Script generated by TTT

Title: groh: profile1 (04.06.2014)

Wed Jun 04 08:15:53 CEST 2014 Date:

Duration: 91:03 min

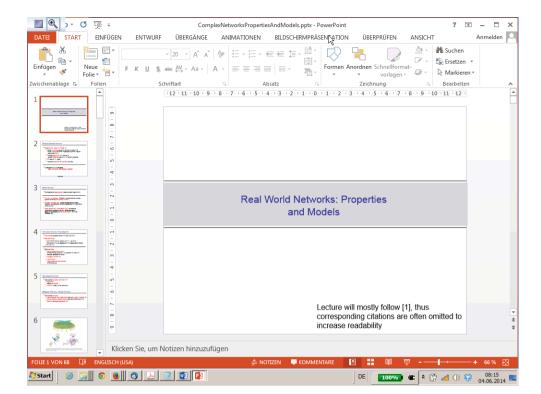
Pages: 83

Random Graph Models: Poisson Graph

• G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"



Random Graph Models: Poisson Graph

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k:

 $p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k e^{-z}}{k!}$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p

• p_k: probability that a node has degree k:
$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Random Graph Models: Poisson Graph

- G_{n n}: space of graphs with n nodes and each of the ½ n(n-1) edges appears with probability p
- p_k: probability that a node has degree k: $p_k = \binom{n}{k} p^k (1-p)^{n-k} \simeq \frac{z^k \mathrm{e}^{-z}}{k!}$

for $n \rightarrow \infty$ and holding the mean degree of a node z=p(n-1) fixed (Poisson approximation of Binomial distribution) → "Poisson random graphs"

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: ",G_{n,n} has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3])) V
- In such models G_{n,p} phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,n}$: ",G_{n,n} has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models G_{n,p} phase transitions exist for properties Q:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models $G_{n,p}$ phase transitions exist for properties Q: "threshold function" q(n) (with $q(n) \rightarrow \infty$ if $n \rightarrow \infty$) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

- Given: property Q ("is connected", "has diameter xyz" etc.) of $G_{n,p}$: " $G_{n,p}$ has property Q with high probability": $P(Q|n,p) \rightarrow 1$ iff $n \rightarrow \infty$ (adaptated from [2] (which, in turn, is adaptated from [3]))
- In such models G_{n,p} phase transitions exist for properties Q: "threshold function" q(n) (with q(n) → ∞ if n → ∞) so that:

$$\lim_{n\to\infty} P(Q|n,p) = \begin{cases} 0 & \text{if } \lim_{n\to\infty} p(n) / q(n) = 0 \\ 1 & \text{if } \lim_{n\to\infty} p(n) / q(n) = \infty \end{cases}$$

(adaptated from [3])

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X

B

- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k \rightarrow $u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u \ \Rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of $G_{n,p}$

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k

$$\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \qquad \stackrel{\bullet}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$$

 $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $\ S=1-u \ \rightarrow$

$$S = 1 - e^{-zS}$$

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k \rightarrow $u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $^{\bullet}$ \rightarrow fraction S of graph occupied by X is $~S=1-u~\rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S=1-u \rightarrow$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \qquad \stackrel{}{\rightarrow} \qquad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} \underset{\Bbbk}{\models} = \mathrm{e}^{z(u-1)}$
- \rightarrow fraction S of graph occupied by X is $S = 1 u \rightarrow$

$$S = 1 - e^{-zS}$$

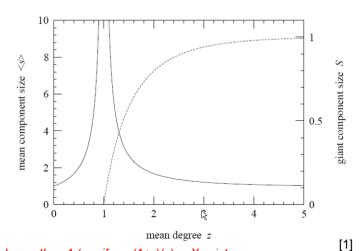
Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- $\stackrel{\bullet}{\rightarrow} \text{u (k fixed)} == \text{u}^{\text{k}} \quad \stackrel{}{\rightarrow} \quad u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- ullet ullet fraction S of graph occupied by X is $\ S=1-u \ {}^{ullet}$

$$S = 1 - e^{-zS}$$

Random Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



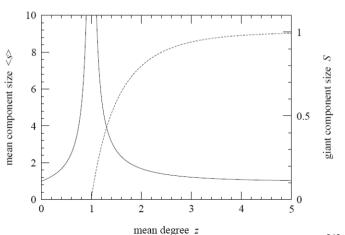
Random Graph Models: Poisson Graph

Example: giant component / connectedness of G_{n,p}

- Let u be the fraction of nodes that do not belong to giant component X
 == probability for a given node i to be not in X
- probability for a given node i (with assumed degree k) to be not in X
 == probability that none of its neighbors is in X
 == u^k
- \rightarrow u (k fixed) == u^k $\rightarrow u = \sum_{k=0}^{\infty} p_k u^k = \mathrm{e}^{-z} \sum_{k=0}^{\infty} \frac{(zu)^k}{k!} = \mathrm{e}^{z(u-1)}$
- ${}^{\bullet}$ \to fraction S of graph occupied by X is $S=1-u \, \to \,$ $S=1-\mathrm{e}^{-zS}$

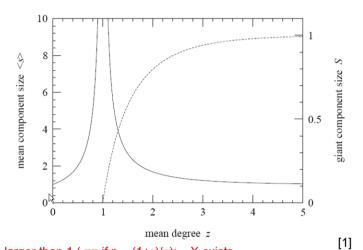
Random Graph Models: Poisson Graph

- $S = 1 e^{-zS}$
- mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+z S}$



• $S = 1 - e^{-zS}$

• mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



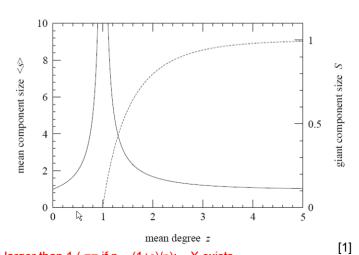
 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

• $S = 1 - e^{-zS}$

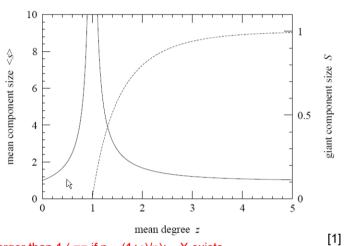
ullet mean size <s> of smaller rest components (no proof): $\langle s
angle = rac{1}{1-z+zs}$



Random Graph Models: Poisson Graph

• $S = 1 - e^{-zS}$

mean size <s> of smaller rest components (no proof): $\langle s
angle = rac{1}{1-z+zS}$

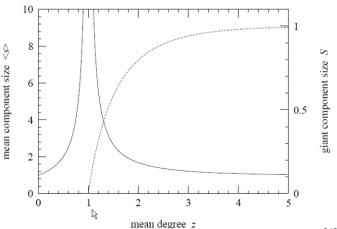


 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

• $S = 1 - e^{-zS}$

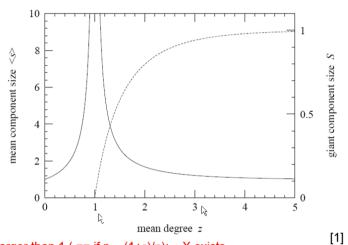
mean size <s> of smaller rest components (no proof): $\langle s
angle = rac{1}{1-z+zS}$



 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

• $S = 1 - e^{-zS}$

• mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$

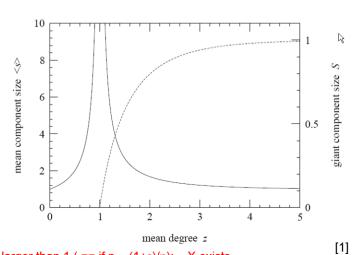


→ if the av degree z is larger than 1 (== if p ~ (1+ε)/n): X exists

Random Graph Models: Poisson Graph

• $S = 1 - e^{-zS}$

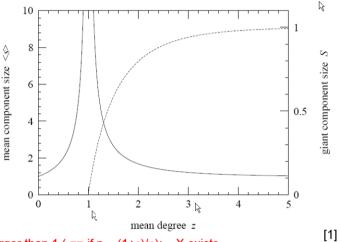
• mean size <s> of smaller rest components (no proof): $\langle s \rangle = \frac{1}{1-z+zS}$



Random Graph Models: Poisson Graph

• $S = 1 - e^{-zS}$

mean size <s> of smaller rest components (no proof): $\langle s
angle = rac{1}{1-z+zS}$



 \rightarrow if the av degree z is larger than 1 (== if p ~ (1+ ϵ)/n): X exists

Random Graph Models: Poisson Graph

Very coarse (!!!) estimation of diameter l of $G_{n,p}$:

average degree of nodes: z

→ in a distance of d from a node i should be approximately z^d many nodes

 \rightarrow if $z^d = n : d = 1$

 \rightarrow $l \sim \log n / \log z \sim \log n$ (if z is kept constant)

• For a more exact derivation of the result see references in [1]

 We see: it is not difficult (in terms of how large must connectivity be) to achieve small diameters

Very coarse (!!!) estimation of diameter l of $G_{n,p}$:

- average degree of nodes: z
 - → in a distance of d from a node i should be approximately z^d many nodes
- \rightarrow if $z^d = n$: d = l
- $\rightarrow l \sim \log n / \log z \sim \log n$ (if z is kept constant)
- For a more exact derivation of the result see references in [1]
- We see: it is not difficult (in terms of how large must connectivity be) to achieve small diameters

Random Graph Models: Poisson Graph

Very coarse (!!!) estimation of diameter l of $G_{n,p}$:

- average degree of nodes: z
 - → in a distance of d from a node i should be approximately z^d many nodes
 - \rightarrow if $z^d = n : d = l$
 - $\rightarrow l \sim \log n / \log z \sim \log n$ (if z is kept constant)
- For a more exact derivation of the result see references in [1]
- We see: it is not difficult (in terms of how large must connectivity be) to achieve small diameters

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{n,p}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

,	•			
	ℓ (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

Random Graph Models: Poisson Graph

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{n.p.}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	ℓ (real)	1 (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05
			-//	

Degree distribution is Poisson and not power law

Unfortunately: small *l* is the only property in congruence with real world NW:

- Clustering coefficient C⁽¹⁾ of G_{n.p}:
 - Since $C^{(1)}$ is probability of transitivity and edges are "drawn" independently $\rightarrow C^{(1)} = p = O(1/n)$ (if z is fixed, as usual)
 - C is usually much larger for real world NW:

	/ (real)	/ (random)	C ⁽²⁾ (real)	C (random)
Film collaboration	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.08	0.005
C.elegans	2.65	2.25	0.28	0.05

Degree distribution is Poisson and not power law

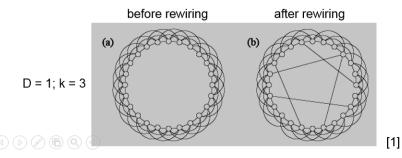
Random Graph Models: More Refined Models

- Instead of having connection probability p as in Poisson $G_{n,p}$: demand certain degree distributions p_k (e.g. power law) \rightarrow "configuration model"
- → results are promising but still not in full congruence with real world NW
- ◆ still many difficult open problems
- still not accounted for: transitivity (high clustering coefficient)

D.

Watts Strogatz Model

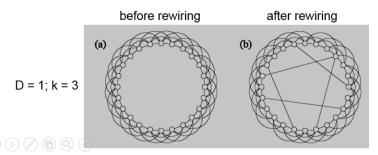
- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability p



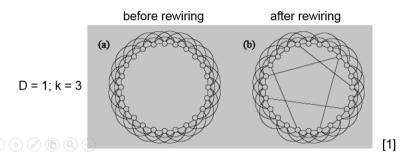
(1) (b) (2) (B) (Q) (w)

Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability p

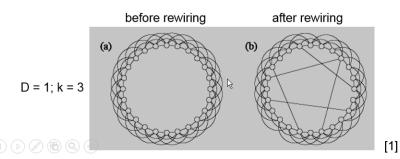


- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability p



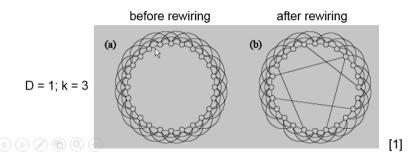
Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 → total number of edges = L k
 - "rewiring" of edges with probability p



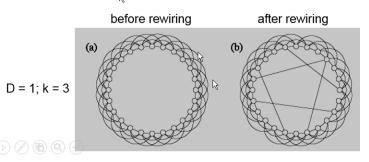
Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p

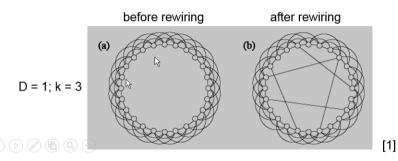


Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p

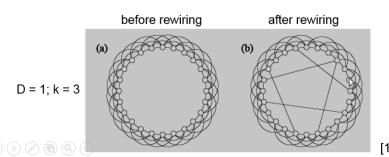


- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k → total number of edges = L k
 - "rewiring" of edges with probability p



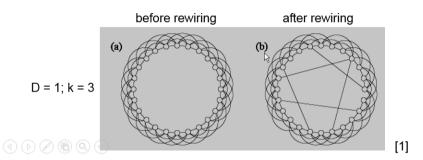
Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- ◆ → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most **k** → total number of edges = L k
 - "rewiring" of edges with probability p



Watts Strogatz Model

- Great problem of random graphs: high clustering coeff. / transitivity does not occur for simple models
- → Watts & Strogatz 1998: Small World Model
 - L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
 - each node connected to neighbors in lattice at distance of most k
 - → total number of edges = L k
 - "rewiring" of edges with probability p



Watts Strogatz Model

- p: transition between regular lattice and sth. like a random graph: (for D=1:)
 - p=0: regular lattice:
 - C = C⁽¹⁾ = $(3k-3)/(4k-2) \rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - 1 = L / 4k for L→∞

no small world effect

- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- $l = \log L / \log k$ for $L \rightarrow \infty$
- → small world effect.

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph: (for D=1:)

- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - 1 = L / 4k for L→∞ → no small world effect
- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- l = log L / log k for L→∞ → small world effect.

p: transition between regular lattice and sth. like a random graph: (for D=1:)

- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - l = L / 4k for $L \rightarrow \infty$
- → no small world effect

- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- $l = \log L / \log k$ for $L \rightarrow \infty$ \rightarrow small world effect.

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph: (for D=1:)

- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - l = L / 4k for $L \rightarrow \infty$

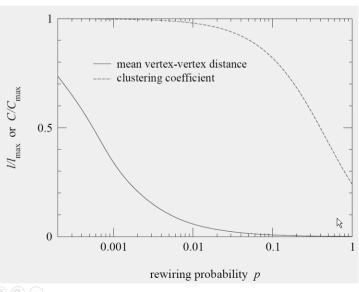
→ no small world effect

- p=1: similar to a random graph:
 - C ~ 2k / L
- for L→∞
- → clustering coeff too small
- $l = \log L / \log k$ for $L \rightarrow \infty$
- → small world effect.

◆ ● ● ● ●

Watts Strogatz Model

• Interesting area: intermediate values for p:



p: transition between regular lattice and sth. like a random graph: (for D=1:)

- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - 1 = L / 4k for L→∞ → no small world effect
- p=1: similar to a random graph:
 - C ~ 2k / L for L→∞ → clustering coeff too small
 - $l = \log L / \log k$ for $L \rightarrow \infty$ → small world effect.

Watts Strogatz Model

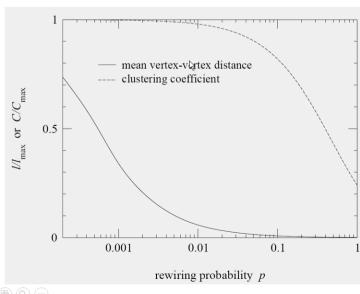
- Variants: -(1)- rewire both "ends" of edges + allow self-edges +.... → math easier
 - -(2)- only add additional shortcut edges (no rewiring)
- For (2):
 - mean total number of shortcuts = L k p
 - mean degree of each node = 2k(1+p)

p: transition between regular lattice and sth. like a random graph: (for D=1:)

- p=0: regular lattice:
 - C = C⁽¹⁾ = (3k-3)/(4k-2) $\rightarrow 3/4$ for $k \rightarrow \infty$ \rightarrow clustering coeff. "ok"
 - l = L / 4kfor L→∞ → no small world effect
- p=1: similar to a random graph:
 - C ~ 2k / L for L→∞ → clustering coeff too small
 - $l = \log L / \log k$ for $L \rightarrow \infty$ → small world effect.

Watts Strogatz Model

• Interesting area: intermediate values for p:



[1]

Clustering coefficient:

$$C = \frac{3(k-1)}{2(2k-1)}(1-p)^3 \tag{*}$$

$$C = \frac{3(k-1)}{2(2k-1) + 4kp(p+2)} \tag{**}$$

B

- almost constant for k→∞ and p≠1
- in good congruence with observed values for real world NW

Clustering coefficient:

$$C = \frac{3(k-1)}{2(2k-1)}(1-p)^3 \tag{*}$$

$$C = \frac{3(k-1)}{2(2k-1) + 4kp(p+2)} \tag{**}$$

- almost constant for k→∞ and p≠1
- in good congruence with observed values for real world NW

B

(*): original model; (**) variant (2)

Watts Strogatz Model

Degree distribution for variant (2):

$$p_{j} = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_i = 0$ for j < 2k.

• in variant (2): p defined so that :

-- mean number of added shortcuts == Lkp

-- and the mean degree == 2k + (2kp) (2k from lattice plus 2kp added random shortcuts)

-- number of shortcuts is binomially distrib.

• Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$ (*): original model; (**) variant (2)

Watts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L}\right]^{j-2k} \left[1 - \frac{2kp}{L}\right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_i = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k + 2kp (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.

• Expectation of Binomial distribution: $E(X \sim B(L, \widetilde{p})) = L \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

(*): original model; (**) variant (2)

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \geq 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp)
 (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $\widehat{E(X \sim B(L, \widetilde{p}))} = L \ \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

Watts Strogatz Model

Degree distribution for original model (without proof):

$$p_j = \sum_{n=0}^{\min(j-k,k)} \binom{k}{n} (1-p)^n p^{k-n} \frac{(pk)^{j-k-n}}{(j-k-n)!} e^{-pk}$$
 (*)

for $j \ge k$, and $p_j = 0$ for j < k.

Watts Strogatz Model

Degree distribution for variant (2):

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k} \tag{**}$$

for $j \ge 2k$, and $p_j = 0$ for j < 2k.

- in variant (2): p defined so that :
 - -- mean number of added shortcuts == Lkp
 - -- and the mean degree == 2k +(2kp) (2k from lattice plus 2kp added random shortcuts)
 - -- number of shortcuts is binomially distrib.
- Expectation of Binomial distribution: $\widehat{E(X \sim B(L, \widetilde{p}))} = L \ \widetilde{p}$ $\Rightarrow \widetilde{p} = \frac{2kp}{L}$

(*): original model; (**) variant (2)

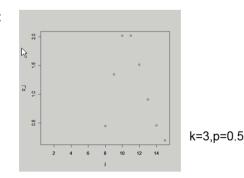
Watts Strogatz Model

• Degree distribution:

$$p_j = {L \choose j-2k} \left[\frac{2kp}{L} \right]^{j-2k} \left[1 - \frac{2kp}{L} \right]^{L-j+2k}$$
(**)

Poisson approximation (justified):

$$p_j = \exp(-2kp) \frac{(2kp)^{j-2k}}{(j-2k)!}$$



- → almost constant
- → not in congruence with real world NW (power laws etc.)

(*): original model; (**) variant (2)

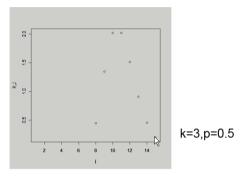
(*): original model; (**) variant (2)

Degree distribution:

$$p_{j} = {L \choose j-2k} \left[\frac{2kp}{L}\right]^{j-2k} \left[1 - \frac{2kp}{L}\right]^{L-j+2k}$$
(**)

Poisson approximation (justified):

$$p_j = \exp(-2kp) \frac{(2kp)^{j-2k}}{(j-2k)!}$$



→ almost constant

→ not in congruence with real world NW (power laws etc.)

(*): original model; (**) variant (2)

Watts Strogatz Model

• Approximation (2):

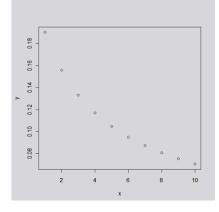
$$\ell = \frac{L}{k} f(\underline{Lkp}) \label{eq:local_local_local}$$
 mean number of shortcuts

== up to factor k same as Approx (1) for

$$\xi = 1/kp \text{ and } g(x) = xf(x)$$

independent investigations yield approximation

$$f(x) = \frac{1}{2\sqrt{x^2 + 2x}} \tanh^{-1} \sqrt{\frac{x}{x+2}}$$



Watts Strogatz Model

Average Path Length

- Calculation is very hard, no precise results known as of 2010
- Approximation (1):

$$\ell = \xi g(L/\xi)$$

with
$$g(x) \sim \begin{cases} x & \text{for } x \gg 1 \\ \log x & \text{for } x \ll 1 \end{cases}$$

and
$$\xi \sim p^{-\tau}$$
 for p $ightarrow$ 0

reproduces:

 $\ell = L/4k$ (large world)

for p → 0 (regular lattice)

and

 $\ell \sim \log L$ (small world)

for $p \rightarrow 1$ (random)

Watts Strogatz Model

• Approximation (2) :

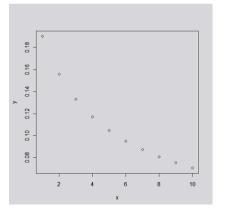
$$\ell = \frac{L}{k} f(\underline{Lkp}) \label{eq:local_local_local}$$
 mean number of shortcuts

== up to factor k same as Approx (1) for

$$\xi = 1/kp$$
 and $g(x) = xf(x)$

independent investigations yield approximation

$$f(x) = \frac{1}{2\sqrt{x^2 + 2x}} \tanh^{-1} \sqrt{\frac{x}{x+2}}$$



- Basic principle:
 - "the rich get richer"
 - "Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)
 - "preferential attachment"
- Assume directed citation NW:
 - p_k: fraction of nodes with in-degree k,
 - each node (paper) has av. out degree m
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. $\rightarrow \sum_k kp_k = m$
- iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - R
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to a node with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1}m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

Since mean number of out-edges per added vertex == m →
mean number of new in-edges to a node with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases
 by x because their in-degree changes to k+1

Price's Model

- Basic principle:
 - "the rich get richer"
 - "Matthew effect" ("For to every one that hath shall be given..." Bible: Mt25:29)
 - "preferential attachment"
- Assume directed citation NW:
 - p_k: fraction of nodes with in-degree k,
 - each node (paper) has av. out degree m
 - mean out-deg. $\stackrel{!}{=}$ mean in-deg. $\rightarrow \sum_k kp_k = m$
- iteratively build graph by adding new vertices (and associated directed (out)edges from these nodes)

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to a node with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

 ullet mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - → prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to a node with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1 $_{\Bbbk}$

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - > prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

 Since mean number of out-edges per added vertex == m → mean number of new in-edges to a node with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

 ullet mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

Price's Model

previous_

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
 - mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
 - → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for k > 1, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for
$$k = 0$$
.

from previou:

mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1

- mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
- → the net change in the quantity np_k per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

Price's Model

from previous

- mean number of nodes with in-degree k (which is np_k) decreases by x because their in-degree changes to k+1
- mean number of nodes with in-degree k also increases because of nodes having previously k-1 and now have k
- → the net change in the quantity np, per added vertex satisfies:

$$(n+1)p_{k,n+1} - np_{k,n} = \left[kp_{k-1,n} - (k+1)p_{k,n}\right] \frac{m}{m+1}$$

for $k \geq 1$, or

$$(n+1)p_{0,n+1} - np_{0,n} = 1 - p_{0,n} \frac{m}{m+1},$$

for k = 0.

Price's Model

- probability for a paper X to get cited by a new paper is proportional to number of existing citations of X (X's in-degree)
 - initial "starting in-degree" k₀=1
 - > prob. that new edge attaches to any node with in-deg. k ==

$$\frac{(k+1)p_k}{\sum_k (k+1)p_k} = \frac{(k+1)p_k}{m+1}$$

.

Since mean number of out-edges per added vertex == m →
 mean number of new in-edges to a node with current in-degree k is ==

$$x = \frac{(k+1)p_k}{m+1} m$$

mean number of nodes with in-degree k (which is np_k) decreases
 by x because their in-degree changes to k+1

Price's Model

• Computing stationary solutions $p_{k,n+1}=p_{k,n}=p_k$ of this equation we find:

$$p_k \sim k^{-(2+1/m)}$$
 for $n \to \infty$

- ◆ the desired power law distribution
- we see: "the rich get richer" → power law

R

 $^{\bullet}$ Computing stationary solutions $\ p_{k,n+1}=p_{k,n}=p_k$ of this equation we find:

$$p_k \sim k^{-(2+1/m)}$$
 for $n \to \infty$

- → the desired power law distribution
- we see: "the rich get richer" → power law

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed Barabasi Albert: attachment prop to sum of out and indegree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Price's Model

• Computing stationary solutions $p_{k,n+1}=p_{k,n}=p_k$ of this equation we find:

$$p_k \sim k^{-(2+1/m)}$$
 for $n \to \infty$

- ◆ the desired power law distribution
- we see: "the rich get richer" → power law

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed Barabasi Albert: attachment prop to sum of out and indegree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed Barabasi Albert: attachment prop to sum of out and indegree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed Barabasi Albert: attachment prop to sum of out and indegree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed Barabasi Albert: attachment prop to sum of out and indegree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

Barabasi-Albert Model and Price's Model

- crucial: linear preferential attachment
- found in a number of real world NW (e.g. citation NW)
- Barabasi-Albert: undirected (not like WWW)
- directed Barabasi Albert: attachment prop to sum of out and indegree: not realistic for e.g. the WWW but for social NW?!
- Price: generates directed acyclic graph: not realistic for SN and WWW
- out-degree of WWW: power-law, Price + BA: constant

