Script generated by TTT

Title: groh: profile1 (17.06.2014)

Date: Tue Jun 17 12:16:21 CEST 2014

Duration: 91:12 min

Pages: 99

Price's Model

Basic principle:

"the rich get richer"

"Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)

"preferential attachment"

Assume directed citation NW:

- p_k: fraction of nodes with in-degree k,
- each node (paper) has av. out degree m
- mean out-deg. $\stackrel{!}{=}$ mean in-deg. $\xrightarrow{}$ $\sum_k kp_k = m$

• iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

Price's Model

Basic principle:

"the rich get richer"

"Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)

"preferential attachment"

- Assume directed citation NW:
 - p_k: fraction of nodes with in-degree k,
 - each node (paper) has av. out degree m
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. \rightarrow $\sum_k kp_k = m$
- iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

- Basic principle:
 - "the rich get richer"
 - ..Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)
 - "preferential attachment"
- Assume directed citation NW:
 - ullet p $_{f k}$: fraction of nodes with in-degree k, $_{ullet}$
 - each node (paper) has av. out degree m
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. \rightarrow $\sum_k kp_k=m$
- iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - > prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

• mean number of nodes with in-degree k (which is npk) decreases by x because their in-degree changes to k+1

Price's Model

probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)

- initial "starting in-degree" k₀=1
- \rightarrow prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} \, m$$

• mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)

 - initial "starting in-degree" k₀=1
 → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

 mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - > prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k^{k}}{\sum_{k}(k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

 ullet mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - > prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m mean number of new in-edges to nodes with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

 mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for k > 1, or

1

for k = 0.

from previou:

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
- > the net change in the quantity np, per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

Price's Model

from previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - > the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

Price's Model

from

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
- mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
- → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

Price's Model

from previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np, per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for k > 1, or

$$(n+1)p_{0,n+} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

from previous

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
- → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

Price's Model

 $^{\bullet}$ Computing stationary solutions $\ p_{k,n+1}=p_{k,n}=p_k$ of this equation we find:

$$p_k \sim k^{-(2+1/m)}$$
 for $n \rightarrow \infty$

- → the desired power law distribution
- we see: "the rich get richer" → power law

Price's Model

from previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for
$$k = 0$$
.

Barabasi-Albert Model

- same principles as Price's but use undirected edges, intended as model for the WWW
- nodes with fixed degree m are added to the network at each iteration
- edges connect to nodes with probability proportional to current degree of node
- → analogous analysis as for Price's leads to

$$p_k \sim k^{-3}$$
 for $n \to \infty$

Barabasi-Albert Model

- same principles as Price's but use undirected edges, intended as model for the WWW
- nodes with fixed degree m are added to the network at each iteration
- edges connect to nodes with probability proportional to current degree of node
- → analogous analysis as for Price's leads to

$$p_k \sim k^{-3}$$

for n→∞

Barabasi-Albert Model

- same principles as Price's but use undirected edges, intended as model for the WWW
- nodes with fixed degree m are added to the network at each iteration
- edges connect to nodes with probability proportional to current degree of node
- → analogous analysis as for Price's leads to

$$p_k \sim k^{-3}$$
 for $n \rightarrow \infty$

Barabasi-Albert Model

- same principles as Price's but use undirected edges, intended as model for the WWW
- nodes with fixed degree m are added to the network at each iteration
- edges connect to nodes with probability proportional to current degree of node
- > analogous analysis as for Price's leads to

$$p_k \sim k^{-3}$$
 for $n \to \infty$

R

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed version of Barabasi Albert: attachment prop to sum of out and in- degree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Processes on Networks: Percolation

- Assume structure of NW known: what about processes on networks (e.g. spread of info in SN)?
- Percolation: Randomly assign states "occupied" and "not occupied" to either edges or vertices → investigate occupied and un-occupied "parts" separately
- Similarly: Take out nodes / edges, ask for network resilience. E.g. measure resilience via connectednes (e.g. existence of giant component)
- Example: configuration random graph model with power law degree distribution $p_k \sim k^{-\alpha}$; investigate phase transition to / from existing giant component when "occupying" nodes

Processes on Networks: Percolation

- degree distr.: $p_k \sim k^{-\alpha}$;
- let q be the constant fraction of occupied ("functional" / "working") vertices
- ◆ for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• → probability that any node is connected to k' occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_{k} {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

- Assume structure of NW known: what about processes on networks (e.g. spread of info in SN)?
- Percolation: Randomly assign states "occupied" and "not occupied" to either edges or vertices → investigate occupied and un-occupied "parts" separately
- Similarly: Take out nodes / edges, ask for network resilience. E.g. measure resilience via connectednes (e.g. existence of giant component)
- Example: configuration random graph model with power law degree distribution $p_k \sim k^{-\alpha}$; investigate phase transition to / from existing giant component when "occupying" nodes

Processes on Networks: Percolation

- degree distr.: p_k~k^{-α} ;
- let q be the constant fraction of occupied ("functional" / "working") vertices
- for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• probability that any node is connected to k' occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_{k} {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

degree distr.: p_k~k^{-α};

let q be the constant fraction of occupied ("functional" / "working") vertices

◆ for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

→ probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_k {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

degree distr.: p_k~k-α ;

• let q be the constant fraction of occupied ("functional" / "working") vertices

→ for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) p^{k} = \sum_{k=k'}^{\infty} p_{k} {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

• degree distr.: $p_k \sim k^{-\alpha}$;

let q be the constant fraction of occupied ("functional" / "working") vertices

• > for vertex with degree k: fraction of occupied neighbors:

$$p(k'|k) = {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• → probability that any node is connected to k´ occupied nodes is

$$p_{k'} = p(k') = \sum_{k} p(k'|k) p(k) = \sum_{k} p(k'|k) pk = \sum_{k=k'}^{\infty} p_k {k \choose k'} q^{k'} (1-q)^{k-k'}$$

• \rightarrow (analysis similar to slide 29 / 30) \rightarrow for $\alpha \le 3$: independent of positive q: giant component always exists \rightarrow random "removal" of (1-q) nodes leaves NW "unimpressed"

Processes on Networks: Percolation

• degree distr.: p_k~k^{-α} ;

• let q_k be the fraction of occupied vertices dependent on k (e.g. remove \nearrow occupy only high degree nodes)

 → (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component

Processes on Networks: Percolation

- degree distr.: p_k~k-α ;
- let q_k be the fraction of occupied vertices dependent on k (e.g. remove / occupy only high degree nodes)
- • (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component

Processes on Networks: Epidemiology

- disease: nodes V = susceptible s ⊎ infective i ⊎ recovered r
- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)
- infection probability / rate β , recovering probability γ
- SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

Processes on Networks: Percolation

- degree distr.: $p_k \sim k^{-\alpha}$;
- let q_k be the fraction of occupied vertices dependent on k (e.g. remove / occupy only high degree nodes)
- → (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component

Processes on Networks: Epidemiology

- disease: nodes V = susceptible s ⊎ infective i ⊎ recovered r
- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)
- infection probability / rate β , recovering probability γ
- SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta i s, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta i s - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

• infection probability / rate β , recovering probability γ

SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

- susceptibles: can be infected; infective: have the disease and are contageous, recovered: have had the disease and are immune (or dead)

infection probability / rate β , recovering probability γ

SIR model ("fully mixed"):

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

M

Processes on Networks: Percolation

degree distr.: p_k~k^{-α} ;

• let \mathbf{q}_k be the fraction of occupied vertices dependent on \mathbf{k} (e.g. remove / occupy only high degree nodes)

• → (analysis) → only a small fraction of the high degree nodes needs to be removed to destroy the giant component

Processes on Networks: Epidemiology

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$$

• now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:

 $^{\circ}$ β (infection probability per unit time) and γ (recovery prob. p.u.t.): drawn from probability distributions $P_i(\beta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability

 $T = 1 - \int_0^\infty P_i(\beta) P_r(\gamma) e^{-\beta/\gamma} d\beta d\gamma.$

• investigate dissociation into components (internally connected by unoccupied egdes)

 corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)

Presult: power law with α≤3→ giant component also always exists where

Processes on Networks: Epidemiology

 $\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$

- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:
 - ullet eta (infection probability per unit time) and γ (recovery prob. p.u.t.): drawn from probability distributions $P_i(eta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability $T = 1 \int_{-\infty}^{\infty} P_i(\beta) P_r(\gamma) \, \mathrm{e}^{-\beta/\gamma} \, \mathrm{d}\beta \, \mathrm{d}\gamma.$

• investigate dissociation into components (internally connected by unoccupied egdes)

- corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)
- result: power law with α≤3→ giant component also always exists

 or here

Processes on Networks: Epidemiology

 $\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$

- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:
 - ullet $_{eta}$ (infection probability per unit time) and $_{\gamma}$ (recovery prob. p.u.t.): drawn from probability distributions $P_i(eta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability

 $T = 1 - \int_0^\infty P_i(\beta) P_r(\gamma) e^{-\beta/\gamma} d\beta d\gamma.$

- investigate dissociation into components (internally connected by unoccupied egdes)
- corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)
- eresult: power law with α≤3→ giant component also always exists

Processes on Networks: Epidemiology

 $\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$

- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:
 - $^{\circ}$ $^{\circ}$ (infection probability per unit time) and $^{\circ}$ (recovery prob. p.u.t.): drawn from probability distributions $P_i(\beta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability $T = 1 \int_0^{\infty} P_i(\beta) P_r(\gamma) \, \mathrm{e}^{-\beta/\gamma} \, \mathrm{d}\beta \, \mathrm{d}\gamma.$

 investigate dissociation into components (internally connected by unoccupied egdes)

- corresp. phase transitions: transitions from epidemic outbreak (giant component) vs. controlled state (small components)
- •result: power law with α≤3→ giant component also always exists where □

Processes on Networks: Epidemiology

 $\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta is, \qquad \frac{\mathrm{d}i}{\mathrm{d}t} = \beta is - \gamma i, \qquad \frac{\mathrm{d}r}{\mathrm{d}t} = \gamma i$

- now: "play" the model on a network (e.g. human contact network) and investigate perlocation effects:
 - ullet $_{eta}$ (infection probability per unit time) and $_{\gamma}$ (recovery prob. p.u.t.): drawn from probability distributions $P_i(eta)$ and $P_i(\gamma)$ --> problem is equivalent to edge-percolation problem with edge occupation probability

 $T = 1 - \int_0^\infty P_i(\beta) P_r(\gamma) e^{-\beta/\gamma} d\beta d\gamma.$

- investigate dissociation into components (internally connected by
- unoccupied egdes)corresp. phase transitions: transitions from epidemic outbreak

(giant component) vs. controlled state (small components)

eresult: power law with α≤3→ giant component also always exists

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{x}, \quad \mathbf{A}^T \mathbf{x} = \mu \mathbf{y} \quad \Rightarrow \quad \mathbf{A}\mathbf{A}^T \mathbf{x} = \lambda \mu \mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights v

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{x}, \quad \mathbf{A}^T \mathbf{x} = \mu \mathbf{y} \quad \Rightarrow \quad \mathbf{A}\mathbf{A}^T \mathbf{x} = \lambda \mu \mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{x}, \quad \mathbf{A}^T \mathbf{x} = \mu \mathbf{y} \quad \rightarrow \quad \mathbf{A}\mathbf{A}^T \mathbf{x} = \lambda \mu \mathbf{x}$$

(1) (b) (2) (6) (9) (w)

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda\mathbf{x}, \qquad \mathbf{A}^T\mathbf{x} = \mu\mathbf{y} \qquad \Rightarrow \qquad \mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mu\mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda\mathbf{x}, \qquad \mathbf{A}^T\mathbf{x} = \mu\mathbf{y} \qquad \Rightarrow \qquad \mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mu\mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda\mathbf{x}, \qquad \mathbf{A}^T\mathbf{x} = \mu\mathbf{y} \qquad \Rightarrow \qquad \mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mu\mathbf{x}$$

Processes on Networks: Searching and Navigating

• We have seen: Feedback/Eigenvector-Centrality / Page Rank: weight of vertex i (neglecting heuristic corrections):

$$x_i = \lambda^{-1} \sum_j A_{ij} x_j$$
 for some $\lambda > 0$ \rightarrow $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

- instead of only looking at in-degrees also look at high out-degree
- node with high in-degree "from" highly (out-degree-)weighted nodes == "Authority":
- node with high out-degree "to" highly (in-degree-)weighted nodes == "Hub")
- in-degree based weights: x; out-degree-based weights y

$$\mathbf{A}\mathbf{y} = \lambda\mathbf{x}, \qquad \mathbf{A}^T\mathbf{x} = \mu\mathbf{y} \qquad \Rightarrow \qquad \mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mu\mathbf{x}^{\mathbb{R}}$$

Processes on Networks: Searching and Navigating

- Instead of "Search engine"-type of network search (one big crawl), perform local crawls
- especially suitable in decentralized scenarios
- example: BFS: "do you have the info"? either "yes" or "no, but will forward to my nighbors"
- variant by Adamic: instead of asking all neighbors: answer will be "no but i have k neighbors → asker can choose highest degree node to "pass on the query baton to" → if e.g. power law: high degree nodes cover NW very well.
- other variants: see next chapter

Processes on Networks: Searching and Navigating

- Instead of "Search engine"-type of network search (one big crawl), perform local crawls
- especially suitable in decentralized scenarios
- example: BFS: "do you have the info"? either "yes" or "no, but will forward to my nighbors"
- variant by Adamic: instead of asking all neighbors : answer will be "no but i have k neighbors → asker can choose highest degree node to "paiss on the query baton to" → if e.g. power law: high degree nodes cover NW very well.
- other variants: see next chapter

Processes on Networks: Searching and Navigating

- Navigation in Networks: Milgram experiment showed: Short paths exist and people can find them → some notion of distance / measure of relatedness obviously necessary
- Poisson random graph → easy to achieve: short paths exist;
- Open question: how do people find these paths? nodes i.g. do not "know" shortest paths to any other node --> routing strategy
- Kleinberg Model [3]: Variation of Watts Strogatz Model respecting spatial distance: investigate question of navigation in networks

Processes on Networks: Searching and Navigating

- Navigation in Networks: Milgram experiment showed: Short paths exist and people can find them → some notion of distance / measure of relatedness obviously necessary
- Poisson random graph → easy to achieve: short paths exist;
- Open question: how do people find these paths? nodes i.g. do not "know" shortest paths to any other node --> routing strategy
- Kleinberg Model [3]: Variation of Watts Strogatz Model respecting spatial distance: investigate question of navigation in networks

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_j| + |y_i - y_j|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional q2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

edges for one node u: (q1 = 1, q2 = 2)

R

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_i| + |y_i - y_i|$$

- Each node i Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional q2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_j| + |y_i - y_j|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional q2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

edges for one node u: (q1 = 1, q2 = 2) [3]

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_i| + |y_i - y_i|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional q2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_j| + |y_i - y_j|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional q2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

edges for one node u: (q1 = 1, q2 = 2) [3]

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_i| + |y_i - y_i|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional q2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

Homophily and Distance

- Homophily: supports triadic closure and thus high clustering in SN
- Homophily principle: route questions, information Milgram letters etc. to nodes that are similar to you (socially, geographically, profession-wise).
- Homophily principle alone is not sufficient for routing: if you only know "your kind" (socially, geographically, profession-wise) no efficient routing (searching for information, information dissemination etc.) is possible → suitable "distribution", "heterogenity" necessary (compare short-cuts and local (cluster) edges in Watts-Strogatz model)
- Example geographic homophily: geographical distribution of social relations: if too local: too many steps required, if too scattered: no efficient "areedy" decentralized routing possible

Kleinberg Model

- local (decentralized) knowledge:
 - Each node only knows only:
 - Its adjacent nodes
 - The grid's principle structure
 - Position of target node on the grid
 - Positions and long-range contacts of nodes on the message path so far
- (Search-) algorithm with only local knowledge: "decentralized"

Homophily and Distance

- Homophily: supports triadic closure and thus high clustering in SN
- Homophily principle: route questions, information Milgram letters etc. to nodes that are similar to you (socially, geographically, profession-wise).
- Homophily principle alone is not sufficient for routing: if you only know "your kind" (socially, geographically, profession-wise) no efficient routing (searching for information, information dissemination etc.) is possible → suitable "distribution", "heterogenity" necessary (compare short-cuts and local (cluster) edges in Watts-Strogatz model)
- Example geographic homophily: geographical distribution of social relations: if too local: too many steps required, if too scattered: no efficient "greedy" decentralized routing possible

Homophily and Distance

- Homophily: supports triadic closure and thus high clustering in SN
- Homophily principle: route questions, information Milgram letters etc. to nodes that are similar to you (socially, geographically, profession-wise).
- Homophily principle **alone** is not sufficient for routing: if you **only** know "your kind" (socially, geographically, profession-wise) no efficient routing (searching for information, information dissemination etc.) is possible → suitable "distribution", "heterogenity" necessary (compare short-cuts and local (cluster) edges in Watts-Strogatz model) ♣
- Example geographic homophily: geographical distribution of social relations: if too local: too many steps required, if too scattered: no efficient "greedy" decentralized routing possible

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space, ы
 - Key k is assigned to node successor(k),
 - each node n maintains finger table (length up to m): m-th entry: IP-address of node $successor((n + 2^{i-1}) \mod 2^m) \rightarrow routing in log(N)$ steps possible

Finger Table of N8			
Idx	Target ID	Successor	
0	N8 + 1	N10	
1	N8 + 2	N10	
2	N8 + 4	N15	
3	N8 + 8	N18	
4	N8 + 16	N24	
5	N8 + 32	N43	

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which keys. Black lines represent the fingers of node N8.

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - •data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space. ♣
 - *Key k is assigned to node successor(k),
 - •each node n maintains finger table (length up to m): m-th entry: IP-address of node $successor((n + 2^{i-1}) \mod 2^m) \rightarrow routing in log(N)$ steps possible

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which keys. Black lines represent the fingers of node N8.

[8]

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space,
 - •Key k is assigned to node success௸(k),
 - each node n maintains finger table (length up to m): m-th entry: IP-address of node $successor((n + 2^{i-1}) \mod 2^m) \rightarrow routing in log(N)$ steps possible

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which kevs. Black lines represent the fingers of node N8.

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space,
 - Key k is assigned to node successor(k),
 - each node n maintains finger table (length up to m); m-th entry; IP-address of node $successor((n + 2^{j-1}) \mod 2^m) \rightarrow routing in log(N) steps possible$

Fing	Finger Table of N8		
Idx	Target ID	Successor	
0	N8 + 1	N10	
1	N8 + 2	N10	
2	N8 + 4	N15	
3	N8 + 8	N18	
4	N8 + 16	N24	
5	N8 + 32	N43	

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which kevs. Black lines represent the fingers of node N8.

[8]

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space,
 - Kev k is assigned to node successor(k).
 - each node n maintains finger table (length up to m): m-th entry: IP-address of node $successor((n + 2^{i-1}) \mod 2^m) \rightarrow routing in log(N) steps possible$

Idx	Target ID Successor	
0	N8 + 1	N10
1	N8 + 2	N10
2	N8 + 4	N15
3	N8 + 8	N18
4	N8 + 16	N24
5	N8 + 32	N43

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which keys. Black lines represent the fingers of node N8.

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space,
 - Key k is assigned to node successor(k),
 - each node n maintains finger table (length up to m); m-th entry; IP-address of node $successor((n + 2^{j-1}) \mod 2^m) \rightarrow routing in log(N) steps possible$

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which keys. Black lines represent the fingers of node N8.

[8]

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space,
 - Kev k is assigned to node successor(k).
 - each node n maintains finger table (length up to m): m-th entry: IP-address of node $successor((n + 2^{i-1}) \mod 2^m) \rightarrow routing in log(N) steps possible$

Idx	Target ID	Successor	
0	N8 + 1	N10	
1	N8 + 2	N10	
2	N8 + 4	N15	
3	N8 + 8	N18	
4	N8 + 16	N24	
5	N8 + 32	N43	

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which kevs. Black lines represent the fingers of node N8.

Homophily and Distance

- Example for this principle: Early P2P file sharing protocols based on Distributed Hash Tables: Example: Chord:
 - data (e.g. filenames) ("keys") and host-IDs (e.g. IP-addresses) ("nodes") hashed into the same m-dim key-space,
 - •Key k is assigned to node successor(k),
 - each node n maintains finger table (length up to m): m-th entry: IP-address of node $successor((n + 2^{i-1}) \mod 2^m) \rightarrow routing in log(N)$ steps possible

Finger Table of N8			
Idx	Target ID	Successor	
0	N8 + 1	N10	
1	N8 + 2	N10	
2	N8 + 4	N15	
3	N8 + 8	N18	
4	N8 + 16	N24	
5	N8 + 32	N43	

Fig. 8.1: A 6-bit Chord identifier space. Dotted lines indicate which nodes host which kevs. Black lines represent the fingers of node N8.

[8]

Kleinberg Model

- Now: Send message with local (decentralized) knowledge only
- Given: Decentralized greedy message delivery algorithm: measure number of expected delivery steps s:

• 0 ≤ α < 2 : s at least

 $\sim c1(\alpha,q1,q2) n^{(2-\alpha)/3}$

• $\alpha = 2$: s at most ~ c2(α ,q1,q2) (log n)² \triangleright

• α > 2 s at least \sim c3(α ,q1,q2) $n^{(\alpha-2)/(\alpha-1)}$

(closely after [3])

Kleinberg Model

- local (decentralized) knowledge:
 - Each node only knows only:
 - Its adjacent nodes
 - The grid's principle structure
 - Position of target node on the grid
 - Positions and long-range contacts of nodes on the message path so far
- (Search-) algorithm with only local knowledge: "decentralized"

1

Kleinberg Model

- Now: Send message with local (decentralized) knowledge only
- Given: Decentralized greedy message delivery algorithm: measure number of expected delivery steps s:

0 ≤ α < 2 : s at least</p>

 $\sim c1(\alpha,q1,q2) n^{(2-\alpha)/3}$

: s at most \sim c2(\alpha,q1,q2) (log n)²

: s at least $\alpha > 2$ \sim c3(\alpha,q1,q2) n^{(\alpha-2)/(\alpha-1)}

(closely after [3])

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_j| + |y_i - y_j|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional g2 other "long range" edges: Probability of edge to node i:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_j| + |y_i - y_j|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional g2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

Kleinberg Model

Put nodes on a n x n grid. Distance: Manhattan:

$$r(i,j) = |x_i - x_i| + |y_i - y_i|$$

- Each node i: Connected to all nodes with r(i,j) ≤ q1 (regular local contacts)
- Each node i: Additional g2 other "long range" edges: Probability of edge to node j:

$$P(j) \sim r(i,j)^{-\alpha}$$

examples:

0 edges for one node u: (q1 = 1, q2 = 2)[3]

Kleinberg Model

- Effectively: Only a notion of distance (not neccess. spatial!) is necessary to route!
- Applications in P2P Systems (see [2])
- Explanation for the dependency of α =D on the grid's dimension D for efficient delivery:
 - start from node u
 - partition the set of other nodes into sets $A_0, A_1, A_2, ..., A_{log n}$, where A_i has a distance to u between 2i and 2i+1
 - proven in [3]: only $\alpha=D$ ensures that the q2 "long-range" contacts are evenly distributed over the Ai
 - for α>D : bias towards smaller distances; for α<D : bias towards larger distances

Kleinberg Model

- Effectively: Only a notion of distance (not neccess. spatial!) is necessary to route!
- Applications in P2P Systems (see [2])

• Explanation for the dependency of α =D on the grid's dimension D for efficient delivery:

- start from node u
- partition the set of other nodes into sets A_0 , A_1 , A_2 , ..., $A_{log\ n}$, where A_i has a distance to u between 2^i and 2^{i+1}
- proven in [3]: only $\alpha=D$ ensures that the q2 "long-range" contacts are evenly distributed over the Ai
- for α>D : bias towards smaller distances; for α<D : bias towards larger distances

Kleinberg Model

- Effectively: Only a notion of distance (not neccess. spatial!) is necessary to route!
- Applications in P2P Systems (see [2])

• Explanation for the dependency of α =D on the grid's dimension D for efficient delivery:

- start from node u
- partition the set of other nodes into sets $A_0, A_1, A_2, ..., A_{log n}$, where A_i has a distance to u between 2^i and 2^{i+1}
- proven in [3]: only $\alpha=D$ ensures that the q2 "long-range" contacts are evenly distributed over the A
- for α>D : bias towards smaller distances; for α<D : bias towards larger distances

[5,6]

Geographic Distance as Routing Metric

- In analysis of Milgram's experiment:
 - People early in the resp. path: often cite geographic proximity as main forwarding criterion;
 - People late in the path: chose similarity of occupation
- [6]: Study "Kleinberg-like" distributions / effects on real social NW:
 - LifeJournal.com : locate ~ 10⁶ users (long/lat of their hometown)
 - Simulate Milgram on friendship NW with greedy decentralized forwarding and geographical proximity as criterion
 - Result: efficient routing is possible on average (see [6])

- In analysis of Milgram's experiment:
 - People early in the resp. path: often cite geographic proximity as main forwarding criterion;
 - People late in the path: chose similarity of occupation
- [6]: Study "Kleinberg-like" distributions / effects on real social NW:
 - LifeJournal.com: locate ~ 10⁶ users (long/lat of their hometown)
 - Simulate Milgram on friendship NW with greedy decentralized forwarding and geographical proximity as criterion
 - Result: efficient routing is possible on average (see [6])

Geographic Distance as Routing Metric

- In analysis of Milgram's experiment:
 - People early in the resp. path: often cite geographic proximity as main forwarding criterion;
 - People late in the path: chose similarity of occupation
- [6]: Study "Kleinberg-like" distributions / effects on real social NW:
 - LifeJournal.com : locate ~ 10⁶ users (long/lat of their hometown)
 - Simulate Milgram on friendship NW with greedy decentralized forwarding and geographical proximity as criterion
 - Result: efficient routing is possible on average (see [6])

Fig. 2. The LiveJournal social network [32]. A dot is shown for each geographic location that was declared as the hometown of at least one of the #500,000 LiveJournal users whom we were able to locate at a longitude and latitude in the continental United States. A random 0.1% of the friendships in the network are overlaid on these locations.

Geographic Distance as Routing Metric

• But: Investigate Kleinberg's $\alpha \stackrel{!}{=} 2$ claim: result: probability of friendship as a function of distance reveals $\alpha \approx 1$

Fig. 3 The probability P(d) of a friendship between two people in LiveJournal as a function of the geographic distance d between their declared hometowns [32]. Distances are rounded into 10-kilometer buckets. The solid line corresponds to $P(d) \approx 1/d$. Note that Theorem 1 requires $P(d) \approx 1/d^3$ for a network of people arranged in a regular 2-dimensional grid to be navigable.

Although $\alpha \approx 1$ was found, systematic power law is surprising in "pure virtual" community as LiveJournal

Geographic Distance as Routing Metric

• But: Investigate Kleinberg's $\alpha \stackrel{!}{=} 2$ claim: result: probability of friendship as a function of distance reveals $\alpha \approx 1$

Fig. 3 The probability P(d) of a friendship between two people in LiveJournal as a function of the geographic distance d between their declared hometowns [32]. Distances are rounded into 10-kilometer buckets. The solid line corresponds to $P(d) \propto 1/d$. Note that Theorem 1 requires $P(d) \propto 1/d^2$ for a network of people arranged in a regular 2-dimensional grid to be navigable.

 Although α ≈ 1 was found, systematic power law is surprising in "pure virtual" community as LiveJournal

Geographic Distance as Routing Metric

• But: Investigate Kleinberg's $\alpha \stackrel{!}{=} 2$ claim: result: probability of friendship as a function of distance reveals $\alpha \approx 1$

Fig. 3 The probability P(d) of a friendship between two people in LiveJournal as a function of the geographic distance d between their declared hometowns [32]. Distances are rounded into 10-kilometer buckets. The solid line corresponds to $P(d) \propto 1/d$. Note that Theorem 1 requires $P(d) \propto 1/d^3$ for a network of people arranged in a regular 2-dimensional grid to be navigable.

Although $\alpha \approx 1$ was found, systematic power law is surprising in "pure virtual" community as LiveJournal

Geographic Distance as Routing Metric

- Other studies: also confirm efficient decentralized routing with geographic proximity as criterion is possible AND $\alpha \approx 1$
- Explanation for this "contradiction": geographic density of people is not uniform (cp. urban vs. mid west) as assumed in the Kleinberg grid.
- Model: Rank-based friendship: modify Kleinberg (D=k):
 - at each grid point more than one person 🛛 🗟
 - p(v) for long range contact v starting at node u: $p_u(v) \sim 1 / rank_u(v)$ where rank(u,v) = number of people who live at least as close to u as v does. (\rightarrow u sorts candidates v according to distance)
 - (if population density is **uniform**: $rank_u(v) \sim \theta(d(u,v)^k) \rightarrow$ Kleinberg's claim is fulfilled)

Geographic Distance as Routing Metric

- Other studies: also confirm efficient decentralized routing with geographic proximity as criterion is possible AND $\alpha \approx 1$
- Explanation for this "contradiction": geographic density of people is not uniform (cp. urban vs. mid west) as assumed in the Kleinberg grid.
- Model: Rank-based friendship: modify Kleinberg (D=k):
 - at each grid point more than one person
 - p(v) for long range contact v starting at node u: $p_u(v) \sim 1 / rank_u(v)$ where rank(u,v) = number of people who live at least as close to u as v does. (\rightarrow u sorts candidates v according to distance)
 - (if population density is **uniform**: $rank_u(v) \sim \theta(d(u,v)^k) \rightarrow$ Kleinberg's claim is fulfilled)

Geographic Distance as Routing Metric

- Finding: Even for non-uniform geographic distribution of people: efficient routing possible (choose pairs randomly):
 - For q1= 2k and q2 = 1 : $T\sim O((\log n)^3)$

(a) Concentric balls around a city C, where each ball's population increases by a factor of four. A resident of C choosing a rank-based friend is four times more likely to choose a friend at the boundary of one ball than a friend at the boundary of the next-larger ball.

(b) A rank-based social network generated from this population distribution. For visual simplicity, edges are depicted as connecting cities; the complete image would show each edge connecting one resident from each of its endpoint cities.

[7]

Geographic Distance as Routing Metric

- Finding: Even for non-uniform geographic distribution of people: efficient routing possible (choose pairs randomly):
 - For q1= 2k and q2 = 1 : $T \sim O((\log n)^3)$

(b) A rank-based social network generated from this population distribution. For visual simplicity, edges are depicted as connecting cities; the complete image would show each edge connecting one resident from each of its endpoint cities.

• Finding: Even for non-uniform geographic distribution of people: efficient routing possible (choose pairs randomly):

• For q1= 2k and q2 = 1 : T~O((log n)³)

(a) Concentric balls around a city C, where each ball's population increases by a factor of four. A resident of C choosing a rank-based friend is four times more likely to choose a friend at the boundary of one ball than a friend at the boundary of the next-larger ball.

(b) A rank-based social network generated from this population distribution. For visual simplicity, edges are depicted as connecting cities; the complete image would show each edge connecting one resident from each of its endpoint cities.

[7]

Rank based evaluation of LifeJournal:

$$P(r) = \Theta(1/r) + \varepsilon$$

Fig. 5 The probability P(r) of a friendship between two people u and v in LiveJournal as a function of the rank of v with respect to u (32). Ranks are rounded into buckets of size 1300, which is the LiveJournal population of the city for a randomly chosen person in the network, and thus 1300 is in a sense the "rank resolution" of the dataset. (The unaveraged data are noisier, but follow the same trend.) The solid line corresponds to $P(r) \approx 1/r$. Note that Theorem 2 requires $P(r) \approx 1/r$ for a rank-based network to be navigable.

Off-Grid / Other Metrics

- Grid and concentration on geo-proximity alone: not realistic.
- Example: occupation: given taxonomy of occupations: similarity measure: determine tree height of least common ancestor (lca) of u and v
- Kleinberg: if tree is a regular b-ary tree and long range probability goes as $\Pr[u \to v] \propto b^{-\beta \cdot \text{lca}(u,v)}$ then efficient routing only for β =1
- Generalization: tree → graph : Pr[u→v] ~ 1 / f (path-distance(u,v))

Off-Grid / Other Metrics

- Grid and concentration on geo-proximity alone: not realistic.
- **Example:** occupation: given taxonomy of occupations: similarity measure: determine tree height of least common ancestor (lca) of u and v
- Kleinberg: if tree is a regular b-ary tree and long range probability goes as $\Pr[u \to v] \propto b^{-\beta \cdot \text{lca}(u,v)}$ then efficient routing only for β =1
- Generalization: tree → graph : Pr[u→v] ~ 1 / f (path-distance(u,v))

- Grid and concentration on geo-proximity alone: not realistic.
- Example: occupation: given taxonomy of occupations: similarity measure: determine tree height of least common ancestor (lca) of u and v
- Kleinberg: if tree is a regular b-ary tree and long range probability goes as $\Pr[u \to v] \propto b^{-\beta \cdot \text{lca}(u,v)}$ then efficient routing only for β=1
- Generalization: tree → graph : Pr[u→v] ~ 1 / f (path-distance(u,v))

- Grid and concentration on geo-proximity alone: not realistic.
- **Example: occupation:** given taxonomy of occupations: similarity measure: determine tree height of least common ancestor (lca) of u and v
- Kleinberg: if tree is a regular b-ary tree and long range probability goes as $\Pr[u \to v] \propto b^{-\beta \cdot \text{lca}(u,v)}$ then efficient routing only for β =1
- Generalization: tree → graph : Pr[u→v] ~ 1 / f (path-distance(u,v))

Off-Grid / Other Metrics

- Kleinberg: Group Model: Partition set of actors into groups:
 Pr[u→v] ~ [1 / size of smallest common group of u and v] →
 navigateable with decentralized greedy approach if:
 - Groups form a hierarchy (small contained in large) → "narrowing in" possible
 - Group-sizes satisfy certain bounds → non-zero "escaping" probability from a small group
- Advantage: Groups can be formed according to different criteria simultaneously
- Strictly spoken: Even in the 2-dim grid: we have a combination of two elements (long and lat)

