107 10°
separating distance (kilometers)

10%

Fig. 3 The probability F(d) of a friendship between two people in LiveJownal as a function of
the geographic distance d between their declared hometowns [32]. Distances are rounded into
10-kilometer buckets. The solid line comresponds to P(d) o= 1/d. Note that Theorem 1 requires
P{d) = 1/d? for a network of people arranged in a regular 2-dimensional grid to be navigable.

¢ Although a = 1 was found, systematic power law is surprising in “pure
virtual” community as LiveJournal

Geographic Distance as Routing Metric

I
® But: Investigate Kleinberg's a =2 claim: result: probability of
friendship as a function of distance reveals a = 1

N

P(d)=¢e+0(1/d)

(71

10°

10 17 10°
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Fig. 3 The probability P(d) of a friendship between two people in LiveJournal as a function of
the geographic distance d between thew declared hometowns [32]. Distances are rounded into
10-kilometer buckets. The solid line corresponds to P(d) o 1/d. Note that Theorem 1 reuires
Pid) o 1/d* for a network of people arranged in a regular 2-dimensional grid to be navigable.

° Although a = 1 was found, systematic power law is surprising in “pure
virtual” community as LiveJournal
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® But: Investigate Kleinberg's a =2 claim: result: probability of
friendship as a function of distance reveals a = 1
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Fig. 3 The probability F(d) of a friendship between two people in LiveJownal as a function of
the geographic distance d between their declared hometowns [32]. Distances are rounded into
10-kilometer buckets. The solid line comresponds to P(d) o= 1/d. Note that Theorem 1 requires
P{d) = 1/d? for a network of people arranged in a regular 2-dimensional grid to be navigable.

¢ Although a = 1 was found, systematic power law is surprising in “pure
virtual” community as LiveJournal
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Geographic Distance as Routing Metric

® Other studies: also confirm efficient decentralized routing with
geographic proximity as criterion is possible AND a = 1

® Explanation for this “contradiction”: geographic density of people is not
uniform (cp. urban vs. mid west) as assumed in the Kleinberg grid.

® Model: Rank-based friendship: modify Kleinberg (D=k):

® ateach grid point more than one person N
¢ p(v) for long range contact v starting at node u: p,(v) ~ 1 / rank,(v)
where rank(u,v) = number of people who live at least as close to u as

v does. (= u sorts candidates v according to distance)

¢ (if population density is uniform: rank,(v) ~ 8(d(u,v) ©) >
Kleinberg‘s claim is fulfilled)

Geographic Distance as Routing Metric

® Other studies: also confirm efficient decentralized routing with
geographic proximity as criterion is possible AND a =1

¢ Explanation for this “contradiction”: geographic density of people is not
uniform (cp. urban vs. mid west) as assumed in the Kleinberg grid.

® Model: Rank-based friendship: modify Kleinberg (D=k):
® ateach grid point more than one person

° p(v) for long range contact v starting at node u: p,(v) ~ 1/ rank(v)
where rank(u,v) = number of people who live at least as close to'u as
v does. (= u sorts candidates v according to distance)

® (if population density is uniform: rank,(v) ~ 6(d(u,v) ©) >
Kleinberg‘s claim is fulfilled)

Geographic Distance as Routing Metric

® Finding: Even for non-uniform geographic distribution of people:
efficient routing possible (choose pairs randomly):

® For gqi=2kand g2 =1: T~O((log n)3)
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(a) Concentric balls around a city C, where (b) A rank-based social network generated
each ball’s population increases byl factor of  from this population distribution. For visual
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(a) Concentric balls around a city C, where (b) A rank-based social network generated

four. A resident of C choosing a rank-based
fiiend 15 fowr times more likely to choose a
fiiend at the boundary of one ball than a fiiend
at the boundary of the next-larger ball.

simplicity. edges are depicted as connecting
cities; the complete image would show each
edge connecting one resident from each of its
endpoint cities.
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each ball’s population increases by a factor of
four. A resident of C choosing a rank-based
friend 15 four times more likely to choose a
friend at the boundary of one ball than a fiend
at the boundary of the next-larger ball.

from this population distribution. For wvisual
simplicity. edges are depicted as connecting
cities; the complete image would show each
edge connecting one resident from each of its
endpoint cities.
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® Finding: Even for non-uniform geographic distribution of people:
efficient routing possible (choose pairs randomly):

® For g1=2kand g2 =1: T-O((log n)?)
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(a) Concentric balls around a city C., where (b) A rank-based social network generated
each ball’s population increases by a factor of from this population distnbution. For visual
four. A resident of C choosing a rank-based  simplicity. edges are depicted as connecting
fiiend 15 fouwr times more likely to choose a  cities; the complete mmage would show each
friend at the boundary of one ball than a friend  edge connecting one resident from each of its
at the boundary of the next-larger ball. endpoint cities. [7]

Off-Grid / Other Metrics

® Rank based evaluation
of LifeJournal:

P(ry=0(1/r)+¢
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Fig. 5 The probability P(r) of a friendship between two people u and v in LiveJoumnal as a function
of the rank of v with respect to u [32]. Ranks are rounded into buckets of size 1300, which 1s the
LiveJonmal population of the city for a randomly chosen person in the network, and thus 1300
is in a sense the “rank resclution” of the dataset. (The unaveraged data are noisier, but follow the
same trend.) The solid line cosresponds to P(#] e 1/r. Note that Theorem 2 requires F(r) e 1/r
for a rank-based network to be navigable.

Off-Grid / Other Metrics

® Grid and concentration on geo-proximity alone: not realistic.

° Example: occupation: given taxonomy of occupations: similarity

measure: determine tredtheight of least common ancestor (Ica)
ofuandv

° Kleinberg: if tree is a regular b-ary tree and long range probability
goesas  Prlu — v]ec p—Blcaluy)  then efficient routing only for B=1

® Generalization: tree > graph : Prlu=>v] ~ 1/f( path-distance(u,v) )

® Grid and concentration on geo-proximity alone: not realistic.

¢ Example: occupation: given taxonomy of occupations: similarity

measure: determine tree height of least common ancestor (Ica)
ofuandv

¢ Kleinberg: if tree is a regular b-ary tree and long range probability
goes as P1‘[u — 1-] oc b—ﬁ-lca('!“-‘)% then efficient routing only for =1

® Generalization: tree > graph : Prlu>v] ~ 1/ f( path-distance(u,v) )
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® Kleinberg: Group Model: Partition set of actors into groups:

Priu=>v] ~ [1 / size of smallest common group of u and v] > 'm | B
navigateable with decentralized greedy approach if: G YT pefem  cemmeioT o

¢ Groups form a hierarchy (small contained in large) - ,narrowing — 'm . '.
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