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Mean Average Path Length

Real World Networks: Properties
and Models

Lecture will mostly follow [1], thus
corresponding citations are often omitted to
increase readability

® “Small World Effect”: Itn) “small” = Ifn)e O(log(n))
ke
® undirected graph:

1
(":  EErEE— ]’l
in(n+1) i,z);( !

formula also counts 0 distances fromitoi: “2n(n+1) =% n(n-1) +n

¢ Expression allowing for disconnected components (where d;=» can
occur): harmonic mean:



Mean Average Path Length

Transitivity / Clustering Coefficient

® “Small World Effect” I(m) “small” = I(n)e O(log(n))

® undirected graph:

1
{=+——— 1;
in(n+1) Z( !

i2]
formula also counts 0 distances fromitoi: 2 n(n+1) =% n(n-1) +n

® Expression allowing for disconnected components (where d;=« can
occur): harmonic mean:

Transitivity / Clustering Coefficient

¢ Clustering coefficient (whole graph):

C=Cl— 3x number of triangles in the network

- - PFOAF)
number of connected triplgg of vertices

6 x number of triangles in the network
- number of paths of length two

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

C, =

number of triples centered on vertex i
B | {e gy | Vie, Vj € Ny}
k;(k; -1)
2
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
" — (2) = - ,-'.1‘
C=(C0= -~ §i C

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means

Transitivity / Clustering Coefficient

® Clustering coefficient (whole graph):

C=(Cl— 3x number of triangles in the network

T T P(FOAF)
number of connected triplgs of vertices

6x number of triangles in the network
- number of paths of length two

° Clustering coefficient (Watts-Strogatz-version, for node i):

v

number of triangles connected to vertex i

number of triples centered on vertex i
B [{egqy | Vie, v € Ny}
k;(k; 1)
2
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
= 2= =S¢
0= o=y

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means

¢ Clustering coefficient (whole graph):

C=Cl— 3x number of triangles in the network

- - PFOAF)
number of connected triples of vertices

6% number of triangles in the network
- number of paths of length two

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

i

number of triples cente[%'ed on vertex i
B | {e gy | Vie, Vj € Ny}
ki (k; —1)
2
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
“ —_ (2) = - .—'1‘
C=C - Z C

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means
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® Clustering coefficient (whole graph):

C=(Cl— 3x number of triangles in the network

T T P(FOAF)
number of connected triples of vertices

6 x number of triangles in the network
- number of paths of length two

° Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

C; =

number of triples centered on vertex i
B [{egqy | Vie, v € Ny}
ki(k; -1)
2
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
-' — (2): - 4-'1' %
c=co- Ly

(see Introduction , k; = degree of node i)

mean of ratio instead of ratio of means

Transitivity / Clustering Coefficient

¢ Clustering coefficient (whole graph):

C=Cl— 3x number of triangles in the network

- - PFOAF)
number of connected triples of vertices

6 x number of triangles in the network
- number of paths of length two

¢ Clustering coefficient (Watts-Strogatz-version, for node i):

number of triangles connected to vertex i

C, =

number of triples centered on vertex i
B | {e gy | Vie, Vj € Ny}
k;(k; -1)
2
Clustering coefficient (Watts-Strogatz-version, for whole graph):

1
C=C - Z C

%(see Introduction | k; = degree of node i)

mean of ratio instead of ratio of means

Transitivity / Clustering Coefficient

Example:

: i . 3x1
(1) — 3x number of triangles in the network —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
CP==3.Ci with Ci= = _
n S number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333

Example:

: - : 3x1
(1)— 3x number of triangles in the network —0.375
number of connected triples of vertices

number of triangles connected to vertex i

with ¢ =

1
CO= - Z Ci

number of triples centered on vertex i

CP=1/51+1+1/6+0+0)=13/30 =0.433333
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Transitivity / Clustering Coefficient

Example:

i i . 3x1
(1) — 3x number of trlangles-m the nem.ork _ —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
CO= =3 Ci with C; = e _
n S number of triples centered on vertex i

C=1/5 (1 + 1+ 1/6+0 + 0) = 13/30 = 0.433333

Transitivity / Clustering Coefficient

Example:

(1) — 3x number of triangles in the network  _ 3xl - 0375

number of connected triples of vertices

1 number of triangles connected to vertex i
CO= =3 Ci vith C;= = .
n < number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333

Transitivity / Clustering Coefficient

Example:

: i . 3x1
(1) — 3x number of triangles in the network — _ —0.375
number of connected triples of vertices

1 number of triangles connected to vertex i
CO= =3 Ci with C; = e _
n S number of triples centered on vertex i

CP=1/5(1+1+1/6+0+0)=13/30=0.433333
i

® Evidence - for many real world NW:

Cl~ O(l) for n>w

® For random NW:

c, C?~ O(]/n) for >«



network type n m z [ o | o™ c@ r | Ref{s). network type n m z £ o | [ r | Ref{s).
film actors undirected 449013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416 film actors undirected 449013 255164582 | 113.43 348 2.3 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322 company directors undirected 7673 551302 14.44 4.60 % 0.59 088 0.276 | 105, 323
math coauthorship undirected 252339 496489 392 757 - | 015 0.34 0.120 | 107, 182 math coauthorship undirected 253339 496489 3.92 78T =1 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313 physics coauthorship | undirected 52000 245 300 9.27 619 - | 045 056 0.363 | 311, 213

4 | biology cosuthorship | undirected 1520251 11803064 1553 402 — | 0.088 | 0.60 0127 | 311, 313 % | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.028 | 0.60 0.127 | 311, 213

§ telephonecall graph undirected 47000000 20000000 3.16 21 8,0 § telephone call graph undirected 47000000 B0 000000 3.16 21 20
email mm&gﬂ directed 50012 86 300 144 4.95 15720 0.16 136 email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321 email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relstionships | undirected 573 477 1.66 16.01 - | 0.005 | 0.001 -0.020 45 student relationships | undirected 573 477 1.66 16.01 - 0.005 0.001 —0.020 | 45
sexual contacts undirected 2810 32 265, 266 sexual contacts undirected 2810 12 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34 = | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 | 21/27 74 -% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 21727 74

g | citation network directed 783339 6716198 BET 3.0/- 51 E | citation network directed 783330 6716198 857 3.0/- 51

~§ Roget's Thesaurus directed 1022 5103 499 487 - 013 0.15 0157 | 244 ~3 Roget’s Thessurus directed 1022 5103 4.99 487 -1 013 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157 | word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10 607 11902 598 .31 25 | 0035 [ 029 -0.130 | 86, 148 Internet undirected 10 697 11002 5.98 .31 25 | 0.035 | 0.39 —-0.180 | 86, 148

3 power grid undirected 4041 6504 267 18.99 - | 0.10 0.080 | —0.003 | 416 3 power grid undirected 4941 6504 267 18.99 - | 0.10 0.050 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166 'é'o train routes undirected 587 19 603 66.79 216 - 0.69 —0.033 166

S | software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318 g | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 | 0082 | —0.016 [ 38

‘g software classes directed 1377 2213 1.61 1.51 - | 0.033 | 0.012 —0.110 | 305 'g software classes directed 1377 2213 1.61 151 - | 0.033 | 0.012 —0.110 | 303

= | electronic circuits undirected 24007 53248 434 | 1108 30 [ 0.010 [ 0.030 | —0.154 | 155 = | electronic circuits undirected 24007 53245 434 | 1108 30 | 0010 | 0030 | —0.154 [ 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354 peer-to-peer network | undirected BR0 1206 147 428 21 | 0.012 | 0,011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 [ 0.67 -0240 | 214 metabolic network undirected 65 3626 9.64 2.56 2.2 | 0.080 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 212 650 24 | 0072 [ 0071 | —0.136 | 212 *:_! protein interactions undirected 2115 2240 212 680 24 | 0072 | 0071 | 0136 [ 212

Z | marine food web directed 135 502 443 2.05 - | 018 0.23 —0.263 | 204 Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272 -_§ freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421 neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1+ 3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
onents sre given for directed graphs); clustering coefficent €'} from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient », Se«  onents are given for directed graphs); clustering coefficient ¢'') from Eq. (3); clustering coefficient €'} from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation{s) for the network in the bibliography. Blank entries indicate unavailable data. last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

(1] [1]

network type n m z [ o | o™ c@ l%r Ref(s). network type n m z £ o | [ r | Ref{s).
film actors undirected 440013 25516482 | 11343 A48 23 | 0.20 0.78 0.208 | 20, 416 film actors undirected 449013 25516482 [ 113.43 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected TET3 55302 14.44 4.60 - | 059 0.88 0.276 | 105, 322 company directors undirected 7673 551302 14.44 4.60 - | 059 088 0.276 | 105, 323
math coauthorship undirected 252339 496489 392 757 - | 015 0.34 0120 | 107,182 math coauthorship undirected 253339 496489 3.92 78T -1 015 0.3 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 0.27 6.10 - | 045 0.56 0.363 | 311, 313 physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 05 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11803064 1558 4.02 - | 0.088 [ 0.60 0127 | 311, 313 % | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.088 | 0.60 0.127 | 311, 313

§ telephone eall graph undirected 47000000 20000000 3.16 21 8,0 § telephone call graph undirected 47000000 B0 000000 3.16 21 20
email messages directed 50012 86 300 144 4.95 15720 0.16 136 email messages directed 59012 86 300 144 495 1.5/2.0 0.16 136
email address books directed 16881 57029 3318 5.22 - | 07 0.13 0.092 | 321 email address books directed 168381 7029 318 522 - | 07 0.1% 0.002 | 321
student relationships | undirected 573 477 1.66 | 16,01 - | 0.005 | 0.0001 [ —0D.020 | 45 student relationships | undirected 573 477 166 | 16.01 - | 0.005 | 0.001 | —0.020 [ 45
sexual contacts undirected 2810 32 265, 266 sexual contacts undirected 2810 32 265, 266

= | WWW nd.edu directed 260504 1497135 555 1127 | 21724 | 0.11 0.29 —0.067 14, 34 = | WWW nd.edu directed 269504 1497135 5.55 1127 | 21724 | 011 0.29 —0.067 14, 34

% WWW Altavista directed 203540046 | 2130000000 1046 | 1618 [ 21727 74 -% WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 2.1/27 4

g | citation network directed 783339 6716198 857 3.0/- 51 E | citation network directed 783330 6716198 857 3.0/- ki

\3 Roget's Thesaurus directed 1022 5103 499 4.87 - | 013 0.15 0157 | 244 ~3 Roget’s Thesaurus directed 1022 5103 4.99 487 -1 013 0.15 0157 | 244

| word cooceurrence undirected 460902 7000000 70.13 27 0.44 119, 157 | word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10697 31002 508 a3 25 | 0.035 | 0.30 —0.130 | 26, 148 Internet undirected 10697 319002 508 33 25 | 0.035 | 0.30 —0.180 | 26, 148

3 power grid undirected 4041 6504 267 18.99 - | 0.10 0.080 | —0.003 | 416 3 power grid undirected 4941 6504 267 18.99 - | 0.10 0.050 | —0.003 | 416

"gb train routes undirected 5ET 19603 66.70 216 - 0.69 —0.033 166 'é’o train routes undirected 587 19 603 66.79 216 - 0.69 —0.033 166

S | software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 [ 0082 | —D016 | 318 g | software packages directed 1430 1723 1.20 242 | 1.6/14 | 0070 | 0082 | —0.016 [ 38

‘g software classes directed 1377 2213 1.61 1.51 - | 0033 [ 0012 | -0.110 | 305 '§ software classes directed 1377 2213 1.61 151 - | 0033 | 0.012 | —-0.119 | 395

< | electronic circuits undirected 24007 53248 4.4 11.05 30 | 0.010 | 0.030 —0.154 155 = | electronic circuits undirected 24007 53248 434 11.05 30 | 0.010 | 0.030 —0.154 155
peer-to-peer network | undirected 880 1206 147 4.28 21 | 0.012 | 0.011 —0.366 | 6, 354 peer-to-peer network | undirected BR0 1206 147 428 21 | 0.012 | 0,011 —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.000 [ 0.67 -0240 | 214 metabolic network undirected 65 3626 9.64 2.56 2.2 | 0.080 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 2.12 6.80 24 | 0072 | 0071 | 0156 | 212 @ protein interactions undirected 2115 2240 212 650 24 | 0072 | 0071 | 0156 [ 212

Z | marine food web directed 135 502 443 2.05 - | 018 0.23 —0.263 | 204 Z | marine food web directed 135 508 4.43 2.05 - | 016 0.23 —0.263 | 204

-_§ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 272 -_§ freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | -0.326 272
neural network directed 307 21359 .68 397 - | 0.18 0.28 —0.226 | 416, 421 neural network directed 307 2159 7.68 397 - | 018 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1+ 3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1

iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
onents sre given for directed graphs): clustering coeffident C'*) from Eq. {2); clustering coefficient C'®) from Eq. (6): and degree correlation coefficient », Se«  onents are given for directed graphs); clustering coefficent ') from Eq. (3); clustering coefficient C*) from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data. last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

(1] [1]
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Degree Distribution

® Notation:
p(k) = px = fraction of nodes having degree k

® Cumulative dlstrlbut|on

Z Pk

® Notation:

p(k) = px = fraction of nodes having degree Kk

® Cumulative dlstrlbut|on

Z Prr.

K=k k'=Fk
° power law: ¢ power law:
pk N;‘ “ pk N,Zl o
> Pk ~ Z B~ p(a-1) BN -Pk —~ Z BT plal)
b=l k'=k ks
® exponential: ® exponential:
—k/K —k/k
Pk ~ e R . P ~ e "
N PI\ —_ Z 1)"l ~ Z e—k-’;-“p; —~ e—kl.-‘"h' N PL Z pjl / N e—k‘_-"‘h'
k' =k k! =k k'=k
Degree Distribution Degree Distribution
S Ml
® Notation: Pic ~ k .
p(k) = px = fraction of nodes having degree k 04 PR : 10
4 1 1
0:; Ptk m=k? po=k?
® Cumulative distribution: o
o0 015 + 0.1 0.1
Pi=3) pr o
" 0
0 2 4 6 10| 0.01 0.01
° power law:
P~ k™
a —(a—1 L e
> Pk ~ Z A’ ~ (a—1) pf. ~ e—’\“. K
k'=k
. ) ) 6 1
exponential: o 0
‘ —k/k ks o pp= ek .
Pk ~ € ! o ~o » . Oli 0001
5> Pi=) p~) eF/mmet o oo
k'=k k'=k ! 0 2 4 6 8 1 0.00001 0.00001
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pr~ kS

pr~ kS

04 1] 04 [} 2 4 6 8
035 14 0.35 14 z
03 pp=te? 03 Ptk
025 025
02 02
015 01 + 015 01
01 01
005 - 005 |
0 o0} .
o 2 4 6 10° 0.01 o 2 4 6 8 10| 0.01
—k/K —k/k
pic ~ ek p ~ e
04 6 ] 2 4 6 1
035
03 0.1 0.1 0.1
025 pe=e2k p=elk
02 001 001 | 001
015 0.001 0001 | 0.001
01 | :
005 + 0.0001 0.0001 0.0001
0 F . T ¥
[ 2 4 ] 1 0.00001 000001 0 2 4 6 8 1 0.00001 000001
Degree Distribution Degree Distribution
D —o Cumulative distributions P, of example real world NW
P ~ k
- 0 0 0
" 5 10 SRS BN B 10° gy 10" gy
035 14 E E F E = -
03 p=ie? E 3 E E 10'3 ;— —;
0%k 1 w0F 3 - 3
o \.\' m E— —E ;- -; “F ]
o1 1 E E E 3 E =
o i E S
0 , 10 E (a) collaborations E 10°E o 3 10° E . \ B
0 2 4 6 10 001 F in mathematics '~ ] [ (b) citations 3 E (© World Wide Web 3
E- 111 IIIHI L1l IHIIl 11 f E 1 IIII\III 1 IIIIIIII 1 IIIHI\I 1 \II\: ]078 EI|I|I|I| I\ll\ll IIIIIIJ l\ll\lll IIIIIIII‘ L1
1 10 100 1 10 100 1000 10" 102 10" 10°
i
100% AL L B 1002 T3 10° E T T T T T
—k/K F 3 E E 3 3
Pk ~¢€ / R - i ] r 1
10°g 107 E E w'E =
e : r : : d E
035 107 3 2 — B 1
03 01 0.1 E E 10 E E 10-3 - .
025 p=e2k 50 N b F B F ) 3
02 o001 on 107 g - sl ) _ [ (f) protein v ]
0.15 o001 0001 | E (d) Internet ; 10 E (e) power gnd 3 ]04 — interactions %
01 + 10-4 FERRTIT R IR RTRTT A \IIIIII‘\ R R R R B 7 E Lol L1
0.05 + 0.0001 0.0001 1 10 100 1000 0 10 20 1 10
0 F
[} 2 4 6 1 0.00001 0.00001 - [1]




Degree Distribution

Degree Distribution

Cumulative distributions P, of example real world NW

“‘Power law” == “Scale free”
]002.,_4\\ T 10° g 10° g
F S E F 3 ™~ - . . . . .
3 . 3 3 \\ — ANy 3 ® f(x) = x% is only solution to functional equation formalizing scale
0'E AN 1wk \ = N 3 freedom f(ax) = b f(x)
E A E E \\\ f 3
B N3 " \, 3 = \\ E ® in other words: change of scale = f still ,looks the same*
10 §_ (a) collaborations L'\‘ _§ 10 E . N\ 3 10° E . i ' g
a PR L il (b) citations \ ] E (c) World Wide Web \.~€
E L1 l[IIUI 11 L]lllli 1 i-‘lg c 1 Illlll\] 1 Illllld 1 Llllllll 1 lr-[ﬁ: 10'5 :IIILIM JUIIIJ' IIILIM Jl]llll] IIILIJLII 11|
! 10 100 ! 100 1000 010 w e’ ® other point of view:
Although we can compute the expectation E(k)=2k kka ifa=1,
10° gy 10° g r r 10° T = ] 5
E 3 E E E the variance (error bars) Var(k)= Ek (k-E(k))* k@
ro 1 - L ~ 4 -
W00 E T N - e . - diverges = we ,cannot be shure about k*
E . E E E \ 3 . -
B AN ] F \ g A E - ,no characteristic scale* = ,scale free“
107 E N\ E 2L . - B AN 1
B . E 10°E \, 10°F ~ 5
107 \ q ksl \\ () protein \ 3
E (d) Internet 7 1005 (e)powergnd . 3 3 interactions __
i | | 1] F | N 1°E ! O
107 10 100 1000 ° 0 10 20 1 10
(1
Degree Distribution Degree Distribution
S
“Power law” == “Scale free”: “‘Power law” == “Scale free”

¢ f(x) = x® is only solution to functional equation formalizing scale
freedom f(ax) = b f(x)
ok

® in other words: change of scale = f still ,looks the same*

® other point of view:
Although we can compute the expectation E(k)=2k k ke ifa=1,
the variance (error bars) Var(k)= Ek (k-E(K))? k®

diverges = we ,cannot be shure about k*
- no characteristic scale“ = ,scale free“

® f(x) = x® is only solution to functional equation formalizing scale
freedom f(ax) = b f(x)

® in other words: change of scale = f still looks the same*

® other point of view: I
Although we can compute the expectation E(k)=2k kka ifa=1,
the variance (error bars) Var(k)= Zk (k-E(K))? k@

diverges = we ,cannot be shure about k*
- ,no characteristic scale* = ,scale free“



Degree Distribution Degree Distribution

“Power law” == “Scale free”™: Examples:
¢ f(x) = x® is only solution to functional equation formalizing scale ® Power law: citation NW, WWW, Internet, metabolic NW,
freedom f(ax) = b f(x) telephone call NW, human sexual contact NW etc.
® in other words: change of scale = f still ,looks the same* ° Exponential: power grid, railway NW

® Power law with exp. cut-offs: Movie co-actor NW
® other point of view:
Although we can compute the expectation E(k)=2k k ke ifa=1,
the vellkriance (error bars) Var(k)= Ek (k-E(k))? k@

diverges = we ,cannot be shure about k*
- no characteristic scale“ = ,scale free“ -

Degree Distribution Degree Distribution
Examples: Examples:
® power law: citation NW, WWW, Internet, meta%olic NW, ' ® power law: citation NW, WWW, Internet, metabolic NW,
telephone call NW, human sexual contact NW etc. telephone call NW, human sexual contact NW etc.
K
¢ Exponential: power grid, railway NW ° Exponential: power grid, railway NW

® Power law with exp. cut-offs: Movie co-actor NW ® Power law with exp. cut-offs: Movie co-actor NW



Degree Distribution

Maximum Degree

Examples:

® power law: citation NW, WWW, Internet, metabolic NW,
telephone call NW, human sexual contact NW etc.

¢ Exponential: power grid, railway NW

® Power law with exp. cut-offs: Movie co-actor NW
ks

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

(")p(1 = Pe)m™

*> prob of k being the highest degree in graph:

n

mn
}.‘ — T _ 3 n—rimn
i 5—1 (m)Pk (1-F)

= (p+1=F)" — (1= F)"
® > expected highest degree:

J"max = ZL- khy

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:

'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:

(MY (1= P

*> prob of k being the higﬁest degree in graph:

1

n ( n—1n
mo= 3 (o )pra-p

m=1
= (pe+1=F)" — (1= F)"
> expected highest degree:

]‘imax = Zk}"hk

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation

® Other estimation:
'prob p of .exactly m nodes with k and rest of nodes smaller than k*:

T\, r{z 1 _P iL—1r
() PR k[%)

*> prob of k being the highest degree in graph:

n

mn
}.‘ — T _ 3 n—rimn
U 5—1 (m)Pk (1 - Fg)

= (p+1=F)" — (1= F)"
® > expected highest degree:

J"ma..\' = ZL- khy,



Maximum Degree Maximum Degree

® lessor equal than one vertex with K., ® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @ = NPy max = 1 = for power law py = k™% Kp,a — 1@
but: not very accurate estimation but: not very accurate estimation
® Other estimation: ® Other estimation:
'prob p of ,exactly m nodes with k and rest of nodes smaller than k*: 'prob p of .exactly m nodes with k and rest of nodes smaller than k*:
s n—rim s L—1rt
()”)pl\ ( _PF‘) (rn)pk (1—P}')
*> prob of k being the highest degr@e in graph: *> prob of k being the highest degree in graph:
n n i n %
]‘. — IN n—1n } — PN _ 3 =T
w= 3 (e =r w= 3 (om0
=(p+1-P)" — (1 - P)" = (pr+1—-P)" = (1= B)"
> expected highest degree: *> expected highest degree:
]‘ima.x = Zk khy, J"max = ZL- khi,
Maximum Degree Maximum Degree
® since h, is small for small k and also for large k = ® since h, is small for small k and also for large k =
take as k.., the modal value of h, > take as k.., the modal value of h, 2
modal value : i B =0 modal value : i h, =0
dk dk
Using dP;/dk = pi we get Using dP;/dk = pi we get
d dpy. d dpy.
“ 2E g 1_P n—1 P n— l_ “ l—P n—1 1— P n— !._
T he=n | ( % P (pr+ k)" k(- Fr) ] n ne=n | O P (Pr+ k)" 4 o ) ]
Or Kpax 1S a solution of O Kpax 1S a solution of
dpy ) dpx 2
— >~ —npy — > —np
dk Pi dk P
(assuming: py is small for k > k,, and that npr << I} andthat P < 1) (assuming: py is small for k > k., andthat?pr < 1 andthat P < 1)
—we get for power law py ~ k= that f .~ pt/la=1) —we get for power law pj ~ k= that f .~ pt/la=1)



Maximum Degree

Maximum Degree

® since h, is small for small k and also for large k =
take as k.., the modal value of h, >

modal value : i B =0
dk

Using dP;/dk = pi we get

d 1ps. i
— = [ (”_A_Pk)(pﬁ.-i-l—PA)" (1= Py l]—

dk dk

Or kpax 1S a solution of
dpx 2
—= ~ —np;
dk P

Iz
(assuming: py is small for k > k., and that npr << 1 andthat P < 1)

—we get for power law pj ~ k=% that L.~ pt/la=1)

Maximum Degree

® since h, is small for small k and also for large k =
take as k.., the modal value of h, 2

modal value : i h, =0
dk

Using dP;/dk = pi we get

a dl}k n= ( n—
dic — = [ (W_Pk)(})kﬁ-l—}j;‘.) 1+PA-(1—P;\._) !.]= 0

or kpax 1S a solution of
dp
—np
”' IR L

(assuming: py is small for k > k., and thatpr < 1 andthat Pp < 1)

—we get for power law pj ~ k= that k.. ~ pt/la=1)

Maximum Degree

® lessor equal than one vertex with K.,
= NPy max = 1 = for power law py = k™ Kpz ~ 0V @
but: not very accurate estimation

® Other estimation:
'prob p of ,exactly m nodes with k and rest of nodes smaller than k*:

(in)p;\”(l P;‘.)”_”l

*> prob of k being the highest degree in graph:

T ]}
]‘ = E IN L—1
" —1 (FH) PA)
= (pe+1=F)" — (1= F)"
® > expected highest degree:

kmax = 25 khi I

® since h, is small for small k and also for large k =
take as k.., the modal value of h, 2

modal value : i h, =0
dk

Using dP;/dk = pi we get

d IIA n—1 n— l_
%hk [(l}. P&)(PA+1—PA) +pr(1— Pr) ]

O Kpax 1S a solution of
dpy.

~ T 2
ar — 'k

(assuming: py is small for k > k., and thatpr < 1 andthat Pp < 1)

—we get for power law pj ~ k= that f .~ pt/la=1)



Network Resilience

Network Resilience

® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

® For power law networks:

remove random nodes : § 15 o |
no effect on mean distances 4 D
o r (o] 4
remove high degree nodes: %5 10 L ﬁ‘p-s-f"k} ]
drastic effect H o
=
2 5 :
. H % Eﬁ:ﬂ]ﬂﬂm
Interpretations: o I |

Internet is easy to attack D0.00

0.01 0.02

. fraction of vertices removed  [1]
Internet is not easy to attack

Network Resilience

® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

® For power law networks: & [ ‘ o
remove random nodes : 8 45 | o
no effect on mean distances 2 O
h] r 1
remove high degree nodes: g L |
: 5 10 e
drastic effect T ese
3 I P 1
=
g 5 L i
L ] . s [ E=EE=EREmENSERSEEREEEEEEE=EEnE)
Interpretations: o I ]
. O ' 1 L 1
Internet is easy to attack 0.00 0.01 0.02

. fraction of vertices removed
Internet is not easy to attack

Mixing Patterns

(1]

® What happens if nodes are removed? (interesting e.g. for vaccination
effects in disease spreading in human contact networks)

® For power law networks:

remove random nodes : § 15 o |
no effect on mean distances 4 D
- r (o] 4
remove high degree nodes: %5 10 L ﬁ‘p-s-f"k} ]
drastic effect H o
3 el 1
b= F
2 5 4
[ . S [ i=a e =wEuuun smananEns ananeuan
Interpretations: o I |

Internet is easy to attack D0.00

0.01 0.02

. fraction of vertices removed  [1]
Internet is not easy to attack

e Ecological NW, Internet, some social NW:
Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes
of same class OR ks
Disassortative Mixing (Heterophily): Nodes attach to nodes of different
classes (almost n-partite behavior)

® Diassortativity:
Food Web: Plants €<—= Herbivores €<- Carnivores
but few Plants €- Plants etc.
Internet: Backbones provider <— ISP €< end user
but few ISP €= ISP etc.

® Assortativity:
Social NW



Mixing Patterns

Mixing Patterns

e Ecological NW, Internet, some social NW:

Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes

of same class OR

Disassortative Mixing (Heterophily): Nodes attach to nodes of different

classes (almost n-partite behavior)

® Diassortativity:
Food Web: Plants €<— Herbivores €<-> Carnivores
but few Plants €= Plants etc.
Internet: Backbones provider €<- ISP <— end user
but few ISP <- ISP etc.

® Assortativity:
Social NW

Mixing Patterns

e Ecological NW, Internet, some social NW:
Assortative Mixing (Homophily): Nodes attach to similar nodes / nodes
of same class OR
Disassortative Mixing (Heterophily): Nodes attach to nodes of different
classes (almost n-partite behavior)

® Diassortativity: ke
Food Web: Plants €<—= Herbivores €<- Carnivores
but few Plants €- Plants etc.
Internet: Backbones provider <— ISP €< end user
but few ISP €&— ISP etc.

® Assortativity:
Social NW

Mixing Patterns

women
black hispanic white other
E — black 506 32 69 26
g hispanic 23 308 114 38
= white 26 46 599 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu- [1]
lated by race of either partner. After Morris [302].

E
® measure mixing: analogous to modularity: ritixing matrix e = ——

| }
> l LJll) = l’,‘j; E j'(’fj' E ra’j = ]-! 5 1 (J|?J =1
’ J

1]

wormen
black hispanic white other
E — black 506 32 69 26
; hispanic 23 . 308 114 38
= white 26 46 599 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu- [1]
lated by race of either partner. After Morris [302].

E

® measure mixing: analogous to modularity: mixing matrix e = ——

IE]

7

> P(jli) = eiz/ X e > e =1, ZPUUJ =1
: i



Mixing Patterns

Mixing Patterns

women
black hispanic white other
E — black 506 32 69 26
g hispanic 23 308 114 38
B white 26¢ 46 500 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania ef al. [85] tabu-  [1]
lated by race of either partner. After Morris [302].

E
® measure mixing: analogous to modularity: mixing matrix e = —| |
- P(Jll) = f_’;jf Zj.f'ij' Z €ij = L, ZP(.}l’) =1
i J

Mixing Patterns __women
black hispanic white other
—_— black 506 32 69 26
E - g | hispanie 23 308 114 38
g white 26 46 500 68
other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

® > first measure for Assortativity:

Y P -1
O==F1

issues: Asymmetry of E = two values;
Not respecting size of classes

® > second measure for Assortativity: (cmp. Modularity)

r__Tl‘e—\e2|
a 1—|e?|

wormen
black hispanic white other
E — black 506 32 69 26
g hispanic 23 308 114 38
= white 26 46 500 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania et al. [85] tabu-  [1]
lated by race of either partner. After Morris [302].

R E
® measure mixing: analogous to modularity: mixing matrix e = ——

|E|
doey=1 > P(jlij=1
J

i

> P(jli) = eij/ 3 ei5

Mixing Patterns

wormen
black hispanic white other
E — black 506 32 69 26
g hispanic 23 308 114 38
- white 26 46 509 68
other 10 14 47 32

TABLE IIT Couples in the study of Catania et al. [85] tabu-  [1]
lated by race of either partner. After Morris [302].

E
® measure mixing: analogous to modularity: mixing matrix e = ——

. IE|
doey=1 > P(jlij=1
J

2 P(l) =eij/ e 2
ij



Mixing Patterns Mixing Patterns women

black hispanic white other
women E — black 506 32 69 206
- g | hispanic 23 308 114 38
black hispanic white other g white 26 46 500 68
th 10 14 47 32
E = black 506 32 69 26 o
. . A G . TABLE III Couples in the study of Catania et al. [85] tabu-
E hlSpi\l]lC 23 308 114 38 lated by race of either partner. After Morris [302].
E white 26 46 599 68 . ) ,_
other 10 14 A7 39 - first measure for Assortativity:
TABLE 111 Couples in the study of Catania et al. [85] tabu-  [1] g =2 hlil) -1
lated by race of either partner. After Morris [302]. N -1
B issues: Asymmetry of E - two values;
® measure mixing: analogous to modularity: mixing matrix e = ﬁ Not respecting size of classes
2 P(jli) = e/ Zj'f’ij' Z €i; =1, Z P(jli) =1 ® >  second measure for Assortativity: (cmp. Modularity)
’ ij J
Tre—| e?|
r=
1—[e2]
Mixing Patterns —_vmn Mixing Patterns "
Dlac spanic white other blac Hspanic whnite other
—_— black 506 32 69 26 — black 506 32 69 206
E - g | hispanie 23 308 114 38 E - g | hispanic 23 308 114 38
e white 26 16 500 68 e white 26 16 500 68
other 10 14 47 32 other 10 14 47 32
TABLE III Couples in the study of Catania et al. [85] tabu- TABLE III Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302]. lated by race of either partner. After Morris [302].
® > first measure for Assortativity: ® > first measure for Assortativity:
Q:EiP(:h)—l Q:Z,.P(?h)—l "
N -1 N -1
issues: Asymmetry of E = two values; & issues: Asymmetry of E = two values;
Not respecting size of classes Not respecting size of classes
® > second measure for Assortativity: (cmp. Modularity) ® > second measure for Assortativity: (cmp. Modularity)
Tre — || e?| Tre—| e?|

T m

I—e?| =TT



Mixing Patterns Mixing Patterns

® Special example: ,class” of nodes determined by degree ® Special example: ,class” of nodes determined by degree
- nodes attached to nodes with same or different degree? - nodes attached to nodes with same or different degree?
Both variants occur in real world NW ks Both variants occur in real world NW
® Degree correlation measures: ¢ Degree correlation measures:
1)  mean degree of neighbors of node with degree k: g 1)  mean degree of neighbors of node with degree k: &
- if assortative mixing: curve should be increasing -> if assortative mixing: curve should be increasing
- Internet: curve decreases - diassortativity - Internet: curve decreases - diassortativity
i
2) Pearson correlation for node degrees k_i and k_j of 2) Pearson correlation for node degrees k_i and k_j of

adjacent nodes i and j adjacent nodes i and j

network type n m z [ o | o c@ r | Ref{s). network type n m z £ o | c [ r | Ref{s).
film actors undirected 440013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416 film actors undirected 449013 25516482 [ 113.43 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected T673 55302 14.44 4.60 - 0.59 0.88 0.276 105, 323 company directors undirected T6T3 551392 14.44 4.60 - 059 088 0.276 105, 323
math coauthorship undirected 251330 496489 3.02 TET - | 018 0.34 0120 | 107,182 math coauthorship undirected 253330 496480 392 757 - | 015 0.34 0.12 107, 182
physics coauthorship | undirected 52000 245 300 0.27 6.10 - | 045 0.56 0.363 | 311, 313 physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.36: 311, 313

4 | biology cosuthorship | undirected 1520251 11203064 1558 4.02 - | 0.088 [ 0.60 0. 12‘% 311, 313 % | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.088 | 0.60 0.127 | 311, 313

§, telephone call graph undirected A7 000 000 20000000 3.16 21 8,9 § telephone call graph undirected 47 000 000 80000000 3.16 21 89
email messages directed 50012 86 300 144 495 | 1.5/20 0.16 136 email messages directed 59012 86 300 1.44 495 | 15/20 0.16 136
email address books directed 16881 57020 3.8 5.22 - | 07 0.13 0.092 | 321 email address books directed 16881 57029 3.38 522 - | 0ar 0.13 0.002 | 321
student relationships | undirected 573 477 1.66 | 16.01 - | 0.005 | 0.0M1 —0.020 | 45 student relationships | undirected 573 477 1.66 | 16.01 - | 0.005 | 0.001 —0.029 | 45
sexual contacts undirected 2810 32 265, 266 sexual contscts undirected 2810 32 265, 266

= | WWW nd.edu directed 269504 1497135 555 | 11.27 | 21/24 | 0.11 0.29 —0.067 | 14,34 = | WWW nd._edu directed 269504 1497135 555 | 1127 | 21724 | 011 0.29 —0.067 | 14,34

2 | WWW Altavista directed 203540046 | 2130000000 1046 | 1618 [ 21727 74 2 | WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 2.1/27 4

E citation network directed 783330 6716198 857 3.0/- 51 5 citation network directed 781330 6716198 85T 3.0/- ki

‘-3 Roget’s Thesaurus directed 1022 5103 4.9 4.87 - | 013 0.15 01537 | 244 '-3 Roget’s Thessurus directed 1022 5103 4.99 487 - | 013 015 01537 | 244

| word cooceurrence undirected 460902 17 000000 70.13 27 0.44 119, 157 | word co-oceurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10697 31002 508 a3 25 | 0.035 | 0.30 —0.130 | 26, 148 Internet undirected 10697 319002 508 33 25 | 0.035 | 0.30 —0.180 | 26, 148

g | power grid undirected 4041 6594 2,67 [ 1809 - | 010 0.080 | —0.003 | 416 F | power grid undirected 4941 6504 267 | 1899 - | 0.10 0080 | —0.003 | 416

| train routes undirected 58T 19603 66.79 216 - 0.69 —0.033 | 366 W | train routes undirected 58T 19603 66.79 216 - 0.69 —0.033 | 366

_g' software packages directed 1439 1723 1.20 242 | 1.6/14 | 0070 | 0082 | 0016 | 318 _g' software packages directed 1430 1723 120 242 | 16/14 | 0070 | 0022 | —0.016 | 318

'g software classes directed 1377 2213 1.61 1.51 - | 0033 [ 0012 | -0.110 | 305 § software classes directed 1377 2213 1.61 151 - | 0033 | 0.012 | —-0.119 | 395

= electronic circuits undirected 24007 53248 4.4 11.05 3.0 0.010 0.030 —0.154 155 = electronic circuits undirected 24067 53248 4.34 11.05 a0 0.010 0.030 —0.154 155
peer-to-peer network | undirected 880 1206 147 4.28 21 [ 0012 | 0011 | —0D.366 | 6, 354 peer-to-peer network | undirected 830 1206 147 4.28 21 | 0012 | 0011 | —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 22 | 0.080 | 0.67 —0.240 | 214 metabolic network undirected 765 3686 9.64 256 2.2 | 0.090 | 0.67 —0.240 | 214

3 protein interactions undirected 2115 2240 212 6.80 24 | 0072 | 0.071 ~0.156 | 212 -.3; protein interactions undirected 2115 2240 212 680 24 | 0072 | 0.071 —0.136 | 212

E marine food weh directed 125 508 443 2,05 - 0.16 0.23 —0.263 204 E marine food web directed 135 508 443 205 - 0.16 0.23 —0.263 204

ﬁ‘ freshwater food web directed 92 907 10.84 1.90 - | 0.20 0.087 | -0.326 | 272 -_E- freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 2359 T.68 3.07 - | 018 0.28 —0.226 | 416,421 neural network directed 307 21359 7.68 397 - | 0.8 0.28 —0.226 | 416, 421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1+ 3LE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law {(or “- if not; infout iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or “~" if not; injfout
onents sre given for directed graphs): clustering coeffident C'*) from Eq. {2); clustering coefficient C'®) from Eq. (6): and degree correlation coefficient », Se«  onents are given for directed graphs); clustering coefficent ') from Eq. (3); clustering coefficient C*) from Eq. (6); and degree correlation coefficient r, Sec
last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data. last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

(1] [1]



onents are given for directed graphs): clustering coefficent
last column gives the citation(s) for the network in the bi

Community and Group Structure

network type n m z [ o | o c@ r | Ref{s).
film actors undirected 440013 25516482 | 11343 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected T673 55302 14.44 4.60 - 0.59 0.88 0.276 105, 323
math coauthorship undirected 251330 496489 392 TET - | 015 0.34 0120 | 107,182
physics coauthorship | undirected 52000 245 300 0.27 6.10 - | 045 0.56 0.363 | 311, 313

4 | biology cosuthorship | undirected 1520251 11203064 1558 4.02 - | 0.088 [ 0.60 0127 | 311, 313

§, telephone call graph undirected A7 000 000 20000000 3.16 21 8,9
email messages directed 50012 86 300 144 4. 15720 0.16 136
email address books directed 16881 57020 3.8 5.2 - | 07 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 16.0 - 0.005 | 0.0m —0.020 45
sexual contacts undirected 2810 32 205, 266

= | WWW nd.edu directed 269504 1497135 555 | 11.27 | 21/24 | 0.11 0.29 —0.067 | 14,34

2 | WWW Altavista directed 203540046 | 2130000000 1046 | 1618 [ 21727 74

E citation network directed 783330 6716198 857 3.0/- 51

‘-3 Roget’s Thesaurus directed 1022 5103 4.9 4.87 0.13 0.15 01537 | 244

| word cooccurrence undirected 460902 17 000000 70.13 27 0.44 119, 157
Internet undirected 10697 31002 508 a3 25 | 0.035 | 0.30 —0.130 | 26, 148

g | power grid undirected 4041 6594 2,67 [ 1809 0.10 0.080 —DWB 416

| train routes undirected 58T 19603 66.79 216 - 0.69 —0.033 | 366

_g' software packages directed 1439 1721 1.20 242 | 1.6/14 | 0070 | 0082 | 0016 | 318

§ | software classes directed 1377 2211 1.61 1.51 - | 0033 [ 0012 | —0.110 | 305

= | electronic circuits undirected 24007 53248 434 [ 1105 30 | 0.010 | 0.030 | —D.154 | 155
peer-to-peer network | undirected 830 1296 147 4.28 21 [ 0012 | 0011 | —0D.366 | 6, 354
metabolic network undirected 765 3686 9.64 256 22 | 0.080 | 0.67 —0.240 | 214

3 protein interactions undirected 2115 2240 212 6.80 24 | 0072 | 0.071 ~0.156 | 212

E marine food weh directed 125 508 443 2,05 - 0.16 0.23 -0.263 204

2 | freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 2359 T.68 3.07 - | 018 0.28 —0.226 | 416,421

ILE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or
1) from Eq. (3); clustering coefficient C'%) from Eq. (6); and degree correlation coefficient r, Seq
iography. Blank entries indicate unavailable data.

if not; injfout

onents are given for directed graphs): clustering coefficent
last column gives the citation(s) for the network in the bi

Navigatability of NW

network type n m z £ o | c [ r | Ref{s).
film actors undirected 449013 25516482 [ 113.43 348 23 | 0.20 0.78 0.208 | 20, 416
company directors undirected T6T3 551392 14.44 4.60 - 059 088 0.276 105, 323
math coauthorship undirected 251330 496480 3.92 757 - | 015 0.34 0.120 | 107, 182
physics coauthorship | undirected 52000 245 300 9.27 6.19 - | 045 0.56 0.363 | 311, 313

% | biology coauthorship | undirected 1520251 11803064 1553 492 - | 0.088 | 0.60 0.127 | 311, 313

§ telephone call graph undirected 47 000 000 80000000 3.16 21 89
email messages directed 59012 86 300 1.44 495 | 15/20 0.16 136
email address books directed 16881 57029 3.38 522 - | 0ar 0.13 0.002 | 321
student relationships | undirected 573 477 1.66 16.01 - 0.005 0.001 —0.020 | 45
sexual contacts undirected 2810 12 265, 266

= | WWW nd._edu directed 269504 1497135 555 | 1127 | 21724 | 011 0.29 —0.067 | 14,34

2 | WWW Altavists directed 203549046 | 2130000000 1046 | 1618 | 2.1/27 4

g citation network directed 783330 6716198 857 3.0/- 51

'-3 Roget’s Thessurus directed 1022 5103 4.99 487 0.13 015 01537 | 244

™| word coccurrence undirected 460902 17000000 70.13 27 0.44 119, 157
Internet undirected 10697 319002 508 33 25 | 0.035 | 0.30 —0.180 | 26, 148

F | power grid undirected 4941 6504 267 | 1899 0.10 0080 | —0.003 | 416

W | train routes undirected 58T 19603 66.79 216 - 0.69 —D.UBB[% 366

_g' software packages directed 1430 1723 1.20 242 | 16714 | 0070 | 0082 | —0.016 | 318

§ software classes directed 1377 2213 1.61 151 ~ | 0.033 | 0.012 | —0.110 | 303

= | electronic circuits undirected 24097 53248 434 | 11.05 a0 | 0010 | 0030 | 0154 [ 155
peer-to-pesr network | undirected 830 1206 147 4.28 21 | 0012 | 0011 | —0.366 | 6, 354
metabolic network undirected 765 3686 9.64 2.56 2.2 | 0.090 | 0.67 —0.240 | 214

E protein interactions undirected 2115 2240 212 680 24 | 0072 | 0.071 —0.136 | 212

E marine food web directed 135 508 443 205 - 0.16 0.23 —0.263 204

-_E- freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272
neural network directed 307 21359 7.68 397 - | 0.8 0.28 —0.226 | 416, 421

3LE IT Basic statistics for & number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices 1
iber of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution follows a power law (or
) from Eq. (3); clustering coefficient C'*) from Eq. (6); and degree correlation coefficient r, Se
ography. Blank entries indicate unavsilable data.

if not; infout
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® Is NW well clustered? = see Parts on Clustering

example:
friendship NW
in US school:

© Whie
® Black
@ (nher

(1]

® Milgram showed: short paths exist

BUT: How do people find them?

- see Part ,Social Networks in Time and Space”

Component Structure

® Does a giant component exist?

- see section on random graphs



Navigatability of NW

Navigatability of NW

® Milgram showed: short paths exist
BUT: How do people find them?

-> see Part ,Social Networks in Time and Space”

Component Structure

® Milgram showed: short paths exist
BUT: How do people find them?

- see Part ,Social Networks in Time and Space”

Component Structure

® Does a giant component exist?

-> see section on random graphs

® Does a giant component exist?

- see section on random graphs



