Script generated by TTT

Title: groh: profilel (20.05.2014)

Date: Tue May 20 11:59:43 CEST 2014
Duration: 94:28 min

Pages: 59

CIEN
Newman Girvan Method: Centrality-based Splitting + Modularity

H& =T
BE A @ = SNA_GraphClustering.pptx - PowerPoint ? 3 - O
START EINFUGEM ~ ENTWURF UBERGANGE ~ ANIMATIONEN BILDSCHIRMPRASENTATION UBERPRUFEN ANSICHT Anmelden
oy ¥ [E] Layout - r‘!’)] i Suchen
D 2= 2 Zuricksetzen <> U 3 Ersetzen -
Einfiigen Neue F K U § AV Formen Anordnen Schnellformat-
. Folie~ G Abschnitt~ . - vorlagen [t Markieren =
Zwischenabl... & Folien Schriftart Absatz Zeichnung Bearbeiten
: - 12141110019 8 7 B 5 4 3 2 1 0 1 2 3 4 5 B 7 8 9 110 111112

Newman Girvan Method: Centrality-based Splitting + Modularity

= Last example of this part: bringing it all together (see [3]):

Divisive hierarchical clustering (splitting) + Modularity:

® Observations > critigue on agglomerative methods:
cluster peripheral nodes correctly [3] = Newman Girvan method:

fail to

1. Calculate edge betweenness for all edges

goto 1.

2. Remove edge with highest edge betweenness

—> dendrogram

Dl | & ll © @Il

O %

39 e

Q= Z(r';, - a?) =Tre— H e’ ”

1

9 B T

JDE| [so% 0 RN RO RS o

Newman Girvan Method: Centrality-based Splitting + Modularity

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative methods: fail to

cluster peripheral nodes correctly [3]
Divisive hierarchical clustering (splitting) + Modularity:

Newman Girvan method:

1. Calculate edge betweenness for all edges
2. Remove edge with highest edge betweenness

3. goto1.

—> dendrogram

® Use Modularity as intra cluster coherence (f) cluster validity

measure (g=0) to optimally cut dendrogram:

Q= Z(F” —n?) =Tre — H82 “

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative methods: fail to
cluster peripheral nodes correctly [3] 2 Newman Girvan method:
Divisive hierarchical clustering (splitting) + Modularity:

1. Calculate edge betweenness for all edges
2. Remove edge with highest edge betweenness

3. goto 1.

—> dendrogram

measure (g=0) to optimally cut dendrogram:

Q= Z(F“ — nf) =Tre— He2 “

® Use Modularity as intra cluster coherence (f) cluster validity

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

o 2 o o o

[l o O000000000000000 2ALAAAAALALALAL

Ll < O0o0000000000000 ALALAAAALALALAL

[3] [3]

O %

CIEN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric
matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between

® k clusters = k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] :
fraction of edges between

communities communities

: 3] : @l
® Tre =), ¢ fraction of & ® Tre =}, i fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

rnd rnd

® Random network (keep g, fixed): €ij = @ij —>€r,-?d = 61’,-2 ® Random network (keep g fixed): €ij = @ilj —>€rf?d = 611-2
® Compare (—>difference) ®f Compare (—>difference))

realwithmnd > Q = Z(m —aj) ="Tre— || e*|| real withrnd > @ = Z(c-,-,: —aj) ="Tre— | ||

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric

matrix e: e; = |E(C_i,C)|/ |E]|:
fraction of edges between

® k clusters = k x k symmetric
matrix e: e = |E(C_i,C_)/ IE|:
fraction of edges between

communities communities
: 3] : @l

® Tre =), ¢ fraction of ® Tre =}, i fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =
® Compare (—>difference) .) ®f Compare (—>difference) .,

realwithrnd 2> Q= Z(“—'i T1e—He H realwithrnd 2> (@ = Ztn—'l Tle—He H

| & @,
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric
matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between

® k clusters = k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] :
fraction of edges between

communities communities
. 3] . &
® Tre=3_,¢i : fraction of ® Tre =}, €ii : fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
° ernd 2 ° md _ ernd 2
Random network (keep a; fixed): fu = alaj - Random network (keep g, fixed): €ij — Qilly —>¢€; — 4;
® Compare (—>difference) ®f Compare (—>difference) k
realwithrnd > Q= Zc“—'l Tle—He H realwithmd 2> Q@ = ch—'i Tle—He H

@, RN
Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric
matrix e: e; = |[E(C_i,C_))|/|E|:
fraction of edges between
communities

® k clusters = k x k symmetric
matrix e: e; = |[E(C_i,C_))|/|E|:
fraction of edges between
communities

, 3] : 3]
® Tre=3_,¢i : fraction of ® Tre=3_, i fraction of

edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
md d md) d__
® Random network (keep g, fixed): €ij = @ij —>€r,r: = 61’,-2 ® Random network (keep g, fixed): €ij = @i —>€r,? = 611-2
b & .
® Compare (—>difference) , , ®f Compare (—>difference)))
realwithrnd > Q= Z(Cn —a}) ="Tre— | & realwithrnd > @ = Z(C-ii —a}) =Tre—| e ||
i i
LN : . " . &

Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity:
£ |G| - (|G| — 1)]
® In [1]: different notion (not keeping a; fixed): Z (\E((‘,)| — mﬁ)
i=1 [VR
K
Data Mining:
® In [4]: Newman's version for weighted graphs: . A Metric Clustering
idea: use multiple edges to model weights &/;\\C _ (i)2 ﬂ) B
N 1 a 00D ;')
.

O &
Finding Clusters in Profiles

@
Finding Clusters in Profiles

® Node profiles may contain:
Personal data:
name, age, sex, role-description, skill-description etc.,
contextual personal data
location, velocity, current emotional state etc.

° Edge profiles may contain:
Averaged data:
general type of relation, average strength of relation, etc..
Time-dependent or contextual data:
record of relation instantiations (with time & space
information), momentary state of relation (weight, state of
instantiation, etc.) etc.

I : .
Finding Clusters in Profiles

Examples for profile elements that can be embedded in metric spaces:

® Location & Velocity: Metric space: (R, || . ||)
® Text describing Interests: Metric space: (RIe¢l || . ||) where Voc
denotes the Vocabulary of the text.
I 2
like 2
I & fio 2 Often: Instead of
nes ! term-frequency
I like to dance samba, gamba | 2 (tf) alone: use
bake pizza, watch tv and pizza | 1 term-frequency *
plant trees in the garden. | —> wateh | 1 inverse document
p ” tv 1 frequency (idf);
also like to bake cakes. a];d) % idf = log (#of docs
HN where t occurs /
in 1 #of docs)
the 1
garden 1
also 1
1

cakes

r
AN

& : i
Finding Clusters in Profiles

Examples for profile elements that can be embedded in metric spaces:
® Location & Velocity: Metric space: (R3, || . ||)

® Text describing Interests: Metric space: (RVe<l || . ||) where Voc

denotes the Vocabulary of the text.
I
like
% to
dance
samba
bake

Often: Instead of
term-frequency
(tf) alone: use
term-frequency *
inverse document
frequency (idf);

“l like to dance samba,
bake pizza, watch tv and pizza
plant trees in the garden. | '::> watch

tv

also like to bake cakes. and idf = log (#of doks
Eizgz where t occurs /
in #of docs)
the
garden
also

R N T S R R Sl = =S R SRy e

AN

cakes

-

® How do we compute clusters in metric spaces?

¢ Group models: How do we compute socially meaningful clusters in
metric spaces (and thus avoid quasi-groups)?

® First some notations / basics:

®In graph clustering we had: A graph clustering C={C_1,C 2, ., N
C_K} is a partion of V into non-empty subsets C_k

® Now: clustering € X -1 mapping of a metric value space
X to a set of cluster indices I 1,

® Clusterings can be:
® exclusive or non-exclusive
¢ crisp or fuzzy
® hierarchical or non-hierarchical

@
Vietric variant of Single / Complete link clustering

LN
Metric variant of Single / Complete link clustering

® Metric variant of Single / Complete link clustering: Hierarchical, crisp,
non-overlapping

® Completely analogous to graph clustering case: Start with singletons
and on each level of the dendrogram merge two clusters with minimal
distance (cost)

® Single link:
d(C,,Cr,) = min Ty — T
(' 2) {I?]_.”."__)ll'nlecklfl\‘[']lgGckQ} || " I?2||
® Complete link:
d(Cr,,Cry) = max ||, — @y

{7%1 na|rn, Gck]_ ATng ECkQ }

H &
Vietric variant of Single / Complete link clustering

® Metric variant of Single / Complete link clustering: Hierarchical, crisp,
non-overlapping

¢ Completely analogous to graph clustering case: Start with singletons
and on each level of the dendrogram merge two clusters with minimal
distance (cost)

® Single link:

[y — s |

d(Cry, Chy) = min

{n1,n2len; €Cpy Arng €Cry }

® Complete link:

d(Cr,,Cry) = max ||, — Tns|

{n1,m2|Tn4 GCA-lAi‘n-}_ECkQ}

@, _
K-Means Clustering

® Metric variant of Single / Complete link clustering: Hierarchical, crisp,
non-overlapping

¢ Completely analogous to graph clustering case: Start with singletons
and on each level of the dendrogram merge two clusters with minimal

distance (cost)
® Single link:
d(Cr,,Cry) = min

{n1,n2|en; €Cpy Arng €Cry }
® Complete link:

d(Cr,,Cry) = max ||, — @y

{rn1,n2|rny Gck]_ ATng ECkQ }

|y — @ng|| ®

®General idea (also valid in graph clustering): Optimize objective function
that formalizes clustering paradigm.

® K-Means: Optimize intra cluster coherence:

® Describe cluster C_k by prototype y_k; prototype need not be an
actual pattern (If so, algorithm works with slight modifications as well)

® Determine cluster for each pattern x_n by nearest neighbour rule:

C(xn) = ka ¢ ||2n — pg, || = min ||z, — g
z

| & ,
K-Means Clustering

H & _
K-Means Clustering

® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
Jsqe=Y_ > llan— .u§||2

k=1 {11|In EC,‘,,-}
1

dJsqr L E_ _~
TR0 > il PN
k {n|.rﬂECk}

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters.

CIEN ,
K-Means Clustering

® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
JTsqe=>_ > llen— ;tfé;-ll2

k=1 {'n|-l'n Gck}
1

dJsqr L k_
k {n|.m€Ck}

® > cluster prototypes are barycenters (,centers of gravity*) of their
clusters.

H e _
K-Means Clustering

® K-Means: Optimize intra cluster coherence:

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

K
Jsqe=>_ > llwn— il

k=1 {11|In EC,‘,,-}

dJsop ! k_ 1
df:iE =0 |:> H= | Z Tp

Cy;
| [;l% {nl.l'ﬂ Eck}

® > cluster prototypes are barycenters (,centers of gravity“) of their
clusters.

[3]

N ,
K-Means Clustering

H & _
K-Means Clustering

[3]

CIEN ,
K-Means Clustering

@, _
K-Means Clustering

® Interesting aspect: How do we determine correct number k of clusters?
(Same problem with graph clustering: where to cut dendrogram?)

® Answer: Compute for every k clusteripgs; chose the best clustering with
a cluster quality measure

® Cluster quality measures for metric case: (countless variants exist in
literature; for an overview: e.g. [2]) (Objective functions modeling
clustering paradigm):

® Dunn-Index

® Entropy based indices

® Dunn Index:

D=, (o, (i))
= 1min min
ki€[1LK] \kz€[1.K] \ MaXz, g1, K] do (Ck3)

where dy(Cp,,Cy,) is thel% distance function between two clusters defined by

d1(Cr,; .Ciy) = min Tpy — T
(1 2) R{(n1.n2)ll‘nleckle‘\1‘ngEciu_g} ” L nz”
(that is the single link distance from SAHN).
The “diameter” dz of the clusters is defined by
da(C;) = max |0, — Tns |

{(n1.,n2)|zn, ECiATny €Ci }

N ,
K-Means Clustering

H & _
K-Means Clustering

® Dunn Index:

. (. (d1(Cry Cy)))
D= min (min_
k1€[LK] \k2€[L.K] \ MaXp,e1, K] da(Cry)
where dy(Cy,,Cy,) is t.hi distance function between two clusters defined by

d1(Cry ,Ciy) = min

T — I
{(n1:12) 20y €City AZng E%kg} ” nl% n2||

(that is the single link distance from SAHN).
The “diameter” da of the clusters is defined by

da(C;) = max

Tp, — T
{(m‘nz)lrnlecmznzea}” " nall

CIEN ,
K-Means Clustering

® Dunn Index:

: (. (dy (Cy, Cry)))
D= min_ min
ki€[LK] \k2€[1L.K] \ MaXp,e1,K] da(Cry)
where di(Cp,,Cy,) is the distance function between two clusters defined by

d1(Cry .Cy) = min

N -
{(nl-nZ)lznlecklA%ng Eclu_?} ” ny n2||

(that is the single link distance from SAHN).
The “diameter” dz of the clusters is defined by

d>(C;) = max

= Ty, — T
{(n!.nﬁ)ll‘nlecal\lngeci}” " nall

&

@, _
K-Means Clustering

® Dunn Index: .
D= min (min (d1 (Cry . Cry)))
kr€[1K] \kze[1.K] \ maxp, g1, 1] d2(Cry)

where dy(Cy,,Cy,) is the distance function between two clusters defined by

d1(Cry,Ciy) =

= min [|n, — Znsl|
{(nIsHZ)lrnleckl-"\%ng Eckg}

(that is the single link distance from SAHN).

The “diameter” do of the clusters is defined by
da(C;) = max

Tp, — T
{(m‘nz)lrnlecmznzea}” " nall

® Dunn Index: .
D= min (min (d1(Cry. Cry)))
kr€[1L.K] \ kze[1.K] \ maXp,e(1, k] d2(Crsy)

where di(Cp,,Cy,) is the distance function between two clusters defined by

d1(Cr,.Cr) = min Tny — T
(1 2) {(n1.n2)|1'n1€(1'k1!\1'n2Eckg}” ny nz”

(that is the single link distance from SAHN).
The “diameter” da of the clugters is defined by

d>(C;) = max

Ty, — &
{(n!.nﬁ)ll‘nlecal\lngeci}” " n2“

(RN
DBSCAN

RN
DBSCAN

® K-Means is ,OK" as cluster alg%rithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative > DBSCAN [4]
(de facto state of the art):

® |dea: Two parameters: minPt, €

® Rough idea: iterate:
visit previously unseen pattern x:
if in e-neighborhood {x‘} of x: [{x'}|=2 minPt then
start new cluster: include x and {x'} and those of their
e-neighborhoods {x“} that are dense enough (|{x“}|=
minPt), etc.
else: x is noise

O &
DBSCAN

® K-Means is .OK" as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative = DBSCAN [4]
(de facto state of the art):

® |dea: Two parameters: minPt, €

® Rough idea: iterate:
visit previously unseen pattern x:
if in e-neighborhood {x'} of x: |{x'}|=2 minPt then
start new cluster: include x and {x‘} and those of their
e-neighborhoods {x“} that are dense enough (|{x"}|=2
minPt), etc.
else: x is noise

O &
DBSCAN

® K-Means is ,OK* as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative > DBSCAN [4]
(de facto state of the art):
® |dea: Two parameters: minPt, €

B
® Rough idea: iterate: y [5]
visit previously unseen pattern x:
if in e-neighborhood {x‘} of x: [{x'}|=2 minPt then
start new cluster: include x and {x'} and those of their
e-neighborhoods {x“} that are dense enough (|{x“}|=
minPt), etc.
else: X is noise

® K-Means is .OK" as cluster algorithm, but has certain disadvantages:
® favors spherical clusters
® need to know K

® o notion of noise

® Alternative > DBSCAN [4]
(de facto state of the art):
® |dea: Two parameters: minPt, €

B
® Rough idea: iterate:) . [5]
visit previously unseen pattern x:
if in e-neighborhood {x'} of x: |{x'}|=2 minPt then
start new cluster: include x and {x‘} and those of their
e-neighborhoods {x“} that are dense enough (|{x"}|=2
minPt), etc.
else: x is noise

@, | &
DBSCAN K-Means Clustering

® K-Means is ,OK" as cluster algorithm, but has certain disadvantages: L . .
Example Application: Clustering locations

® favors spherical clusters

o
need to know K
® Problem: How do we distinguish socially relevant clusters (candidates

® ho notion of noise for groups) from quasi groups?
° Compute clusterings over period of time: Good capdidates: clusters

[] .
Alt tive > DBSCAN [4
eratve 4] that appear over and over again, clusters that appear periodically

(de facto state of the art):

® Establish threshold for distance in clusters: Human “social distance”:
A few meters (if groups are very small); few tens of meters (if groups

are medium sized)

® |dea: Two parameters: minPt, €

® Rough idea: iterate:
visit previously unseen pattern x:

if in e-neighborhood {x‘} of x: [{x'}|=2 minPt then ® o
start new cluster: include x and {x} and those of their Include velocities: If divergent = no group

e-neighborhoods {x“} that are dense enough (|{x“}|=
minPt), etc.
else: x is noise

He , @ _
K-Means Clustering Fuzzy C-Means Clustering
® X . . .
K-Means: Optimize intra cluster coherence: ® K-Means was a crisp algorithm. Now: fuzzy variant

® Reformulate K-Means objective function with membership matrix
. Membership of pattern x,, in class C,

N K
K 2
P JS. = T'n '”(rn - ”\'ll
2 QE E E k e
J‘\QE = E § : ks ||‘r?3 - ,U]\-” n=1 k=1

® Find prototypes by optimizing objective function modeling intra
cluster coherence as mean square error

k=1 {“'-l‘n EC;;}
® — . . .
) 1 optimization criterion
dJsqe ! k_ _—
dpe 0 :> a |Cr| Z n d.]_gQE/d,uk =0
{n|.rﬂEC,\,}
¢ together with non-overlaping constraint
® > cluster prototypes are barycenters (,centers of gravity“) of their Vn(3k(rpe = 1) A (K # k) = (1 = 0)))

clusters. _
leads to well known K-Means ‘

.‘\'r .'\‘r
,H'k = Zn:l ‘rnk‘rfl/z n=1 ?‘nk%: (1/|CA|) Zﬂl.lfneck T

@ ,
Fuzzy C-Means Clustering

@
Fuzzy C-Means Clustering

® Now modify objective function to:
N

K
Josqe =Y 3 ()™l — pil

n=1 k=1

® Exponent m models degree of fuzzyness:
m = 1: K-Means (crisp case);

m = ©:r,~> 1/K (where K is the number of clusters)

® Optimize the obj. fct. under the conditions:

® Result:

e = (el

e ”ln_.U,LH
N

= Zn\l kT (©@@)
Zn_l nk

® the result assumes that no patterns and prototypes coincide

Ynk: ||z, —pi||#0

K K
Yorn Z ap(zn) = Z P = 1 if they do coincide, set r, =1 for x, =y and r, = 0 for x,, # p
k=1 k=1 s
N N
VG o Y ai(za) =) rak >0
n=1 n=1
o &) &, .
Fuzzy C-Means Clustering Fuzzy C-Means Clustering
° & °
Result: Result:
K
i _ [|xn — JLqr\|| 2 -1 . _ || — el | 2 \~!
Tk = (Z N[0 — gl ||) (@) Tk = (Z(HI, — I,H) 1) (@)
=1 v K =1 v Hy
N m N m
TP Zn\l?nk Tn (@@) T—— Zn\link Tn (@@)
Zn—l “nk Zn_l “nk

® the result assumes that no patterns and prototypes coincide
Vo k: ||z, —pp|| #0

if they do coincide, set r, =1 for x, = J, and r, = 0 for x,, # P

® the result assumes that no patterns and prototypes coincide
Vok: ||le, —prl| #0
i

if they do coincide, set r, =1 for x, =y and r, = 0 for x,, # p

@ ,
Fuzzy C-Means Clustering

@
Fuzzy C-Means Clustering

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

2

Pk = 1/ (Do (22l)71 41)

T —Hpr
in the limit m—=>1 the first sum in the denominator becomes « if

||2n — p|] # ming<preg || — ||

and it becomes 0 if

2 — pui|| = miny<pr <k [Jen — ||

CIEN ,
Fuzzy C-Means Clustering

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

2

Pk = 1/((Dpr (el m=1) 4-1)

Tn—Hpt N
in the limit m—=>1 the first sum in the denominator becomes « if

|n — pr|| # ming<cpreg ||2n — |

and it becomes 0 if

|27 — pr|| = miny<pr<ic |20 — pae||

@, _
Fuzzy C-Means Clustering

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

2

Pk = 1/ (Do (22l)71 41)

T —Hpr
in the limit m—=>1 the first sum in the denominator becomes « if

||2n — p|] # ming<preg || — ||

and it becomes 0 if

2 — pui|| = miny<pr <k [Jen — ||

® Limit m > = gives:

® Limitm > 1 we get the nearest neighbor rule (K-Means) because:

Fak = /(S g (ol)71 +1)

Tn—Hpt
in the limit m—=>1 the first sum in the denominator becomes « if

|n — pr|| # ming<cpreg ||2n — |

and it becomes 0 if

B .
|27 — pr|| = miny<pr<i |20 — pae|

[N RN

Gaussian Mixture Models Gaussian Mixture Models
® Fuzzy C-Means is “OK” as a non-crisp clustering alg. but (as K- ¢ Fuzzy C-Means is “OK” as a non-crisp clustering alg. but (as K-
Means) favors spherical clusters 2 better approaches Means) favors spherical clusters - better approaches
® Example: Gaussian Mixture Models (GMM) ® Example: Gaussian Mixture Models (GMM)
. Linez?(r combination of Gausl%ians . Line?(r combination of Gaus§ians
plz) = Z ’rrN(a:\pk_,):]&) where Z =1 0<7 <1 p(x) = Z
k=1)‘0‘%’ k=1 k=1
= parameters to be estimated
;
GU 0.5 1 [6] 0(J 0.5 1 [6]
H &) . (ERN .
Gaussian Mixture Models LMM-Basics
® Responsibilities o B

® Fuzz is “OK” i i N _ pla=1)p(x|zx =1)

y C-Means is “OK” as a non-crisp clustering alg. but (as K- Wze) =plar =1|x) =
Means) favors spherical clusters 2 better approaches Zw(n —)p(x|z; = 1)

j=1
® Example: Gaussian Mixture Models (GMM) _. N (| ey, i)
K
+ Linear combination of Gaussians Z N (x| g, 25)
K K — !
p(z) = Z ’rrkN(a:\pk,)Zg&) where Z =1, 0<m, <1 !
k=1 T — = k=1

&

Gﬂ 0.5 1 [6] -

@ . N .
uMM-Basics wiVIM-Basics

® Responsibilities ® Responsibilities

P(Zk = 1)p(x|z = 1) P(Zk = 1)p(x|z, = 1)

Y(zk) = plax = 1|x) = Y(zk) = plze = 1|x) =
Zp = 1)p(x|z; = 1) Zp = 1)p(x|z; = 1)
m-a\i (| ey, 30 _ mv\! (x| ey, 3
K ! = K
> mN(x|py, =)) > N (xlpy, 2))
=1 j=1
® Example ® Example

0.5 0.5
0 0
0 0.5 | 0 0.5 1 0 0.5 1 0 0.5 | 0 0.5 1 0 0.5 1
& . . & . .
viachine Learning viachine Learning
Example: x € R"and p(x|®) is one multivariate Gaussian) Example: x € R™ and p(x|®) is one multivariate Gaussian)
®16) = N (x|, B) = oz =z exp g~ (x—) TE 7 (x— 1) (x16) = N (x|,) = o = exp y —(x—) 87 (x — 1)
pIO) = NO2) = Gamypra g P g~ W e m pxl0) = Mo B) = Grypr g P { ~ax—w "
[] : i . [: : .
|Og I|ke||h00d. (use base e) |0g I|kel|h00d. (use base)
ND N 1o : ND N 1o :
In p(XI6) = Inp(X|p,) = ——=In(27) - In|%|-3 D (%) "2 (x,—p) In p(XI®) = Inp(X|p.) = ——5 In(2m)-5 In[2|-3 D (xn—p) "B (- pe)
n=1 n=1
® Maximum log likelihood: ® Maximum log likelihood:
! I
Oy, = argmaxe logp(X|0) = Vo (X;logp(x|€)) =0 Oy, = argmaxe logp(X|0) = Vo (3;logp(x;10)) =0
2 N 1 o d N e
M : alnp(X\u,E)zO ‘ .UML=NZX” Han, - alnP(XW:E):O ‘ ”ML=NZX"

— — L&

N
5] 1 ol
DIV &lnp(x | #,E)=0 J S, = N Z(Xn — pn) (% —)" I EIHP(X“‘:E) =0 J T, = N Z(Xn — P) (X — papg)”

n=1 N n=1

