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Random Graph Models: Poisson Graph
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Random Graph Models: Poisson Graph

® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

s
® p,: probability that a node has degree k:

PE = (Z)p"'(l —p)R f,

for n & « and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”

® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

i
¢ py: probability that a node has degree k:
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for n 2 =« and holding the mean degree of a node z=p(n-1) fixed
(Poisson approximation of Binomial distribution)
- ,Poisson random graphs”
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® G, : space of graphs with n nodes and
each of the %2 n(n-1) edges appears with probability p

® p,: probability that a node has degree k: s
kno—z
1 zle

! k n—k . ~
('\-)"’ =P =y

h

pr =
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Random Graph Models: Poisson Graph

h
® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, ,:
-Gnp has property Q with high probability“: P(Q|n,p) 2 1 iff n =2 =

(adaptated from [2] (which, in turn, is adaptated from [3]))

® In such models G, phase transitions exist for properties Q:
~threshold function” q(n) (with q(n) = « if n = =) so that:

0 if lim,s,.p(n)/q(n)=0

lim,s., P(Qn,p) = s
Mn> (@In.p) 1 if limys. p(n)/g(n) =«

(adaptated from [3])

® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, :
.Gnp has property Q with high probability“: P(Q|n,p) 2 1 iff n =«

(adaptated from [2] (which, in turn, is adaptated from [3]))

® In such models G, p phase transitions exist for properties Q:
.threshold function” q(n) (with q(n) = « if n = «) so that:

0 if lim,s,p(n)/q(n)=0

lim,s., P(Q|n,p) = L
Mo> @in.p) 1 if limys. p(n)/q(n) =«
i

(adaptated from [3])
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Random Graph Models: Poisson Graph

® Given: property Q (,is connected®, ,has diameter xyz“ etc.) of G, :
.Gnp has property Q with high probability“: P(Q|n,p) 2 1 iff n =«

(adaptated from [2] (which, in turn, is adaptated from [3]))
® In such models G, p phase transitions exist for properties Q:
.threshold function” q(n) (with q(n) = « if n = «) so that:
0 if lim,s,p(n)/qn)=0 Iz
. L
lim,s., P(Q|n,p) = L
z @in.p) 1 if limys. p(n)/q(n) =«

(adaptated from [3])

Random Graph Models: Poisson Graph

Example: giant component / connectedness of G,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X
i

¢ probability for a given node i (with assumed degree k) to be not in X

== probability that none of its neighbors is in X N

oQ

2> u= Zpkuk =e” Z MA'.' = ¢*(u=1)

k=0 k=0

® > u (k fixed) == uk

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e"?°

Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

® probability for a given node i (with assumed degree k) to be notin X
== probability that none of its neighbora isin X
==uk L,
i

® > u (k fixed) == uk

o0

o ("u)’"
S = Z!)kuk — e * Z «A' _ e:(u.—l)

k=0 k=0

® > fraction S of graph occupiedby Xis S =1 —u >

S=1-e?°
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Example: giant component / connectedness of G, Example: giant component / connectedness of G, ,

® Let u be the fraction of nodes that do not belong to giant component X

® Let u be the fraction of nodes that do not belong to giant component X
== probability for a given node i to be not in X

== probability for a given node i to be not in X

¢ probability for a given node i (with assumed degree k) to be not in X

® probability for a given node i (with assumed degree k) to be notin X
== probability that none of its neighbors is in X

== probability that none of its neighbors is in X

== yk == yk
o - ; — (zu)" (u—1) o - ) — (zu)* (u—1)
T —— ik _ ' e A2 - A Zlu— i —— 1k P R =z o o zZlu—
Su(kfixed)==uk > y= Z_pk u" =e Z o= 2> u(kfixed)==u< > u= Zl)k u' =e Z T e
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® > fraction S of graph occupiedby Xis S =1 —u > ® > fraction S of graph occupied by X%is S=1—u >
S=1—e 39 S=1—e %7
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eS=1-e"*° , e S=1—e"*" ,
® mean size <s> of smaller rest components (no proof): (s) = — ® mean size <s> of smaller rest components (no proof): (s) = —
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X exists

-» if the av degree z is larger than 1 ( == if p ~ (1+€)/n):

X exists
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°eS=1-e"*° mation of di
= ’ 1 Very coarse (!!!) estimation of diameter / of G, :
® mean size <s> of smaller rest components (no proof): (s) = -
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Very coarse (!!!) estimation of diameter / of G, :

¢ average degree of nodes: z
- in a distance of d from a node i should be
approximately z¢ many nodes
2> ifzd=n:d=1
> [ ~ log W/ logz ~ logn (if z is kept constant)

® For a more exact derivation of the result see references in [1]

® We see: it is not difficult (in terms of how large must
connectivity be) to achieve small diameters
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Very coarse (!!!) estimation of diameter / of G, :

® average degree of nodes: z
- in a distance of d from a node i should be
approximately z¢ many nodes
<> ifz¢=n:d=1]
- [ ~logn/logz ~ logn (if z is kept constant) N

® For a more exact derivation of the result see references in [1]

® We see: it is not difficult (in terms of how large must
connectivity be) to achieve small diameters

Random Graph Models: Poisson Graph

Unfortunately: small / is the only property in congruence with real world NW: Unfortunately: small / is the only property in congruence with real world NW:

® Clustering coefficient C(" of Gpp : ® Clustering coefficient C(" of Ghp :

® Since C( is probability of transitivity;and edges are “drawn”

® Since C( is probability of transitivity and edges are “drawn”
independently = C(M=p = 0O(1/n) (if z is fixed, as usual)

independently & CM=p =0O(1/n) (if z is fixed, as usual)

®cCis usually much larger for real world NW: s ®cCis usually much larger for real world NW:
Film 3.65 2.99 0.79 0.00027 Film 3.65 2.99 0.79 0.00027
collaboration collaboration
Power Grid ~ 18.7 12.4 0.08 0.005 Power Grid 187 12.4 0.08 0.6
C.elegans 2.65 2.25 0.28 0.05 C.elegans 2.65 225 0.28 0.05
[4]

(4]

° Degree distribution is Poisson and not power law ¢ Degree distribution is Poisson and not power law
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Unfortunately: small / is the only property in congruence with real world NW: ® |nstead of having connection probability p as in Poisson G,

demand certain degree distributions p, (e.g. power law) — ,configuration
model” i

® Clustering coefficient C(" of Gpp :

® Since C is probability of transitivity and edges are “drawn”

® .. . . .
independently > C(V = p = O(1/n) (if  is fixed, as usual) - results are promising but still not in full congruence with real world NW

® . -
® Cis usually much larger for real world NW: b > still many difficult open problems s
® still not accounted for: transitivity (high clustering coefficient)
Film 3.65 2.99 0.79 0.00027
collaboration
Power Grid  18.7 12.4 0.08 0.005 s
C.elegans 2.65 2.25 0.28 0.05

[4]

° Degree distribution is Poisson and not power law

Watts Strogatz Model Watts Strogatz Model
® Great problem of random graphs: high clustering coeff. / transitivity does not ® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models occur for simple models
® > Watts & Strogatz 1998: Small World Model ® > Watts & Strogatz 1998: Small World Model
Ik
® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring ® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k ® each node connected to neighbors in lattice at distance of most k
—> total number of edges =L k —> total number of edges = L k %
¢ Lrewiring” of edges with probability p ® ~rewiring“ of edges with probability p
before rewiring after rewiring before rewiring after rewiring
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® Great problem of random graphs: high clustering coeff. / transitivity does not

® Great problem of random graphs: high clustering coeff. / transitivity does not

occur for simple models
® > Wwatts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges =L k
¢ Lrewiring” of edges with probability p
after rewiring

before rewiring
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occur for simple models
® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
® ~rewiring“ of edges with probability p
after rewiring

before rewiring
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® Great problem of random graphs: high clustering coeff. / transitivity does not

occur for simple models

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models
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® > Watts & Strogatz 1998: Small World Model
® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k
—> total number of edges = L k

® ~rewiring” of ed[ges with probability p
after rewiring
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® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Wwatts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges =L k
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Watts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges = L k
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Watts Strogatz Model

® Great problem of random graphs: high clustering coeff. / transitivity does not
occur for simple models

® > Watts & Strogatz 1998: Small World Model

® L nodes in regular D-dim. lattice + periodic boundary cond.; D=1: Ring
® each node connected to neighbors in lattice at distance of most k

—> total number of edges =L k
¢ Lrewiring” of edges with probability p

before rewiring

after rewiring
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p: transition between regular lattice and sth. like a random graph:
(for D=1:)

® p=0: regular lattice:
® C=CM=(3k-3)/(4k-2) > %
®/=L/4k for LD

for k== - clustering coeff. ,ok"

- no small world effect

¢ p=1: similar to a random graph:
®c~2k/L for L=
*1= for L>w

—> clustering coeff too small

logL/log k - small world &ffect.
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p: transition between regular lattice and sth. like a random graph:
(for D=1:)

® p=0: regular lattice:

® Cc=C=(3k-3)/(4k-2) > % fork>=» - clustering coeff. ,ok"

®1=L/4k for L>w - no small world effect
i
¢ p=1: similar to a random graph:
®c~2k/L for L2« - clustering coeff too small
®= logL/logk forL—=>w« - small world effect.

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph:
(for D=1:)

¢ p=0: regular lattice:
®C=C=(3k-3)/(4k2) > % fork>=

®1=L/4k for L>w
s I

- clustering coeff. ,ok"

- no small world effect

® p=1: similar to a random graph:
®c~2k/L for L=
®/=1logL/logk forlL>=

—> clustering coeff too small

- small world effect.

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph:
(for D=1:)

¢ p=0: regular lattice:
®*c=ch= (3k-3)/(4k-2) = 34 fork—>w
®7=L/4k for L«
P

- clustering coeff. ,ok"

- no small world effect

¢ p=1: similar to a random graph:k
®Cc~2k/L for L>«
® = for L

- clustering coeff too small

log L /log k - small world effect.

¢ Interesting area: intermediate values for p:

—— mean vertex-vertex distance \\ 1
--—- clustering coefficient :

or C/CI“ ax

max

Il

| P——

0.01 0.1 1

ol

0.001
rewiring probability p
(1]



Watts Strogatz Model

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph:

(for D=1:)

® p=0: regular lattice:

®C=C=(3k-3)/(4k2) > % fork>w

- clustering coeff. ,ok"

®1=L/4k for L>w - no small world effect
¢ p=1: similar to a random graph:
®c~2k/L for L2« - clustering coeff too small
®= logL/logk forL—=>w« - small world effect.
Ly

Watts Strogatz Model

p: transition between regular lattice and sth. like a random graph:

(for D=1:)

¢ p=0: regular lattice:
® C=CM = (3k-3)/(4k-2) >
®/=L/4k for LD

%

for k== - clustering coeff. ,ok"

@S - no small world effect

® p=1: similar to a random graph:

®Cc~2k/L
.l:

for L2«

logL/logk forL—=>w

—> clustering coeff too small

- small world effect.

Watts Strogatz Model

® Variants: -(1)- rewire both ,ends"” of edges + allow self-edges +....

> math%asier

-(2)- only add additional shortcut edges (no rewiring)

® For (2):

® mean total number of shortcuts = L k p

® mean degree of each node = 2k(1+p)

¢ Interesting area: intermediate values for p:

1 T =TT

or C/CI“ ax

max

Il

ol

e A

—— mean vertex-vliytex distance \\ 1
--—- clustering coefficient :

U

0.001

0.01 0.1 1

rewiring probability p

(1]
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® Clustering coefficient:

L 3(k=1) .3 -

(_‘2(2}.-—1)“_})] *)
_ (k-1
T2(2k — 1)+ 4kp(p + 2)

(**)
Ly

® almost constant for k>« and p=1
®in good congruence with observed values for real world NW

(*): original model; (**) variant (2)

Watts Strogatz Model

¢ Clustering coefficient:

(_2(2]\__1)[1—;)) *)
3(k-1)

= 202k — 1)+ 4kp(p+ 2) ™)

® almost constant for k>« and p*1
®in good congruence with observed values for real world NW

i

(*): original model; (**) variant (2)

Watts Strogatz Model

® Degree distribution for variant (2):

— L 2kp j-2k . 2%kp L—j+2k )
P = i ok T _ T -

fOr f ﬁ I-)-;‘l- m]d 11) = D fUl‘_j' < QA.

® in variant (2): p defined so that :
- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp g
(2k from lattice plus 2kp addeg fandom shortcuts)
-- humber of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))

9m ka ———————————
L

(*): original model; (**) variant (2)
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® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp
-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg raﬁdom shortcuts)
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Watts Strogatz Model

® Degree distribution for variant (2):

L 2kp j-2k . 2kp L—j+2k o
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Watts Strogatz Model

¢ Degree distribution for variant (2):
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for j > 2k, and p; = 0 for j < 2k
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® in variant (2): p defined so that :
-- mean number of added shortcuts == Lkp

-- and the mean degree == 2k + 2kp
(2k from lattice plus 2kp addeg fandom shortcuts)

-- number of shortcuts is binomia,l'ly distrib.

® Expectation of Binomial distribution: E(X B(L p))
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Watts Strogatz Model

® Degree distribution for original model (without proof):

g k n, k—n [1 -V ko —pk "
(n){ -p)"p GF—n) _K_g_]!e )

for j = k,and p; =0 for j < k.

(*): original model; (**) variant (2)

¢ Degree distribution:

B L 2kp j-2k . 2kp L—j+2k
Pi=\G )| T I -

® Poisson approximation (justified):
Qhkp)
(j - 2k)!

20
L

p; = exp(-2kp)

15

3]

0%

k=3,p=0.5

® > almost constant
- not in congruence with real world NW (power laws etc.)

(*): original model; (**) variant (2)
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® Degree distribution:

_( L \[2kp f‘z"‘l okp] LI+
=\ /| T L

® Poisson approximation (justified):

o QR
p; =exp(-2kp) e

3]

® > almost constant

- not in congruence with real world NW (power laws etc.)

(*): original model; (**) variant (2)

Watts Strogatz Model

20
N

15

10

s

¢ Average Path Length

® Calculation is very hard, no precise results known as of 2010

® Approximation (1): Iy

{=¢&g(L/€)
with  g(x) ~ { *

and £ ~ p= 7 for p=>0

Watts Strogatz Model

reproduces:

for v > 1
log . for v <1

(large world)
forp = 0 (regular lattice)

and

{ ~logL
(small world)

forp 2 1 (random)

® Approximation (2) :

_ L
£= ff(Lkp) ber of shortcut
wmean numper or snoricuts

== up to factor k same as Approx (1) for

¢ = 1/kp and g(x) = « f(x)

independent investigations yield approximation

_ £
tanh ™"

o 1
f@) =5 ==, o+ 2

008 010 0.12 014 016 0.18

¢ Approximation (2) :

_ L
b= ff(Lkp) ber of shortcut
w mean numper of shoricuts

== up to factor k same as Approx (1) for

= 1/kp and g(z) = xf(x)

independent investigations yield approximation

_ £
tanh ™!

o 1
flw) = 2vVu? + 2 r+2

008 010 012 014 016 018




Price’'s Model

Price's Model

® Basic principle:
sthe rich get richer”
,Matthew effect”
Lpreferential attachment®

(.For to every one that hath shall be given...” Bible: Mt25:29)

® Assume directed citation NW:
® p,: fraction of nodes with in-degree k,
® each node (paper) has av. out degree m K
® mean out-deg. £ mean in-deg. = Zk kpr = m

¢ iteratively build graph by adding new vertices (and associated
directed (out)edges from these nodes)

Price’'s Model

® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial .starting in-degree” ky=1
*> prob. that new edge attaches to any node with in-deg. k ==
(k + 1)ps (k+ 1)pr
>k +1)py m—+ 1

® Since mean number of out-edges per added vertex==m =

mean number of new in-edges to a node with current in-degree k is ==
K

(k+Vpr
m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1
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® probability for a paper X to get cited by a new paper is proportional to
number of existing citations of X (X's in-degree)

® initial .starting in-degree” k,=1
*S prob. that new edge attaches to any node with in-deg. k ==
(k+Dpr  (k+1)pr
>k +1)py m+1

® Since mean number of out-edges per added vertex==m >
mean number of new in-edges to a node with current in-degree k is ==

8
b+ Vpe

m—+1

® mean number of nodes with in-degree k (which is np,) decreases
by x because their in-degree changes to k+1 N

1
;:?er:ious
*“ ® mean number of nodes with in-degree k (which is np,) decreases

by x because their in-degree changes to k+1

® mean number of nodes with in-degree Kk also increases because of
nodes having previously k-1 and now ha\ée k

® > the net change in the quantity np, per added vertex satisfies:

m
(” + 1)3)1.!,11—1 — NPrn = [k:pk—l.n - ('Il + 1)}')1\',-11} m
for k = 1, or

m

n+Dponet —mpon=1—pon—0.
( )I 0,n+1 Po.n Pon m 1

for £ = 0.
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Price's Model

f
*“ ® mean number of nodes with in-degree k (which is np,) decreases

by x because their in-degree changes to k+1

® mean number of nodes with in-degree k also increases because of
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® > the net change in the quantity np, per added vertex satisfies:
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Price’'s Model

¢ probability for a paper X to get cited by a new paper is proportional to

number of existing citations of X (X's in-degree)

® initial .starting in-degree” ky=1
*> prob. that new edge attaches to any node with in-deg. k ==

(k+Dpe _ (k+Dp

Su(k+Dp m+1

i
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Price's Model
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*“ ® mean number of nodes with in-degree k (which is np,) decreases

by x because their in-degree changes to k+1

® mean number of nodes with in-degree k also increases because of
nodes having previously k-1 and now have k

® > the net change in the quantity np, per added vertex satisfies:

T
(n+ Dpnsr = mpin = [kpror = (k4 Dpin] =2
for k =1, or

I

e
(n 4+ 1)pons1 — npon =1 —pon

m-+1’

for £ = 0.

® Computing stationary solutions Pkn+tl = Phkn = Pk
of this equation we find:
Pl ~ = +1/m) for N«
® > the desired power law distribution
® we see: ,the rich get richer” - power law s
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Price's Model

® Computing stationary solutions Phkn+1 = Pkn = Pk
of this equation we find: N

Pk ~ e~ Gt for N>«
® > the desired power law distribution

® we see: ,the rich get richer" - power law

Barabasi-Albert Model and Price‘s Model

® Computing stationary solutions Pkn+tl = Phkn = Pk
of this equation we find:

PE ~ fo~ G/ for n>«
® > the desired power law distribution

® we see: ,the rich get richer” - power law

Barabasi-Albert Model and Price‘s Model

® crucial: linear preferential attachment
® found in a number of real world NW (e.g. citation NW)
® Barabasi-Albert: undirected (not like WWW)

ks

® directed Barabasi Albert: attachment prop to sum of out and in-
degree: not realistic for e.g. the WWW but for social NW?!

® Price: generates directed acyclic graph: not realistic for SN
and WWW

® out-degree of WWW: power-law, Price + BA: constant
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