Script generated by TTT

Title: groh: profile1 (20.05.2014)

Tue May 20 11:59:43 CEST 2014 Date:

Duration: 94:28 min

Pages: 59

Last example of this part: bringing it all together (see [3]):

- Observations → critique on agglomerative methods: fail to cluster peripheral nodes correctly [3] → Newman Girvan method: Divisive hierarchical clustering (splitting) + Modularity:
 - Calculate edge betweenness for all edges
 - Remove edge with highest edge betweenness
 - 3. goto 1.
- Use Modularity as intra cluster coherence (f) cluster validity measure (g=0) to optimally cut dendrogram:

$$Q = \sum_{i} (e_{ii} - a_i^2) = \operatorname{Tr} \mathbf{e} - \| \mathbf{e}^2 \|$$

Newman Girvan Method: Centrality-based Splitting + Modularity

Last example of this part: bringing it all together (see [3]):

 Observations -> critique on agglomerative methods: fail to cluster peripheral nodes correctly [3] → Newman Girvan method: Divisive hierarchical clustering (splitting) + Modularity:

→ dendrogram

- Calculate edge betweenness for all edges
- Remove edge with highest edge betweenness
- goto 1.

→ dendrogram

Use Modularity as intra cluster coherence (f) cluster validity measure (g=0) to optimally cut dendrogram:

$$Q = \sum_{i} (e_{ii} - a_i^2) = \operatorname{Tr} \mathbf{e} - \| \mathbf{e}^2 \|$$

Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

- k clusters → k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities
- $\operatorname{Tr} \mathbf{e} = \sum_{i} e_{ii}$: fraction of edges within communities

- ullet $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\text{rnd}} = a_i a_j \rightarrow e_{ii}^{\text{rnd}} = a_i^2$
- f: Compare (\rightarrow difference) real with rnd \rightarrow $Q = \sum_i \left(e_{ii} a_i^2\right) = \operatorname{Tr} \mathbf{e} \|\mathbf{e}^2\|$

Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

k clusters → k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- Tr $\mathbf{e} = \sum_{i}^{r} e_{ii}$: fraction of edges within communities
- ullet $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\text{rnd}} = a_i a_j \rightarrow e_{ii}^{\text{rnd}} = a_i^2$
- f: Compare (\rightarrow difference) real with rnd \rightarrow $Q = \sum_i \left(e_{ii} a_i^2\right) = \operatorname{Tr} \mathbf{e} \|\mathbf{e}^2\|$

Newman Girvan Method: Centrality-based Splitting + Modularity

Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

• k clusters \rightarrow k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- ${\rm Tr}\,{\bf e}=\sum_i e_{ii}$: fraction of edges within communities
- $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\rm rnd} = a_i a_j \rightarrow e_{ii}^{\rm rnd} = a_i^2$
- f: Compare (\rightarrow difference)
 real with rnd \rightarrow $Q = \sum_{i} (e_{ii} a_{i}^{2}) = \operatorname{Tr} \mathbf{e} \| \mathbf{e}^{2} \|$

Modularity:

• k clusters \rightarrow k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- Tr $e = \sum_{i}^{'} e_{ii}$: fraction of edges within communities
- $a_i = \sum_{i} e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\text{rnd}} = a_i a_j \rightarrow e_{ii}^{\text{rnd}} = a_i^2$
- f: Compare (\Rightarrow difference) real with rnd $\Rightarrow \qquad Q = \sum_i \left(e_{ii} a_i^2\right) = \operatorname{Tr} \mathbf{e} \|\mathbf{e}^2\|$

[□] Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

• k clusters \rightarrow k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- $\operatorname{Tr} \mathbf{e} = \sum_{i}^{'} e_{ii}$: fraction of edges within communities
- ullet $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e^{\mathrm{rnd}}_{ij} = a_i a_j \rightarrow e^{\mathrm{rnd}}_{ii} = a_i^2$
- f: Compare (\rightarrow difference)

 real with rnd \rightarrow $Q = \sum_{i} \left(e_{ii} a_{i}^{2}\right) = \operatorname{Tr} \mathbf{e} \|\mathbf{e}^{2}\|$

Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

• k clusters \rightarrow k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- ${\rm Tr}\,{\bf e}=\sum_i e_{ii}$: fraction of edges within communities
- ullet $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\rm rnd} = a_i a_j \rightarrow e_{ii}^{\rm rnd} = a_i^2$
- f: Compare (\rightarrow difference) real with rnd \rightarrow $Q = \sum_i \left(e_{ii} a_i^2\right) = \operatorname{Tr} \mathbf{e} \|\mathbf{e}^2\|$

Newman Girvan Method: Centrality-based Splitting + Modularity

Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:

• k clusters → k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- $\operatorname{Tr} \mathbf{e} = \sum_{i} e_{ii}$: fraction of edges within communities
- ullet $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\text{rnd}} = a_i a_j \rightarrow e_{ii}^{\text{rnd}} = a_i^2$
- f: Compare (\rightarrow difference)

 real with rnd \rightarrow $Q = \sum_{i} (e_{ii} a_i^2) = \operatorname{Tr} \mathbf{e} \| \mathbf{e}^2 \|$

• k clusters → k x k symmetric matrix **e**: $e_{ij} = |E(C_i,C_j)| / |E|$: fraction of edges between communities

- Tr $e = \sum_{i} e_{ii}$: fraction of edges within communities
- $a_i = \sum_j e_{ij}$: fraction of edges that connect to cluster C_i
- Random network (keep a_i fixed): $e_{ij}^{\text{rnd}} = a_i a_j \rightarrow e_{ii}^{\text{rnd}} = a_i^2$
- f: Compare (\rightarrow difference)

 real with rnd \rightarrow $Q = \sum_{i} (e_{ii} a_i^2) = \operatorname{Tr} \mathbf{e} \| \mathbf{e}^2 \|$

Modularity:

• In [1]: different notion (not keeping a_i fixed): $\sum_{i=1}^k \left(|E(C_i)| - m \frac{|C_i| \cdot (|C_i|-1)|}{\ln n \cdot (n-1)} \right)$

E

• In [4]: Newman's version for weighted graphs: idea: use multiple edges to model weights

Data Mining: Metric Clustering

R

Finding Clusters in Profiles

Node profiles may contain:

Personal data:

name, age, sex, role-description, skill-description etc., contextual personal data

location, velocity, current emotional state etc.

Edge profiles may contain:

Averaged data:

general type of relation, average strength of relation, etc.. Time-dependent or contextual data:

record of relation instantiations (with time & space information), momentary state of relation (weight, state of instantiation, etc.) etc.

Finding Clusters in Profiles

Examples for profile elements that can be embedded in metric spaces:

- Location & Velocity: Metric space: (ℝ³, || . ||)
- Text describing Interests: Metric space: ($\mathbb{R}^{|Voc|}$, ||.||) where Voc denotes the Vocabulary of the text.

"I like to dance samba, bake pizza, watch tv and plant trees in the garden. I also like to bake cakes."

Often: Instead of term-frequency (tf) alone: use term-frequency * inverse document frequency (idf); idf = log (#of docs where t occurs / #of docs)

Examples for profile elements that can be embedded in metric spaces:

- Location & Velocity: Metric space: (ℝ³, || . ||)
- Text describing Interests: Metric space: ($\mathbb{R}^{|Voc|}$, || . ||) where Voc denotes the Vocabulary of the text.

Often: Instead of term-frequency (tf) alone: use term-frequency * inverse document frequency (idf); idf = log (#of docs where t occurs / #of docs)

Finding Clusters in Profiles

- How do we compute clusters in metric spaces?
- Group models: How do we compute socially meaningful clusters in metric spaces (and thus avoid guasi-groups)?
- First some notations / basics:
 - In graph clustering we had: A graph clustering \mathbf{C} ={C_1, C_2, ..., \mathbf{C} -K} is a partion of V into non-empty subsets C_k
 - Now: clustering $\mathscr{C}: \mathcal{X} \to \mathcal{I}$: mapping of a metric value space X to a set of cluster indices I
 - Clusterings can be:
 - exclusive or non-exclusive
 - crisp or fuzzy
 - hierarchical or non-hierarchical

- Metric variant of Single / Complete link clustering: Hierarchical, crisp, non-overlapping
- Completely analogous to graph clustering case: Start with singletons and on each level of the dendrogram merge two clusters with minimal distance (cost)
 - Single link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

Complete link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \max_{\{\eta_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

Metric variant of Single / Complete link clustering

- Metric variant of Single / Complete link clustering: Hierarchical, crisp, non-overlapping
- Completely analogous to graph clustering case: Start with singletons and on each level of the dendrogram merge two clusters with minimal distance (cost)
 - Single link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||^{-\frac{k}{k}}$$

Complete link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \max_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

- Metric variant of Single / Complete link clustering: Hierarchical, crisp, non-overlapping
- Completely analogous to graph clustering case: Start with singletons and on each level of the dendrogram merge two clusters with minimal distance (cost)
 - Single link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

Complete link:

$$d(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \max_{\{n_1, n_2 | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

K-Means Clustering

- General idea (also valid in graph clustering): Optimize objective function that formalizes clustering paradigm.
- K-Means: Optimize intra cluster coherence:
 - Describe cluster C_k by prototype μ_k; prototype need not be an actual pattern (If so, algorithm works with slight modifications as well)
 - Determine cluster for each pattern x_n by nearest neighbour rule:

$$\mathscr{C}(x_n) = k_a \leftrightarrow ||x_n - \mu_{k_a}|| = \min_i ||x_n - \mu_k||$$

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

K-Means Clustering

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n | x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \Longrightarrow \quad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

- K-Means: Optimize intra cluster coherence:
 - Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n | x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \square \qquad \qquad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

→ cluster prototypes are barycenters ("centers of gravity") of their clusters.

K-Means Clustering

K-Means Clustering

K-Means Clustering

- Interesting aspect: How do we determine correct number k of clusters? (Same problem with graph clustering: where to cut dendrogram?)
- Answer: Compute for every k clusterings; chose the best clustering with a cluster quality measure
- Cluster quality measures for metric case: (countless variants exist in literature; for an overview: e.g. [2]) (Objective functions modeling clustering paradigm):
 - Dunn-Index
 - Entropy based indices
 -

K-Means Clustering

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_3 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\substack{\{ (n_1, n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2} \}}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1,n_2)|x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

K-Means Clustering

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_3 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2}) = \min_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_{k_1} \wedge x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1, n_2) | x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_2 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{(n_1, n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land \widehat{\mathbb{S}}_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1, n_2) | x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

[7]

[7]

K-Means Clustering

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_3 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})$ is the distance function between two clusters defined by

$$d_1(\mathcal{C}_{k_1},\mathcal{C}_{k_2}) = \min_{\{(n_1,n_2) \mid x_{n_1} \in \mathcal{C}_{k_1} \land \widehat{\mathbb{D}}_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

K-Means Clustering

Dunn Index:

$$D = \min_{k_1 \in [1,K]} \left(\min_{k_2 \in [1,K]} \left(\frac{d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})}{\max_{k_3 \in [1,K]} d_2(\mathcal{C}_{k_3})} \right) \right)$$

where $d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2})$ is the distance function between two clusters defined by

d

$$d_1(\mathcal{C}_{k_1}, \mathcal{C}_{k_2}) = \min_{\{(n_1, n_2) | x_{n_1} \in \mathcal{C}_{k_1} \land x_{n_2} \in \mathcal{C}_{k_2}\}} ||x_{n_1} - x_{n_2}||$$

(that is the single link distance from SAHN).

The "diameter" d_2 of the clusters is defined by

$$d_2(\mathcal{C}_i) = \max_{\{(n_1,n_2) | x_{n_1} \in \mathcal{C}_i \land x_{n_2} \in \mathcal{C}_i\}} ||x_{n_1} - x_{n_2}||$$

- K-Means is "OK" as cluster algorithm, but has certain disadvantages:
 - favors spherical clusters
 - need to know K
 - no notion of noise
- Alternative → DBSCAN [4]

(de facto state of the art):

- Idea: Two parameters: minPt, ε
- Rough idea: iterate:

visit previously unseen pattern x:

if in ε-neighborhood {x'} of x: |{x'}|≥ minPt then start new cluster: include x and {x'} and those of their ε-neighborhoods {x"} that are dense enough (|{x"}|≥ minPt), etc.

N

N

else: x is noise

- favors spherical clusters
- need to know K
- no notion of noise

• Alternative → DBSCAN [4] (de facto state of the art):

- Idea: Two parameters: minPt. ε
- Rough idea: iterate:

visit previously unseen pattern x:

if in ε -neighborhood $\{x'\}$ of x: $|\{x'\}| \ge \min Pt$ then start new cluster: include x and {x'} and those of their ε-neighborhoods {x"} that are dense enough (|{x"}|≥ minPt), etc.

else: x is noise

- K-Means is "OK" as cluster algorithm, but has certain disadvantages:
 - favors spherical clusters
 - need to know K
 - no notion of noise

(de facto state of the art):

- Idea: Two parameters: minPt, ε
- Rough idea: iterate: visit previously unseen pattern x:

if in ε-neighborhood {x'} of x: |{x'}|≥ minPt then start new cluster: include x and {x'} and those of their ε-neighborhoods {x"} that are dense enough (|{x"}|≥ minPt), etc.

else: x is noise

[5]

[5]

- K-Means is "OK" as cluster algorithm, but has certain disadvantages:
 - favors spherical clusters
 - need to know K
 - no notion of noise
- Alternative → DBSCAN [4]

(de facto state of the art):

- Idea: Two parameters: minPt, ε
- Rough idea: iterate:

visit previously unseen pattern x:

if in ε -neighborhood $\{x'\}$ of x: $|\{x'\}| \ge \min Pt$ then start new cluster: include x and {x'} and those of their ε-neighborhoods {x"} that are dense enough (|{x"}|≥ minPt), etc.

else: x is noise

[5]

- favors spherical clusters
- need to know K
- no notion of noise

(de facto state of the art):

- Idea: Two parameters: minPt, ε
- Rough idea: iterate:

visit previously unseen pattern x:

if in ε -neighborhood $\{x'\}$ of x: $|\{x'\}| \ge \min Pt$ then start new cluster: include x and $\{x'\}$ and those of their ε -neighborhoods $\{x''\}$ that are dense enough $(|\{x''\}| \ge \min Pt)$, etc.

N

else: x is noise

Find prototypes by optimizing objective function modeling intra cluster coherence as mean square error

$$J_{\text{SQE}} = \sum_{k=1}^{K} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} ||x_n - \mu_k||^2$$

$$\frac{\mathrm{d}J_{\mathrm{SQE}}}{\mathrm{d}\mu_k} \stackrel{!}{=} 0 \quad \square \qquad \qquad \mu^k = \frac{1}{|\mathcal{C}_k|} \sum_{\{n \mid x_n \in \mathcal{C}_k\}} x_n$$

 → cluster prototypes are barycenters ("centers of gravity") of their clusters.

Example Application: Clustering locations

- Problem: How do we distinguish socially relevant clusters (candidates for groups) from guasi groups?
 - Compute clusterings over period of time: Good candidates: clusters that appear over and over again, clusters that appear periodically
 - Establish threshold for distance in clusters: Human "social distance": A few meters (if groups are very small); few tens of meters (if groups are medium sized)
 - Include velocities: If divergent → no group

[5]

Fuzzy C-Means Clustering

- K-Means was a crisp algorithm. Now: fuzzy variant
- ullet Reformulate K-Means objective function with membership matrix r_{nk} : Membership of pattern x_n in class C_k

$$J_{SQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

optimization criterion

$$\mathrm{d}J_{SQE}/\mathrm{d}\mu_k = 0$$

together with non-overlaping constraint

$$\forall n(\exists k(r_{nk} = 1) \land ((k' \neq k) \rightarrow (r_{nk'} = 0)))$$

leads to well known K-Means

$$\mu_k = \sum_{n=1}^{N} r_{nk} x_n / \sum_{n=1}^{N} r_{nk} = (1/|\mathcal{C}_k|) \sum_{n|x_n \in \mathcal{C}_k} x_n$$

■ [®] Fuzzy C-Means Clustering

Now modify objective function to:

$$J_{GSQE} = \sum_{n=1}^{N} \sum_{k=1}^{K} (r_{nk})^m ||x_n - \mu_k||^2$$

Exponent m models degree of fuzzyness:

m → 1 : K-Means (crisp case);

 $m \rightarrow \infty$: $r_{nk} \rightarrow 1/K$ (where K is the number of clusters)

• Optimize the obj. fct. under the conditions:

$$\forall x_n : \sum_{k=1}^K \alpha_k(x_n) = \sum_{k=1}^K r_{nk} = 1$$

$$\forall \, \mathcal{C}_k \quad : \qquad \sum_{n=1}^N \alpha_k(x_n) = \sum_{n=1}^N r_{nk} > 0$$

Fuzzy C-Means Clustering

Result:

$$r_{nk} = \left(\sum_{k'=1}^{K} \left(\frac{||x_n - \mu_k||}{||x_n - \mu_{k'}||}\right)^{\frac{2}{m-1}}\right)^{-1} \quad (\varnothing)$$

$$\mu_k = \frac{\sum_{n=1}^{N} r_{nk}^m x_n}{\sum_{n=1}^{N} r_{nk}} \tag{000}$$

• the result assumes that no patterns and prototypes coincide

$$\forall n, k: ||x_n - \mu_k|| \neq 0$$

if they do coincide, set $r_{nk} = 1$ for $x_n = \mu_k$ and $r_{nk} = 0$ for $x_n \neq \mu_k$

• Result:

$$r_{nk} = \left(\sum_{k'=1}^{K} \left(\frac{||x_n - \mu_k||}{||x_n - \mu_{k'}||}\right)^{\frac{2}{m-1}}\right)^{-1} \quad (\varnothing)$$

$$\mu_k = \frac{\sum_{n=1}^N r_{nk}^m x_n}{\sum_{n=1}^N r_{nk}} \tag{\varnothing } 0$$

the result assumes that no patterns and prototypes coincide

$$\forall n, k: ||x_n - \mu_k|| \neq 0$$

if they do coincide, set $\,r_{nk}$ = 1 for x_n = $\mu_k\,$ and $\,r_{nk}$ = 0 for $x_n\neq\mu_k\,$

Fuzzy C-Means Clustering

• Result:

$$r_{nk} = \left(\sum_{k'=1}^{K} \left(\frac{||x_n - \mu_k||}{||x_n - \mu_{k'}||}\right)^{\frac{2}{m-1}}\right)^{-1} \quad (\varnothing)$$

$$\mu_k = \frac{\sum_{n=1}^{N} r_{nk}^m x_n}{\sum_{n=1}^{N} r_{nk}} \tag{\varnothing}$$

the result assumes that no patterns and prototypes coincide

$$\forall n, k: \quad ||x_n - \mu_k|| \neq 0$$

if they do coincide, set $\, r_{nk} = 1 \, \, \text{for} \, \, x_n = \mu_k \, \, \, \text{and} \, \, \, r_{nk} = 0 \, \, \text{for} \, \, x_n \neq \mu_k \, \,$

Fuzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit $m \rightarrow 1$ the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Fuzzy C-Means Clustering

• Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit $m \rightarrow 1$ the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit $m \rightarrow 1$ the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Fuzzy C-Means Clustering

Limit m → ∞ gives:

$$r_{nk} \stackrel{m \to \infty}{\longrightarrow} \frac{1}{\sum_{k'=1}^{K} 1} = \frac{1}{K}$$

• Limit m → 1 we get the nearest neighbor rule (K-Means) because:

$$r_{nk} = 1/((\sum_{k' \neq k} (\frac{\|x_n - \mu_k\|}{\|x_n - \mu_{k'}\|})^{\frac{2}{m-1}}) + 1)$$

in the limit $m \rightarrow 1$ the first sum in the denominator becomes ∞ if

$$||x_n - \mu_k|| \neq \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

and it becomes 0 if

$$||x_n^{k} - \mu_k|| = \min_{1 \le k' \le K} ||x_n - \mu_{k'}||$$

Example: Gaussian Mixture Models (GMM)

· Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where } \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

[6]

• Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

Example: Gaussian Mixture Models (GMM)

· Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

[6]

Fuzzy C-Means is "OK" as a non-crisp clustering alg. but (as K-Means) favors spherical clusters → better approaches

Example: Gaussian Mixture Models (GMM)

· Linear combination of Gaussians

$$p(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \quad \text{where } \sum_{k=1}^K \pi_k = 1, \quad 0 \leqslant \pi_k \leqslant 1$$

parameters to be estimate

[6]

GMM-Basics

Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Example

GMM-Basics

Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1 | \mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x} | z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x} | z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Example

iviachine Learning

Example: $x \in \mathbb{R}^n$ and $p(x|\Theta)$ is one multivariate Gaussian)

$$p(\mathbf{x}|\Theta) = \mathcal{N}(\mathbf{x}|\underline{\mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \underline{\mu})^{\mathrm{T}} \underline{\Sigma}^{-1}(\mathbf{x} - \underline{\mu})\right\}$$

log likelihood: (use base e)

$$\ln p(\mathbf{X}|\mathbf{\Theta}) = \ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

Maximum log likelihood:

$$\begin{aligned} \Theta_{ML} &= argmax_{\Theta} \, \log p(X|\Theta) \Rightarrow \, \nabla_{\Theta} \left(\, \sum_{i} \log p(x_{i}|\Theta) \, \right) \stackrel{!}{=} 0 \\ \mu_{\text{ML}} &: \, \frac{\partial}{\partial \mu} \ln p(\mathbf{X} | \, \mu, \mathbf{\Sigma}) = 0 \\ \Sigma_{\text{ML}} &: \, \frac{\partial}{\partial \mathbf{\Sigma}} \ln p(\mathbf{X} | \, \mu, \mathbf{\Sigma}) = 0 \end{aligned} \qquad \Sigma_{\text{ML}} = \frac{1}{N} \sum_{i}^{N} \mathbf{x}_{n} \\ \Sigma_{\text{ML}} &= \frac{1}{N} \sum_{i}^{N} (\mathbf{x}_{n} - \mu_{\text{ML}}) (\mathbf{x}_{n} - \mu_{\text{ML}})^{\mathrm{T}} \end{aligned}$$

MM-Basics

Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Example

Machine Learning

Example: $x \in \mathbb{R}^n$ and $p(x|\Theta)$ is one multivariate Gaussian)

$$p(\mathbf{x}|\Theta) = \mathcal{N}(\mathbf{x}|\underline{\mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \underline{\mu})^{\mathrm{T}} \underline{\Sigma}^{-1} (\mathbf{x} - \underline{\mu})\right\}$$

log likelihood: (use base e)

$$\ln p(\mathbf{X}|\Theta) = \ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

Maximum log likelihood:

$$\Theta_{ML} = argmax_{\Theta} \log p(X|\Theta) \Rightarrow \nabla_{\Theta} \left(\sum_{i} \log p(x_{i}|\Theta) \right) \stackrel{!}{=} 0$$

$$\mu_{ML} : \frac{\partial}{\partial \mu} \ln p(\mathbf{X}|\mu, \mathbf{\Sigma}) = 0$$

$$\Sigma_{ML} : \frac{\partial}{\partial \Sigma} \ln p(\mathbf{X}|\mu, \mathbf{\Sigma}) = 0$$

$$\Sigma_{ML} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{n} - \mu_{ML}) (\mathbf{x}_{n} - \mu_{ML})^{T}$$