@@k

Conductance

Script generated by TTT ® v) . .
With conductance we can define two appropriate quality measures for

clusterings:

® First measure: g=0 and /(€)= Eglglkl @(G[C_I])

Title: groh: profilel (14.05.2014)
® |f the measure is small: At least one of the clusters (more precisely:
Date: Wed May 14 08:14:01 CEST 2014 the induced subgraph) contains at least one bottleneck = This cluster is
foo coarse »Use minimum conductance cut to cut this cluster in
Duration: 92:54 min halves
® From theorem before: Only clusterings where the clusters induce
Pages: 101 subgraphs that are stars or have size at most three have /=1 (f'is called
intra cluster conductance)
&, @,
Conductance Conductance
® Clustering paradigm reformulated: Clusters should be well connected ¢ Clustering paradigm reformulated: Clusters should be well connected
(many edges need to be removed to make it unconnected); few inter (many edges need to be removed to make it unconnected); few inter
cluster edges (ideally none) cluster edges (ideally none)
® Conductance: Measure for bottlenecks (Bottleneck: Cut that ® Conductance: Measure for bottlenecks (Bottleneck: Cut that
separates V into roughly same size halves and “cuts across” relatively separates V into roughly same size halves and “cuts across” relatively
few edges) few edges)
ks
® Let C={C_1,V\C_1} be a cut. Conductance ¢ of C is defined as ® Let C={C_1,V\C_1} be a cut. Conductance ¢ of C is defined as
1 ifC_1e{d,V} the smaller 1 ifC_1e{d,V} the smaller
2(C), the (C), the
JE— more JE— more
o(C)=10 if C_1 ¢ {J,V}, w(E(C))=0 Lbottlenecky” o(C)=10 if C_1 ¢ {&,V}, w(iE(C))=0 Jbottlenecky”
isC isC
w(E(C)) thewi w(E(C)) therwi
. otherwise : otherwise
min(ZeeE(CJ, V)w(e)’ZeEE(V C1.¥) w(e)) min(ZeEE(CJ, V)w(e)’ZeeE(V CLE= ¥y w(e))

& H &
conductance Conductance

® With conductance we can define two appropriate quality measures for ® With conductance we can define two appropriate quality measures for
clusterings: clusterings:

® First measure: g=0 and f(%) = {251 »(G[C_i]) ® First measure: g=0 and f(clg = Eglgkl @(G[C_I])

® |f the measure is small: At least one of the clusters (more precisely: ® |f the measure is small: At least one of the clusters (more precisely:
the induced subgraph) contains at least one bottleneck - This cluster is the induced subgraph) contains at least one bottleneck = This cluster is
too coarse »Use minimum conductance cut to cut this cluster in foo coarse »Use minimum conductance cut to cut this cluster in
“halves” “halves”

® From theorem before: Only clusterings where the clusters induce ® From theorem before: Only clusterings where the clusters induce
subgraphs that are stars or have size at most three have /=1 (fis called subgraphs that are stars or have size at most three have /=1 (f'is called
intra cluster conductance) intra cluster conductance)

o & @,

Conductance Conductance

® With conductance we can define two appropriate quality measures for ® Second measure: /=0 and

clusterings: ’

C) = min o(GIC | c 1 i C={}
® o= =min I = . .
First measure: g=0 and J(r) min P(G[C_][g g(©) 1-max o(C_i, ¥\ C_i) otherwise
1=<i<k

® |f the measure is small: At least one of the clusters (more precisely: §

the induced subgraph) contains at least one bottleneck - This cluster is ® |f the measure is small: At least one of the clusters (more precisely:
too coarse - Use minimum conductance cut to cut this cluster in the induced subgraph) has many connections to outside = The
“halves” clustering is too fine -Merge clusters

® From theorem before: Only clusterings where the clusters induce ® From theorem before: Only clusterings that have inter cluster edge
subgraphs that are stars or have size at most three have /=1 (fis called weight zero have g=1 (g is called infer cluster conductance)

intra cluster conductance)

@,
conductance

[FREN
Ferformance

® With conductance we can define two appropriate quality measures for
clusterings:

® First measure: g=0 and /(€)= {gg} p(G[C_ID)

® |f the measure is small: At least one of the clusters (more precisely:
the induced subgraph) contains at least one bottleneck - This cluster is

too coarse =Use minimum conductance cut to cut this cluster in
“halves”

® From theorem before: Only clusterings where the clusters induce
subgraphs that are stars or have size at most three have /=1 (fis called
intra cluster conductance)

&,
conductance

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® Itis in the same cluster AND connected by an edge = fcounts
the number of edges within clusters

® If it is not in the same cluster AND not connected by an edge ¢

counts the number of non-existent edges between clusters
K

k
/(©)= | ECD)

g(€)= > [(u,m g El*[ueC_i,veC_ji# j]

uyvelr

Iverson-notation: [L]=1 if L is true

&
Ferformance

® Second measure: /=0 and

1 if C={I}
g(Cl; ~1-max @(C_i, V\C_D)

otherwise
1<i<k

® |f the measure is small: At least one of the clusters (more precisely:
the induced subgraph) has many connections to outside = The
clustering is too fine - Merge clusters

® From theorem before: Only clusterings that have inter cluster edge
weight zero have g=1 (g is called inter cluster conductance)

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® Itis in the same cluster AND connected by an edge = fcounts
the number of edges within clusters |,

® If it is not in the same cluster AND not connected by an edge ¢
counts the number of non-existent edges between clusters

&
k
£(©)=3 | EC_D

g(€)= > [(u,m g El*[ueC_i,veC_ji# j]

uyvelr

Iverson-notation: [L]=1 if L is true

@,
Performance

[FREN
Performance

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® Itis in the same cluster AND connected by an edge = fcounts
the number of edges within clusters

® If it is not in the same cluster AND not connected by an edge >g
counts the number of non-existent edges between clusters

k
J(©) = | EC_D)

g(€)= > [uv)¢ E[%] *[ueC_i,veC_j,i# j]

uyv el

Iverson-notation: [L]=1 if L is true

&
Performance

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® |tis in the same cluster A Other Notation for this: X

the number of edges within

d(C_i,C j)
® If it is not in the same clus or, more precisely, 5o
counts the number of non-e
6(i,J) = &y
k
; (Kronecker-symbol)
f(C)=>| E(C_il,
ro)
g(C)= D[, v) g E]*[ueC_iveC_j,i#]
uyvelr

Iverson-notation: [L]=1 if L is true

&
Performance

® Main idea: Clustering paradigm - Count “correctly classified pairs of
nodes”. A pair of nodes is correctly classified if:

® i is in the same cluster A Other Notation for this:

the number of edges within

d(C_i,.Cj)
counts the number of non-e
8(i, j) = O 5

(Kronecker-symbol)

k
S(©) =Y EC_i

4 A\
g(€)= > [(w,v)g El*[ueC_i,veC_ji# j]

uyv el

Iverson-notation: [L]=1 if L is true

¢ Calculating the maximum of f+g is NP-hard (In fact calculating the
maximum of f+g would in essence be calculating the optimal clustering)
—use |V| (|V]-1) as normalization for quality measure

® The performance index is then:

£(€)+£(©)
MfC=~——=>"~
Pet (=171 .
I

® Problems with Performance: when graph is sparse (example: planar
graphs: |E]| is linear in |V|). Tendency: Performance delivers many small
clusters

@,
Performance

[FREN
Performance

® Calculating the maximum of f+g is NP-hard (In fact calculating the
maximum of f+g would in essence be caIcu]{gIating the optimal clustering)
—use |V]| (|V]-1) as normalization for quality measure

® The performance index is then:

_f(©)+g(©)

f(C) =
Per () = 17 1)

® Problems with Performance: when graph is sparse (example: planar
graphs: |E]| is linear in |V]). Tendency: Performance delivers many small
clusters

&
Performance

O Q
= clustor 5
O—0C
k
O—¢

B cluster 4

(a) clustering with best performance

B dustar1 | B chewa | & el | & dusarz |
(b) intuitive clustering (c) another intuitive clustering

Fig. 8.4. A situation where the clustering with optimal performance is a refinement
(Figure 8.4(b)) of an intuitive clustering and is skew (Figure 8.4(c)) to another intuitive

clustering

&
Performance

®f using weighted edges - some modifications:

® use weights normalized to 1 - Max weight M = 1

£(€)= Y w(EC_i

g(C)= > M*[(u,v)g El*[ueC_i,veC_ji#]

uy el

@

®f using weighted edges - some modifications:

® use weights normalized to 1 - Max weight M = 1
Ik

£(€)= Y wE(C_i

g(C)= > M*[(u,v)¢g El*[ueC_i,veC_j,i#]

uyver

@

RN
Ferformance

[FREN
Ferformance

®f using weighted edges - some modifications:

® use weights normalized to 1 2 Max weight M = 1

£(€)= Y w(EC_i

2(C)= ZM; [(u,v)g E]*[ueC_i,veC_j,i# j]

uy el

&
Ferformance

® In that version g neglects the individual inter-cluster edges -
Introduce g,, N

g'(C)=g(C)+ M| EC)|-w(E(C))

£.(C)
® Overall index is then:
perf, (c) - /(©)+8(©)+92,(C)
MQVI(V|-1)

® other possibility: minimize incorrectly classified edges (dual
problem)

&
Ferformance

® In that version g neglects the individual inter-cluster edges >
Introduce g,,

g'(C)=gC)+M|EC)|[-w(E(C))

v [
£,(©)
® Overall index is then:
perf, (C) - f(C)+g(C)+I g,(C)
M(VI(V|-D

® other possibility: minimize incorrectly classified edges (dual
problem)

® In that version g neglects the individual inter-cluster edges -
Introduce g,,

s
2'(C)=g(C)+ M| E(C)| —w(E(C))
£.(C)
® Overall index is then:
perf, (¢) - /©+&(©)+92.(©)
M(VI(V]-1)

® other possibility: minimize incorrectly classified edges (dual
problem)

&, O &
Performance Ferformance
® In that version g neglects the individual inter-cluster edges > ® In that version g neglects the individual inter-cluster edges -
Introduce g,, Introduce g,,
i K
g'(C)=gC)+M|EC)|-w(E(C)) g'(C)=gC)+ M| EC)|-w(E(C))
\ v J L v J
g“' (C) gw (C) %
® Overall index is then: ® Overall index is then:
perfw (c) _ f(c)+g(c)+:g gu(c) perfw (C) _ f(C)+g(C)+9 gu(C)
MVI(V -1 MV{(V]-1)
® other possibility: minimize incorrectly classified edges (dual ® other possibility: minimize incorrectly classified edges (dual
problem) problem)
@,

&, .
Uther Indices

Other Indices

®f density measure 7T on graphs is available:

.
worst case: min{m
)

1 i al
average case: l_ Z (G [(i])

(G[C1]), ..., T(GlC])}

best case: max{m(G[C1]),..., (G[CE]) }

¢ (especially suitable in metric spaces)

®f density measure 7T on graphs is available:
B I
worst case: min{7(G[C1]),.... T(G[Cr])}
4
= > 7(C[C])
average case: — T(G|CY
¢ R

best case: max{m(G|[C1]). < m(G[Ck])}

° (especially suitable in metric spaces)

&
Graph Clustering Algorithms

[JEN
Graph Clustering Algorithms

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let L, be a feasible solution;

i €0; &

while ({}, | LEN(L;), ©(L)Ic(Ly)} # 0) {
Liv, € argmingeg iy ¢ (L) ;

i €& 1;

Space of all solutions L that can c(L) is the cost of solution L

be constructed from solution L;

o &
Graph Clustering Algorithms

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let L, be a feasible solution;
i €0;
while ({L

{

Space of all solutions L that can c(L) is the cost of solution L

be constructed from solution L;

CICN

Graph Clustering Algorithms

® What have we seen so far? Measures for cluster quality
® But how do we compute such clusters?

® First group of methods: Greedy approaches

let L, be a feasible solution;

i €0;

while ({L | LEN(L;), c(L)} # @) {
Liy, € a gmingey iy C (L) ;

i €

Space of all solutions L that can c(L) is the cost of solution L

be constructed from solution L;

let L, be a feasible solution;

i €0;

while ({L | LEN(L;), c(L)<€c)(L;)} # @) {
Lia éN(Li) cl) ;
i € i+l;

® For greedy maximization substitute argml%ax and >

® What function do we use as c(L) = cluster quality measures
modeling the clustering paradigm

® How do we construct solutions (clusterings) from other solutions:
Merging or splitting of clusters = a hierarchy of clusters results >
“Dendrogram”

RN
Graph Clustering Algorithms

[JEN
Graph Clustering Algorithms

let L, be a feasible solution;

i €0;

while ({L | LEN(L;), c(L)<€c)i(L;)} # @) {
Lig € @ wiy CHL)
i € i+1;

® For greedy maximization substitute argmax and >

® What function do we use as c(L) = cluster quality measures
modeling the clustering paradigm

® How do we construct solutions (clusterings) from other solutions:

Merging or splitting of clusters = a hierarchy of clusters results >
“Dendrogram”

o &
Graph Clustering Algorithms

let L, be a feasible solution;

i €0;

while ({L | LEN(L;), c(L)<€c)(L;)} # @) {
Lia éN(Li) cl) ;
i € i+l;

® For greedy maximization substitute argmax and >

® What function do we use as c(L) = cluster quality measures
modeling the clustering paradigm

K
® How do we construct solutions (clusterings) from other solutions:
Merging or splitting of clusters = a hierarchy of clusters results >
“Dendrogram”

| &
Graph Clustering Algorithms

® Advantage of Dendrograms: Can be “cut” at any desired number of

-
rl...

singletons 1-clustering

® Advantage of Dendrograms: Can be “cut’ at any desired number of

r
rl...

singletons 1-clustering

&
Graph Clustering Algorithms

RN

Graph Clustering Algorithms

® Advantage of Dendrograms: Can be “cut” at any desired number of
clusters.

singletons 5 1-clustering

o &
Graph Clustering Algorithms

¢ Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1-clustering is reached (“bottom up”)

® Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

&

e, .
Llnkage. P(V) := 2 =: power-set

O &

® Given: G=(V,E,w); initial clustering Cy;

® Given: Either Cglobal- A(G) 2 E¥ 0r Cpeq: P(V) X P(V) = R* (for
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

Graph Clustering Algorithms

® Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1iclustering is reached (“bottom up”)

° Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

e Linkage: P(V) := 2V =: power-set
® Given: (§=(V,E,w); initial clustering C;;

® Given: Either Cglobal- A(G) = B Or Cpeq: P(V) x P(V) 2 E* (for
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

¢ Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1-clustering is reached (“bottom up”)

¢ Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

e, .
Llnkage. P(V) := 2 =: power-set

® Given: G=(V,E,w); initial clustering C;;

® Given: Either Cglobal- A(G) 2 E¥ OF Cpeq: P(V) X P(V) = R* (for
ke merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

&
Graph Clustering Algorithms

[JEN
Graph Clustering Algorithms

® Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1-clustering is reached (“bottom up”)

® Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

o, .
Llnkage. P(V) := 2V =: power-set

® Given: G=(V,E,w); initial clustering C;;

® Given: Either cggpar A(G) 2 B* 0r Goeart P(V) X P(V) R¥ (for
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

o &
Linkage

¢ Linkage (Agglomeration): Iteratively coarsens a given clustering by
merging two clusters until 1-clustering is reached (“bottom up”)

® Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

® Linkage: P(V) := 2 =: power-set
® Given: G=(V,E,w); initial clustering Cy;
i
® Given: Either Cglobal- A(G) 2 E¥ OF Cpeq: P(V) X P(V) = R* (for
merging operations)

® i>i+1: Either merge those two clusters where resulting clustering yields

the minimum global cost

or merge those two clusters with the minimum local

merging cost

@,
Linkage

Variants / realizations of Linkage:

® Let d(u,v) denote the minimal path length between nodes u and v
then local cost function:

(max)
m:mi{d(u,vﬂ ueC,veC}

Complete Linkage single Linkage
¥

Variants / realizations of Linkage:

® Let d(u,v) denote the minimal path length between nodes u and v
then local cost function:

(max‘\‘
m:m;{d(u,v)\ ueC,veC}

Complete Linkage Single Linkage

(RN

Linkage

[JEN
Linkage

Variants / realizations of Linkage:

® Let d(u,v) denote the minimal path length between nodes u and v
then local cost function:

I/rd__r“\l
e | ueC veC)
local - -~ i J
'\‘I,I_i_,/' B

Complete Linkage single Linkage

Variants / realizations of Linkage:

® Let d(u,v) denote the minimal path length between nodes u and v
then local cost function:

&

(max)
@:{d(u,v)\ ueC,veC}
-/

-
(fun

Complete Linkage single Linkage

o & ®,
Graph Clustering Algorithms Linkage
® Linkage (Agglomeration): Iteratively coarsens a given clustering by ® Example) ! ' Ty
merging two clusters until 1-clustering is reached (“bottom up”) weight matrix: 9 % 0 1 |u

° Splitting (Division): Iteratively refines a given clustering by splitting
one cluster until slingleton clustering is reached (“top down”).

ky

o, .
Llnkage. P(V) := 2V =: power-set

® Given: G=(V,E,w); initial clustering C;;

® Given: Either Cglobal- A(G) = B Or Cpeq: P(V) x P(V) 2 E* (for
merging operations)
® i>i+1: Either merge those two clusters where resulting clustering yields
the minimum global cost
or merge those two clusters with the minimum local
merging cost

[]
en
7z

i 1 G X vy

Threshold graphs:

2 2 2 2
®
1@ @: 1 @3 1 /.3 1 3
0@ @ @ [E! 0@ ¥ 0 4
G, G, Gy G,
2 2 2 2
1 3 1 3 1 3 1 3
0 4 0 4 0 4 0 4

RN

&,
Linkage Linkage
p 1 V2 U3 U4 [% tp U1 T2 U3 1y
i 2 8 3 y 1 2 R 3
® Example PR ® Example PP
weight matrix: | » o . o | |. weightmatrix: | » o o o | |,
8 5 0 ~x 6 vg 5 5 0 ~x 6 vy
3 7T 1 6 o~ vy 37T 1 6 x vy
Threshold graphs: Threshold graphs:
2 2 2 2 2 2
o ®
1@ @: 1 ®: 1 3 1@ @: 1 @3 1 /.3 1 3
0@ @ iy @ 0 4 0@ @ @ @ 0@ @ 0 4
G, G, G, G, Gy G,
2 2 2 2 2 2
1 3 1 1 3 1 3 1 3 1 3
0 4 0 0 4 0 4 0 4 0 4
G Gs G, G G, G,
[HREN &,
Linkage Linkage
o v V2 T3 U4 g v V2 V3 vy
12 B3 g 1 2 8 3
® Example PR S ® Example PP
weight matrix: | » o . o | |. weightmatrix: | » o o o | |,
8 5 0 ~ 6 vy 8 5 0 >~ 6 v3
307 1 6 ~x /oy 3 07T 1 6 o [y
Threshold graphs: Threshold graphs:
2 2 2 2 2k 2
o ®
1@ @: 1 ®: 1 /.3 1 3 1@ @: 1 @3 1 /.3 1 3
0@ @ iy @ 0 4 0@ @ @ @ 0@ @ 0 4
G, Gy G, G, Gg G,
2 2 2 2 2 2
1 3 1 1 3 1 3 1 3 1 3
0 4 0 0 4 0 4 0 4 0 4
G Gs G, G G, G,

&, RN
Linkage Linkage
o v V2 T3 U4 g v V2 V3 vy
® Example PR B ® Example PR B
weightmatrix: [5 o . o | |. weightmatrix: | » o o o | |,
8 5 0 9~ l%ﬁ vy 5 5 0 >~ 6 v3
3 7T 1 6 o~ /oy 3 7T 1 6 = Juy
Threshold graphs: Threshold graphs:
2 2 2 2 2 2 2 2
o ®
1@ @: 1 ®: 1 /.3 1 3 1@ @: 1 @3 /.3 1 3
0@ @ ol @ 0@ @ 0 4 0@ @ @ @ 0@ @ 0 4
G, G, Gy G, G, G, Gy G,
2 2 2 2 2 2 2 2
1 3 1 3 1 3 1 3 1 3 1 3 3 1 3
0 4 0 4 0 4 0 4 0 4 0 4 4 0 4
G, G; G, G, G, G G, G,
o & @,
Linkage Linkage
Resulting dendrograms: Resulting dendrograms:
p v V2 vy U4 p v V2 U3 14
x | 2 8 3 o X 1 2 8 3 vo
. . l ~ 9 5 7 r . . l ~ 9 5 7 v
Single Link Complete Link weight matrix: 2 0 x 0 | f.l Single Link Complete Link weight matrix: 2.0 x 0 1 ..l
8 5 0 ~x 6 vg 8 5 0 ~ 6 vy
3 7T 1 6 = /Juy 37T 1 6 /) oy
K

o4

Uy U Uy Uy Wy

0

¢
p o /'3 ;'3 Qs
® o P 0y ¢4 @ %y
Go Gy G,

£

[& ¢
§4 3 ? 3 w 3 3
4 4 4 4
G G, G, G,

od

Uy Up Uy Uy T4

|y

3
¢ & P 0,y
G., Gy
¢ ¢
543 ?3

4 4
Gy Gs

W» -
J;h-‘«

G;

&
Linkage

[JEN
Linkage

Resulting dendrograms:

Resulting dendrograms:

g S 4 1
x i) 8 3 to k x 1 3 vo
. . | x 9 5 7 v . . | ~ 9 5 7 r
Single Link Complete Link weight matrix: 2 0 x 0 | f.l Single Link Complete Link weight matrix: 2 00 x 0 1 ..l
5 5 0 ~x 6 vy 8 5 0 ~x 6 vy
37T 1 6 x/Ju T 1 6 ox [y
¢ ¢ / /
I / I o3 /'3 3
El El ® 4 c? '4 El El ® %1 & o, *y & 0y
) G, G, e G-
¢ ¢ [2 &
U Uy Uy U3 U Uy Uy Uy 3 U
U4 Ul U2 UO U3 1 2 0 *3 4 wg ?3 WS Qs U4 U] U2 UO U3 1 2 0 *3 4 ws ?3 Wé’ QS‘
4 4 4 4 4 4 4 4
Gs Gs Gy G; Gy G; G, G;
[HREN &,
Linkage Linkage
Resulting dendrograms: ‘ Resulting dendrograms:
p v V2 vy U4 p v V2 U3 14
x 4 2 8 3\un x 4 2 8 3\
. . I~ 9 5 7 |@ . . I < 9 5 7 |o
Single Link Complete Link weight matrix: 2 0 x 0 | f.l Single Link Complete Link weight matrix: 2.0 x 0 1 ..l
5 5 0 ~ 6 vy 8 5 0 ~x 6 vy
37T 1 6)y 3 T 1 6 [y
ks
¢ / ¢
p /3 3 po /&
El El ® oy L El El ® *y (9 d 4
G. Gg G, -

Uy U Uy Uy Wy

Gs
149
[& ¢
§4 3 ? 3 w 3 3
4 4 4 4
G G; G, G,

Uy Up Uy Uy T4

&
Linkage

[JEN
Linkage

Resulting dendrograms:

Single Link Complete Link weight matrix: :I,
5 0 ~ 6 |y

i 1 [X Yy

HE
all nlll e

Resulting dendrograms:

ro

-_—
[

oS

_——] e

weight matrix:

Single Link Complete Link

vy

[]
7z

B
¥ K%

Ug U Uh Ty g Y1 %2 % s 523 ?ﬂ 3 : 3 QS Vg U1 U2 Up U3 Y1 2 o s 0 523 ?& 3 We 3 Qs
4 4 4 4 4 4 4 4
Gs Gs Gy G; Gy G; G, G;
O & @,
Linkage Splitting
® Instead of the weight matrix vo UL va vy vy
X | 2 8 3 vo
weightmati: | 5 o . o | . ® Given: G=(V,E,w); initial clustering C;
8 5 0 x 6 vy

T 1 6 =~ vy

we may as well use an “equivalent” distance matrix d(ij)=d; ,eqg. [0 6 s 2 7
6 0 1 3

g1 0 10 9

[% 2 5 10 4

7T 3 9 4 0

and would have to modify the threshold graph based algorithm(replace < with
> and = with < and « with 0) (or set weight = 1/distance). Then this algorithm
implements precisely the aforementioned cost function

fﬁd(z{ W|ueC

\ /

vel;}

Complete Linkage Single Linkage

® Given: Either Cgope A(G) 2 R *
Ciocal- P(V) X P(V) =2 R * (for splitting operations) or
Cqiobal- A(G) = K * and cut function S: P(V) = P(V) or
Ciocal- P(V) X P(V) 2 E* and cut function S: P(V) 2 P(V)

®i>i+1: Split that cluster where the resulting clustering yields the minimum
global cost or
split the cluster with the minimum local
splitting cost or
split that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or
split the cluster (according to cut S) with the minimum local

splitting cost

(RN RN

Splitting Splitting
® Given: G=(V,E,w); initial clustering C;; ® Given: G=(V,E,w); initial clustering Cy;
® Given: Either cggpa A(G) > R * ® Given: Either Gggpa: A(G) > R *
Ciocal- P(V) X P(\[ﬁ\) — R * (for splitting operations) or Ciocal- P(V) X P(\/h) - R * (for splitting operations) or
Cglobal- A(G) = E.* and cut function S: P(V) = P(V) or Cqiobal- A(G) = K * and cut function S: P(V) = P(V) or
Ciocal- P(V) X P(V) 2 B * and cut function S: P(V) 2 P(V) Ciocal- P(V) X P(V) 2 E* and cut function S: P(V) 2 P(V)
By
® i1 Split that cluster where the resulting clustering yields the minimum ®i>i+1: Split that cluster where the resulting clustering yields the minimum
global cost or global cost or
split the cluster with the minimum local split the cluster with the minimum local
splitting cost or splitting cost or
split that cluster (according to cut S) where the resulting clustering split that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or yields the minimum global cost or
split the cluster (according to cut S) with the minimum local split the cluster (according to cut S) with the minimum local
splitting cost splitting cost
H & @,
Splitting Splitting
® Given: G=(V,E,w); initial clustering C;; ® Given: G=(V,E,w); initial clustering Cy;
® Given: Either cygpa A(G) > R * ® Given: Either Cgope A(G) 2 R *
Ciocal- P(V) X P(V) = R * (for splitting operations) or Ciocal- P(V) X P(V) =2 R * (for splitting operations) or
Cglobal- A(G) = E.* and cut function S: P(V) = P(V) or Cqiobal- A(G) = E* and cut function S: P(V) > E(V) or
Ciocal- P(V) X P(V) 2> B * and cut function S: P(V) 2 P(V) Ciocal- P(V) X P(V) 2 E* and cut function S: P(V) 2 P(V)
§ ke
® i1 Split that cluster where the resulting clustering yields the minimum ®i>i+1: Split that cluster where the resulting clustering yields the minimum
global cost or global cost or
split the cluster with the minimum local split the cluster with the minimum local
splitting cost or splitting cost or
split that cluster (according to cut S) where the resulting clustering split that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or yields the minimum global cost or
split the cluster (according to cut S) with the minimum local split the cluster (according to cut S) with the minimum local

splitting cost splitting cost

Q _ me o _
Splitting C,: one of the clusters 0219 “half” of the split of C, Splitting C,: one of the clusters 05? half’ of the split of C,
A%, AR,

® Given: G=(V,E,w); initial gfustering C ® Given: G=(V,E,w); initial ¢fustering C

® Given: Eitheg Cgopar A(B) > . %

strictly global

® Given: Eitheg Cqiopar A(@) > 2%
ocal: P(V) x P(V) = E.* (for splittin
Cglobal- A(G) = E.* and cut function S: P(V) = P(V) or

ocal- POV) X P(V) 2> R * and culg function S: Py&) > P(V)

erations) or
Cqiobal- A(G) =2 K * and cut function S: P(V) = P(V) or
ocal- P(V) x P(V) > E* and cut function S: P})&) =2 P(V)

erations) or

strictly global

strictly local

&

semi global

‘ one “half” of the cut (split) of some C,, one “half’ of the cut (split) of some C,,
=i+

DIt that cluster where the defining the cut =i DIt that cluster where the defining the cut

global cost or global cost or
semi local

5plit the cluster with the minimum local split the cluster with the minimum local

splitting cost or splitting cost or

cplit that cluster (according to cut S) where the resulting clustering cplit that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or yields the minimum global cost or

semi local

split the cluster (according to cut S) with the minimum local split the cluster (according to cut S) with the minimum local
splitting cost splitting cost
[SREN . , . o,
Splitting C,: one of the clusters 0219 half” of the split of C, Splitting
AR,

® Cut function avoids having to test all possible splits
® Given: G=(V,E,w); initial gfustering C

° : L
® Given: Eithe Caiobal: AF) Sp+ Variants of Cut functions:

strictly global

erations) or
Cglobal- A(G) = E.* and cut function S: P(V) = P(V) or S (V) :2353“‘}22‘,“’(]—‘7(‘/': VA V")
ocal- P(V) x P(V) 2 E* and cut function g: Py&) =2 P(V)

Sratio (V) :=argmin W(E(V', V\ V)Y [1]

; ! AR (VAR
one “half’ of the cut (split) of some C,, ozvicy [V'] - (] 1’ | |)’
dlit that cluster where the defining the cut e min BV VYY)
global cost or ezv/cv min(|V/], (V] = [V'])
2Plit the cluster with the minimum local Sconductance (V) 1= argmax/3(V') "\ = aromin (", ¥\ "'
splitting cost or 0#V'C V%III; qo()
cplit that cluster (according to cut S) where the resulting clustering
. yields the minimurn global CO.St or inter cluster conductance (slide 14):
split the cluster (according to cut S) with the minimum local

splitting cost

semi local

g = samy =) Fe={.{3}
g(C7{V’V\V})7d(V)7{1—(0(V', V\P') otherwise

&
Splitting

[JEN
Splitting

® Cut function avoids having to test all possible splits

® Variants of Cut functions:

s
S(V) :=a;§én‘}'!1évw(E(V’,V\ V')

. w(EWV,V\V)f 1
Ve V- (V1= V7)) .
L w(BEWV,VAVY))

Statsnced (V) =S80 im(7T, (VT — VD)

conductance E= L V’ = 1 1
Sconductance (V) s (V" MV%IH(D(Vp v\

Sratio (V) =

inter cluster conductance (slide 14):

1 fC={.{}}

g(c={V',V\V'}):5(V'):{1_¢(V' A

otherwise

o &
Splitting

® Cut function avoids having to test all possible splits

® Variants of Cut functions:
L

S (V) :=argmin vw(E(V', VAV))

PEVIC
. w(E(V',V\V") [1]
ey V- (V= V7))
. w(E(V,V\V")
alance) a= =
Seatanced (V) :=ggmminl oo (V0 (VI = VD)

conductarice = L V' = 1 d
Sconductance (V) e (V") arVchII/mqD(V" AV

Sratiu (V) =

inter cluster conductance (slide 14):

- o FC={.{}}
g(C—{V,V\V})_ﬂ(V)_{l_@(V'! VAV') otherwise
@Q u 4 i
Splitting C,: one of the clusters 0;? haif” of the split of C
AR,

® Cut function avoids having to test all possible splits

® Variants of Cut functions:

S(V) :=a;§r€§ng(E(v’, VAV
A . w(EWV,V\V)) 1
Sratlo (V) *aﬁn‘aggv |V,1 . (“/l o ‘V,i) []
R w(EBE(V,V\V))
Statenced (V) =801y min(v71. (VT — V')

conductance E= L V’ = 1 1
Sconductance (V) s (V" MV%IH(D(Vp v\

intehf cluster conductance (slide 14):

1 FC={.{}}

1-@(F", V\V") otherwise

g(C:{V'sV\V'}):S(V'):{

® Given: G=(V,E,w); initial ¢fustering C

® Given: Eithep Cgopar A(®) > E. &

strictly global

Cqiobal- A(G) =2 K * and cut function S: P(V) = P(V) or
ocal- P(V) x P(V) > E* and cut function S: P})&) =2 P(V)

one “half’ of the cut (split) of some C,,
defining the cut

plit that cluster where the

global cost or

split the cluster with the minimum local

splitting cost or

cplit that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or

split the cluster (according to cut S) with the minimum local

splitting cost

semi local

&
Splitting C,: one of the clusters

one “half’ of the split of C,
PN /

Oe&
Shifting

® Given: G=(V,E,w); initial gfustering C
® Given: Eitheg Cyiopar A(E) > R ¥

ocal: P(V) x P(V) = E.* (for splittin
Cglobal- A(G) = E.* and cut function S: P(V) = P(V) or

erations) or

strictly global

® Instead of merge / split now the following actions are allowed:
® Move node from one cluster to another

® Move node from one cluster to form a own singleton cluster

, ®)
strictly local ot P(V) X P(V) > B * and cut function S: Pﬁ) > P(V) Exchange cluster assignments of two nodes By
semi global one “half” of the cut (split) of some C,,

1= i+ ¥plit that cluster where the defining the cut
global cost or
split the cluster with the minimum local
splitting cost or
cplit that cluster (according to cut S) where the resulting clustering
yields the minimum global cost or
split the cluster (according to cut S) with the minimum local
splitting cost
ma @
Shifting Shifting
® Potential function may use compound operations (make _
intermediate operations “free of charge”) = If many global extrema let L, be a feasible solution;
in potential function exist - May be easier to reach global i €0; e
extremum (Free operations may be analogous to simulated while ({L | LE@ @D{
annealing’s “temperature shaking”) choose Lj,; from N(L;)according to ©;
i € i+1;
® Shifting is more often used as refinement of an existing quite }
good clustering than to compute a new one.
s
¢ Choosing schema © can be either based on potential function ¢, on
random selection or based on genetic algorithms with fitness function
etc.

® Potential function @: A(G) x A(G) = R based: Chose a new clustering
Ci;q so that ¢(C;, C;,4) > 0

(RN

Shifting

Oe&
Shifting

® Potential function may use compound operations (make
intermediate operations “free of charge”) = If many global extrema
in potential function exist 2 May be easier to reach global
extremum (Free operations may be analogous to simulated
annealing’s “temperature shaking”)

¢ Shifting is more often used as refinement of an existing quite
good clustering than to compute a new one.

CIEN
Newman Girvan Method: Centrality-based Splitting + Modularity

let L, be a feasible solution;

i €0; B

while ({T. | Le@ @{
choose L;,; from N(L;)according to ©;
i € i+1;

¢ Choosing schema © can be either based on potential function ¢, on
random selection or based on genetic algorithms with fitness function

etc.

® Potential function @: A(G) x A(G) = R based: Chose a new clustering
Ci;q so that ¢(C;, C;,4) > 0

O %

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative metho%js: fail to
cluster peripheral nodes correctly [3] > Newman Girvan method:
Divisive hierarchical clustering (splitting) + Modularity:

1. Calculate edge betweenness for all edges
2. Remove edge with highest edge betweenness |, dendrogram

3. Recalculate edge betweennes, goto 1.

® Use Modularity as intra cluster coherence (f) cluster validity
measure (g=0) to optimally cut dendrogram:

Q= Z(F” —n?) =Tre — H82 “

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative methods: fail to
cluster peripheral nodes correctly [3] 2 Newman Girvan method:
Divisive hierarchical clustering (splitting) + Modularity:

K
1. Calculate edge betweenness for all edges

2. Remove edge with highest edge betweenness

3. Recalculate edge betweennes, goto 1.

® Use Modularity as intra cluster coherence (f) cluster validity
measure (g=0) to optimally cut dendrogram:

Q= Z(F“ — nf) =Tre— He2 “

Newman Girvan Method: Centrality-based Splitting + Modularity

—> dendrogram

[FREN

Newman Girvan Method: Centrality-based Splitting + Modularity

Newman Girvan Method: Centrality-based Splitting + Modularity

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative methods: fail to
cluster peripheral nodes correctly [3] 2 Newman Girvan method:
Divisive hierarchical clustering (splitting) + Modularity:

ks

1. Calculate edge betweenness for all edges

2. Remove edge with highest edge betweenness |, dendrogram

3. goto1.

® Use Modularity as intra cluster coherence (f) cluster validity
measure (g=0) to optimally cut dendrogram:

Q= (ci—aj)=Tre— | e*||

1

Newman Girvan Method: Centrality-based Splitting + Modularity

ooooo

[l o O000000000000000 2ALAAAAALALALAL

(3]

Newman Girvan Method: Centrality-based Splitting + Modularity

J;l < OOo0000000000000 ALALAAAALALALANAL

[3]

Last example of this part: bringing it all together (see [3]):

® Observations > critique on agglomerative methods: fail to
cluster peripheral nodes correctly [3] 2 Newman Girvan method:
Divisive hierarchical clustering (splitting) + Modularity:

1. Calculate edge betweenness for all edges
2. Remove edge with highest edge betweenness |, dendrogram

3. goto 1.

® Use Modularity as intra cluster coherence (f) cluster validity
measure (g=0) to optimally cut dendrogram:

Q= Z(F"n’ —aj)=Tre— H e’

2

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

N ® k clusters 2 k x k symmetric
matrix e: e; = |E(C_i,C)|/ |E]|:
fraction of edges between

® k clusters = k x k symmetric %
matrix e: e = |E(C_i,C_)/ IE|:
fraction of edges between

communities communities
: 3] : @l

® Tre =), ¢ fraction of ® Tre =}, i fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =
® Compare (—>difference) .) ®f Compare (—>difference) .,

realwithrnd 2> Q= Z(“—'i T1e—He H realwithrnd 2> (@ = Ztn—'l Tle—He H

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric
matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between

® k clusters = k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] :
fraction of edges between

communities communities
, f3] - 3]

® Tre =), ¢ fraction of ® Tre =), ¢ fraction of
edges within communities edges within communities K
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =
® Compare (—>difference) ®f Compare (—>difference)

realwithrnd > Q= Zc“—'l Tle—He H realwithmd 2> Q@ = ch—'i Tle—He H

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric

matrix e: e; = |E(C_i,C)|/ |E]|:
fraction of edges between

® k clusters = k x k symmetric
matrix e: e = |E(C_i,C_)/ IE|:
fraction of edges between

communities communities Ry ;
, (3l - 3
® Tre =), ¢ fraction of ® Tre =}, i fraction of
edges within communities N edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
K
nd _ : d_ fmd _ : d__

® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =
® Compare (—>difference) .) ®f Compare (—>difference) .,

realwithrnd 2> Q= Z €ii — 'z T1e—He H realwithrnd 2> (@ = Z €ij — '1 Tle—He H

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:
® k clusters = k x k symmetric $; — ® k clusters 2 k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] : jj" matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between fraction of edges between
communities communities
, f3] - 3]
® Tre =), ¢ fraction of ® Tre =), ¢ fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
° ernd 2 ° md _ ernd 2
Random network (keep a; fixed): e U = alaj - Random network (keep g, fixed): €ij — Qilly —>¢€; — 4;
® Compare (—>difference) ®f Compare (—>difference)
realwithrnd > Q= Zc“—'l Tle—He H realwithmd 2> Q@ = ch—'i Tle—He H

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric

matrix e: e; = |E(C_i,C)|/ |E]|:
fraction of edges between

® k clusters = k x k symmetric
matrix e: e = |E(C_i,C_)/ IE|:
fraction of edges between

communities communities
: 3] : @l

® Tre =), ¢ fraction of ® Tre =}, i fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @idj —> erlr: = 61’,-2 ® Random network (keep g, fixed): €ij = @ilj —> er,? =

s
® Compare (—>difference) .) ®f Compare (—>difference) .,
realwithrnd 2> Q= Z(“—'i T1e—He H realwithrnd 2> (@ = Ztn—'l Tle—He H

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:
® k clusters = k x k symmetric $; — ® k clusters 2 k x k symmetric
malfrix e: e; = |E(C_i,C_))|/|E] : jj" matrix e: e; = |E(C_i,C_)| ! |E|:
fraction of edges between fraction of edges between
communities communities
, 131 - 3]
® Tre =), ¢ fraction of ® Tre =), ¢ fraction of
edges within communities edges within communities
®a; = Zj €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i
nd _ : d_ fmd _ : d__
® Random network (keep g, fixed): €ij = @i@; —>€r,r: = 61’,-2 ® Random network (keep g, fixed): €ij = @i —>€r,? =a?
i
® Compare (—>difference) ®f Compare (—>difference)
realwithrnd > Q= Zc“—'l Tle—He H realwithmd 2> Q@ = ch—'i Tle—He H

Newman Girvan Method: Centrality-based Splitting + Modularity Newman Girvan Method: Centrality-based Splitting + Modularity

Modularity: Modularity:

® k clusters 2 k x k symmetric
matrix e: e; = |[E(C_i,C_))|/|E|:
fraction of edges between
communities

® k clusters = k x k symmetric
matrix e: e; = |[E(C_i,C_))|/|E|:
fraction of edges between
communities

[3] [3]

® Tre =) ¢ii: fraction of

* Tre= Zi,“iz‘- . fraction of
edges within communities

edges within communities

®a; = Z)‘ €;5 fraction of edges that connect to cluster C_i ®a; = Zj €44 fraction of edges that connect to cluster C_i

md nd md nd
® Random network (keep g, fixed): €ij = @ij —>€r,-i = 61’,-2 ® Random network (keep g fixed): €ij = @ilj —>€r,-,- = 611-2

s
® Compare (—>difference) , , ®r Compare (—>difference) .))
real with rnd = Q:Z(C“ —aj)="Tre — He‘ H real withrnd > @ = Z(Cﬁ —aj)=Tre— He‘“
i i

DY

