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® Asubset UCV of a Graph (V,E) is a clique if G([U]) is a complete
graph; G(JU]) is the sub-graph induced by U.

*A clique is maximal if there is no clique U’ withU c U’ in G

*A clique is a maximum clique if there is no clique with more
vertices in G
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N-Cliques, N-Clubs, N-Clans

®f Graph is dense - cliques exist:

® (Turan 1941 (see [2])): If |E| > |V|?2 (k-2)/(k-1) then G
contains a clique of size k. K

® Usually many different maximal cliques exist in a graph; they
can even overlap without being identical

¢ Cliques are very “strict” 2> Alternative candidates for groups:
Distance based structures:

® U is N-clique iff Yu,v e U : distGéu,v) <N (non-ocal def.)
® U is N-club iff diam(G([U])) £ N

® U is N-clan iff U is maximal N-clique and diam(G([U])) =N

® Criticisms:

® Since dist is evaluated w.r.t. to G and not G([U]) (thus N-cliques
are not local structures), N-cliques need not even be connected and
can have a diameter diam(G([U]) > N
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® Cliques are very “strict” - Alternative candidates for groups:
Distance based structures:

® U is N-clique iff Vu,v € U : distg(u,v) €N (non-ocal def..)

® Uis N-club iff diam(G([U])) <N
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® U is N-clan iff U is maximal N-clique and diam(G([U])) =N

[
® Criticisms:

® Since dist is evaluated w.r.t. to G and not G([U]) (thus N-cliques
are not local structures), N-cliques need not even be connected and
can have a diameter diam(G(JU]) > N
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® Uis N-clique iff Yu,v eV : distg(u,v) <N
® Uis N-club iff diam(G([U])) <N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) N

®> N-clan: restrict dist-condition to paths of nodes within the structure:
easy to find (just drop all n-cliques with diameter greater than N)

® > N-club: regard all induced graphs with diameter less than N:
harder to find

® |t can be shown / seen from the def.:
-- all N-clans are N-cliques;
-- all N-clubs are contained within N-cliques;
-- all N-clans are n-clubs
-- there are N-clubs that are not N-clans
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® Uis N-clique iff Yu,v eV : distg(uv) <N
® Uis N-club iff diam(G([U])) =N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

® > N-clan: restrict dist-condition to paths of nodes within the structure:
easy to find (just drop all n-cliques with diameter greater than N)

® > N-club: regard all induced graphs with diameter less than N:
harder to find

® |t can be shown / seen from the def.:
-- all N-clans are N-cliques;
-- all N-clubs are contained within N-cliques;
-- all N-clans are n-clubs
-- there are N-clubs that are not N-clans
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® Uis N-clique iff Yu,v eV : distg(u,v) <N
® Uis N-club iff diam(G([U])) <N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) N

1

2 7
2 3
3
1 4
4 5
5 6 6
cliques: {1, 2, 3}, {1, 3, 5}, )
{3,4,5, 6} 2-cliques: {1,2,3,4,5},{2, 3,4, 5,6}
2-clubs: {1, 2, 3, 4}{1, 2, 3, 5}, {2, 3, 4, 5, 6}
2-clan: {2, 3, 4, 5, 6}

[11]
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® Uis N-clique iff Yu,v eV : distg(uv) <N
® Uis N-club iff diam(G([U])) =N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

2 7

5 6

cliques: {1, 2, 3}, {1, 3, 5}, ~
{3, 4,5, 6}
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2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}

2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

2-clan: {2, 3,4, 5, 6}

® Uis N-clique iff Yu,v eV : diste(u,v) N
® Uis N-club iff diam(G([U])) <N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) N

2 7 1
2 3
3
1 4
4 5
5 6 6
cliques: {1, 2, 3}, {1, 3, 5}, )
{3,4,5, 6} 2-cliques: {1,2,3,4,5},{2, 3,4, 5,6}
2-clubs: {1, 2, 3,4}, {1, 2, 3,5}, {2, 3,4, 5, 6}
2-clan: {2, 3, 4, 5, 6}
[
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® Uis N-clique iff Yu,v eV : distg(uv) <N
® Uis N-club iff diam(G([U])) =N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N
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2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}

2-clubs: {1, 2, 3,4}, {1,2,3,5},{2,3,4,5,6}

2-clan: {2, 3,4, 5, 6}

® Uis N-clique iff Yu,v eV : distg(u,v) <N
® Uis N-club iff diam(G([U])) <N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) N
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cliques: {1, 2, 3}, {1, 3, 5}, )
{3,4,5, 6} 2-cliques: {1,2,3,4,5},{2, 3,4, 5,6}
2-clubs: {1, 2, 3,4}, {1, 2, 3,5}, {2, 3,4, 5, 6}
2-clan: {2, 3, 4, 5, 6}
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® Uis N-clique iff Yu,v eV : distg(uv) <N
® Uis N-club iff diam(G([U])) =N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

2 7 1
2 3
3
1 4
4 5
5 6 6
cliques: {1, 2, 3}, {1, 3, 5}, )
{3,4,5, 6} 2-cliques: {1, 2, 3, 4,5}, {2, 3,4, 5, 6}
2-clubs: {1, 2, 3,4}, {1, 2, 3,5}, {2, 3,4, 5,6}
2-clan: {2, 3,4, 5, 6}
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* Ulis N-club iff diam(G([UT)) <N
® Uis N-clan iff Uis maximal N-clique and diam(G([U]}) =N
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® Uis N-clique iff Yu,v eV : distg(uv) <N
® Uis N-club iff diam(G([U])) =N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

2 7 !
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3
1 4
4 5
By
5 6 6
cliques: {1, 2, 3}, {1, 3, 5},
{3,4,5, 6} maximal 2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}
2-clubs: {1,2,3,4},{1,2,3,5},{2,3,4,5,6}
2-clan: {2, 3,4, 5, 6}
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® Uis N-clique iff Yu,v eV : distg(u,v) <N
® Uis N-club iff diam(G([U])) <N
® Uis N-clan iff U is maximal N-clique and diam(G([U])) N
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2-clan: {2, 3, 4, 5, 6}
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® Uis N-clique iff Yu,veV: distg(u,v) <N ® In connection with cliques: Algorithms with time complexity O(|E| + V)
® Uis N-club iff diam(G([U])) =N for the problems:

® Uis N-clan iff U is maximal N-clique and diam(G([U])) <N

® > N-clan: restrict dist-condition to paths of nodes within the structure:

easy to find (just drop all n-cliques with diameter greater than N)

® > N-club: regard all induced graphs with diameter less than N:
harder to find

® |t can be shown / seen from the def.:
-- all N-clans are N-cliques;
-- all N-clubs are contained within N-cliques;
-- all N-clans are n-cliibs
-- there are N-clubs that are not N-clans

® Determineif U< Vis a clique (Test pairs of vertices of U if they are
in E. Although up to ("2’) such pairs may exist: If |E| edges have been
searched, search is over

® Determine if cligue U is maximal (Test all vertices in V-U if they are
connected to all vertices in U; again: If |E| edges have been
searched, search is over)

® Compute lexicographically smallest maximal clique containing U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have been searched, search is over)

&
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® In connection with cliques: Algorithms with time complexity O(|E| + |V|) ® In connection with cliques: Algorithms with time complexity O(|E| + V)
for the problems: [N for the problems:

® Determineif Uc Vis a clique (Test pairs of vertices of U if they are
in E. Although UB to ("2’) such pairs may exist: If |E| edges have been
searched, search is over

® DetermineifUc Vis a clique (Test pairs of vertices of U if they are
in E. Although up to (“2"5 such pairs may exist: If |E| edges have been
searched, search is over

® Determine if cligue U is maximal (Test all vertices in V-U if they are
connected to all vertices in U; again: If |E| edges have been
searched, search is over)

® Determine if clique U is maximal (Test all vertices in V-U if they are
connected to all vertices in U; again: If |E| edges have been
searched, search is over)

® Compute lexicographically smallest maximal clique containing U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have been searched, search is over)

¢ Compute lexicographically smallest maximal clique containing U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have been searched, search is over)
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® In connection with cligues: Algorithms with time complexity O(|E| + |V])
for the problems:

® In connection with cliques: Algorithms with time complexity O(|E| + |V|)
for the problems:

® DetermineifUc Vis a clique (Test pairs of vertices of U if they are
in E. Although uB to ('V5 such pairs may exist: If |E| edges have been
searched, search is over

i
® Determine if clique U is maximal (Test all vertices in V-U if they are

connected to all vertices in U; again: If |E| edges have been N
searched, search is over)

¢ Compute lexicographically smallest maximal clique containing U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have been searched, search is over)

® Determineif U< Vis a clique (Test pairs of vertices of U if they are
in E. Although up to ("2’) such pairs may exist: If |E| edges have been
searched, search is over

® Determine if cligue U is maximal (Test all vertices in V-U if they are
connected to all vertices in U; again: If |E| edges have been
searched, search is over)

® Compute lexicographically smallest maximal clique containing U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have beer’ksearched, search is over)
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® In connection with cliques: Algorithms with time complexity O(|E| + |V|)
for the problems:

® In connection with cligues: Algorithms with time complexity O(|E| + |V])
for the problems:

® DetermineifUc Vis a clique (Test pairs of vertices of U if they are
in E. Although up to (“2"5 such pairs may exist: If |E| edges have been
searched, search is over

® Determine if clique U is maximal (Test all vertices in V-U if they are
connected to all vertices in U; again: If |E| edges have been
searched, search is over)

¢ Compute lexicographically smallest maximal clique containingl%U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have been searched, search is over)

i

® Determineif U c Vis a clique (Test pairs of vertices of U if they are
in E. Although up to ("2’) such pairs may exist: If |E| edges have been
searched, search is over

® Determine if cligue U is maximal (Test all vertices in V-U if they are
connected to all vertices in U; agaln If |E| edges have been
searched, search is over)

® Compute lexicographically smallest maximal clique containing%U:
Assume vertices are sorted; Test all vertices in V-U in ascending
order: if they are connected to all vertices in U, add to U; again: If |E|
edges have been searched, search is over)



Cliques: Algorithms

Cliques: Algorithms

® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(|V|?> 2Vl) worst case
R
® |sthere a substantially better algorithm? Probably not: The decision
problem CLIQUE(G k): “Has G a clique of size at least k” is NP
complete. (Solving the decision problem in time T(|V|) would yield an
alg for determining the maximal k in O(T(|V|) log (|V]) ) via binary
search.

Proof: Reduce CLIQUE on SATISFIABILITY;

® > Unless P=NP there is no P algorithm X to compute clique of size k

if G is guaranteed to contain such a clique. &

Proof: Having X we could decide CLIQUE in P time;

Cliques: Algorithms

® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(n? 2")

® |s there a slightly better algorithm? Yes: We can improve the
exponential function’s base from 2 to approx. 1.38 (see [2])

® Canwe expect to find the answer to the problem “how many cliques
with exactly k nodes exist’? = Exhaustive search: O(|V|¥)

® For triangles we can be better than O(|V|?): An alg With O(|V|%376)
exists ©

® For other k: An analogous technique allows for alg with O(|V[’®)) with

B(k)<k
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® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(n? 2")

® |sthere a slightly better algorithm? Yes: We can improve the
exponential function’s base from 2 to approx. 1.38 (see [2]) N

® Canwe expect to find the answer to the problem “how many cliques
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® For triangles we can be better than ©(|V|?): An alg with O(|V|2376)
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® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(n? 2")

® |s there a slightly better algorithm? Yes: We can improve the
exponential function’s base from 2 to approx. 1.38 (see [2])

® Canwe expect to find the answer to the problem “how many cliques
with exactly k nodes exist’? = Exhaustive search: O(|V|¥)

® For triangles we can be better than O(|V|?): An alg with O(|V[2378)
exists ©

® For other k: An analogous technique allows for alg with O(|V[’®)) with

B(k)<k
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® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(n? 2")

® |sthere a slightly better algorithm? Yes: We can improve the
exponential function’s base from 2 to approx. 1.38 (see [2])

® Canwe expect to find the answer to the problem “how many cliques
with exactly k nodes exist’? = Exhaustive search: O(|V|¥)

® For triangles we can be better than ©(|V|?): An alg with O(|V|2376)
exists © Iy 3

® For other k: An analogous technique allows for alg with O(|V|F®) with

B(k)<k
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® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(n? 2")

® |s there a slightly better algorithm? Yes: We can improve the
exponential function’s base from 2 to approx. 1.38 (see [2])

® Canwe expect to find the answer to the problem “how many cliques
with exactly k nodes exist’? = Exhaustive search: O(|V|¥)

® For triangles we can be better than O(|V|?): An alg with O(|V[2378)
exists ©

® For other k: An analogous technique allows for alg with O(|V[’®)) with

B(k)<k .

Cliques: Enumeration

¢ Binary tree, n levels, leaves only at level n ® Binary tree, n levels, leaves only at level n

® each level i « vertex Vi ik ® cach level i «— vertex Vi i
® nodes at level i: maximal cliquesin Glv_1v_ 2, v i}] ® nodes at level i: maximal cliquesin G[v_1,v_2,...v_ i}] &
® level i+1: determine children of node U at level i: two cases : ® level i+1: determine children of node U at level i: two cases :
(1) v_i+1 adjacent to all nodes in U (USN(v_i+1): (1) v_i+1 adjacent to all nodes in U (USN(v_i+1):
— U u{v_i+1}is maximal clique in G[v_1,v_2,...v_i, v_i+1}] v — U u {v_i+1}is maximal clique in G[v_1,v_2,...,v_i, v_i+1}] v
— U u{v_i+1}is only child of U U U i+) — U u {v_i+1}is only child of U U U v i+1}

(2) 3 vertex in U not adjacent to v_i+1 (UEN(v_i+1):
— U itself is a maximal clique in G[v_1,v_2, ... v i,v_i+1}]
— if (U= N{v_i+1}) U {v_i+1} is maximal it is also a
maximal clique in G[v_1,v_2,.._ v i,v_i+1}]
— (U= N{v_i+1}) u {v_i+1} is potentially child of many
possible nodes — define it als child of lexiographically

smallest clique (node) U‘ at level i
. § :J )
C}RC) U

(2) 3 vertex in U not adjacent to v_i+1 (UEN(v_i+1):
— U itself is a maximal clique in G[v_1,v_2....v_ i, v_i+1}]
— if (U—=N{v_i+1}) u {v_i+1} is maximal it is also a
maximal clique in G[v_1v 2 . v i v_i+1}]
— (U - N{v_i+1}) u {v_i+1} is potentially child of many
possible nodes — define it als child of lexiographically

smallest clique (node) U‘ at level i
. ﬁ (U )
&) §)

(U ~TRv_i+1}) U {v_i+1} (U —TRv_i+1}) U {v_i+1}
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¢ Binary tree, n levels, leaves only at level n
® cach level i « vertex V_i i
® nodes at level i: maximal cliquesin Glv_1v_ 2, v i}]

® |evel i+1: determine children of node U at level i two cases :

— U u{v_i+1}is maximal clique in G[v_1v 2 .. v i v i+1}]

(1) v_i+1 adjacent to all nodes in U (UEN(v_i+1): i
u
— U u{v_i+1}is only child of U

U u{v_i+1}
(2) 3 vertex in U not adjacent to v_i+1 (UEN(v_i+1):
— U itself is a maximal clique in Glv_1v_2 ... v_i,v_i+1}]
— if (U= N{v_i+1}) U {v_i+1} is maximal it is also a
maximal clique in G[v_1,v_2,.._ v i,v_i+1}]
— (U= N{v_i+1}) u {v_i+1} is potentially child of many
possible nodes — define it als child of lexiographically

smallest clique (node) U* at level i
U
e

IS
v O

(U ~TRv_i+1}) U {v_i+1}
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® Binary tree, n levels, leaves only at level n

® cach level i < vertex v_i

-

® nodes at level i: maximal cliquesin G[v_1,v_2,...v_ i}]

® level i+1: determine children of node U at level i two cases :

— U u{v_i+1}is maximal clique in G[v_1,v_2 ... v i,v_i+1}]

(1) v_i+1 adjacent to all nodes in U (USN(v_i+1): i
U
— U u {v_i+1}is only child of U

Uu{v_i+1}
(2) 3 vertex in U not adjacent to v_i+1 (UEN(v_i+1):
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— (U - N{v_i+1}) u {v_i+1} is potentially child of many
possible nodes — define it als child of lexiographically

smallest clique (node) U* at level i
U
&%
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® Naive algorithm for finding the maximum clique: Exhaustive Search:
Compute all subsets of V and check for clique = O(n? 2") o

® |sthere a slightly better algorithm? Yes: We can improve the
exponential function’s base from 2 to approx. 1.38 (see [2])

® Canwe expect to find the answer to the problem “how many cliques
with exactly k nodes exist’? = Exhaustive search: O(|V|¥)

® For triangles we can be better than ©(|V|?): An alg with O(|V|2376)
exists ©

® For other k: An analogous technique allows for alg with O(|V|F®) with

B(k)<k

® Binary tree, n levels, leaves only at level n

® cach level i < vertex v_i

-

® nodes at level i: maximal cliquesin G[v_1,v_2,...v_ i}]

® level i+1: determine children of node U at level i: two cases : &
(1) v_i+1 adjacent to all nodes in U (USN(v_i+1):
— U u{v_i+1}is maximal clique in G[v_1,v_2 ... v i,v_i+1}] v
— U u {v_i+1}is only child of U U Uy i+1)

(2) 3 vertex in U not adjacent to v_i+1 (UEN(v_i+1):
— U itself is a maximal clique in G[v_1,v_2....v_ i, v_i+1}]
— if (U—=N{v_i+1}) u {v_i+1} is maximal it is also a
maximal clique in G[v_1v 2 . v i v_i+1}]
— (U - N{v_i+1}) u {v_i+1} is potentially child of many
possible nodes — define it als child of lexiographically

smallest clique (node) U‘ at level i
. ﬁ (U )
&) §)

(U —TRv_i+1}) U {v_i+1}
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® _, tree constructed in principle
® Algorithm: traverse and construct tree depth first, output leaves

® neccesary primitives:
-- Parent(U,i): for node U at level i determine lexicographically
smallest clique in G[v_1,v_2,..., v_i-1}] : O(m+n)
-- LeftChild(U,i): either U or U u {v_i+1} : O(m+n)
-- RightChild(U,i):
if case (1): no right child,;
if case (2): if X:=(U — N{v_i+1}) u {v_i+1} is maximal (takes
O(m+n) time to determine) then X is right child if
U = Parent(X, i+1) (takes O(m+n))

® longest path between two leaves passes over 2n-1 nodes; for each
node: O(m+n) time — maximal delay: O(n%)
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® Algorithm: traverse and construct tree depth first, output leaves
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smallest clique in G[v_1,v_2,..., v_i-1}] : O(m+n)

-- LeftChild(U,i): either U or U u {v_i+1} : O(m+n)

-- RightChild(U,i):
if case (1): no right child,;
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node: O(m+n) time — maximal delay: O(n%)

® A N-Plex is maximal iff it is not strictly contained in another larger N-
Plex; A N-Plex is a maximum N-Plex iff it has a maximum number of
vertices among all N-Plexes in G

® N-Plexes are closed under exclusion; N-Plexes are nested > good
candidates for social groups

® Furthermore: If the set of nodes V of G is an N-Plex we have:
(Combinatorial Proof: see [2]):

if N < (|V|+2)/2 then diam(G) < 2
- If an N-Plex has a not too large “sloppyness” N “its” diameter is very
small = Socially realistic

® > So far: wonderful but:
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® But the decision problem NPLEX(G,k,N): “Does G contain an N-Plex
of size at least k?" is NP-complete for all N. Proof: Informal argument:
CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G k) to N-PLEX
(see [2]).

® Ok so (instead of fixing how many edges can be missed at most):
why not demand a minimum degree for every node in the structure?

® Asubset UcV isa N-Core iff S(G(UD) = N
® (Defs for maximal and maximum apply accordingly)

ks
® If U is N-core, U is also a (IV]-N)-plex; Socially: If N is small compared
to |[U|, N-cores are not very meaningful
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® |fU1and U2 are N-cores, U1 U U2 is also an N-core; Socially: not
very desirable; (math: & maximum N-core is unique)

® |f U1 and U2 are connected maximal N-cores = U1 and U2 are
disjoint; Socially: not very desirable

® N-cores are not closed under exclusion (Example: cycle is 2-core but
subset not) and are generally not nested

® N-cores need not be connected
® > N-cores do not seem to be good candidates for social groups

® But: We can easily compute the maximum N-core (see [2])

LS-Sets and Lambda Sets

® |f U1 and U2 are N-cores, U1 U U2 is also an N-core; Socially: not
very desirable; (math: 2 maximum N-core is unique)

® If U1 and U2 are connected maximal N-cores = U1 and U2 are
disjoint; Socially: not very desirable

® N-cores are not closed under exclusion (Example: cycle is 2-core but
subset not) and are generally not nested

® N-cores need not be connected
® > N-cores do not seem to be good candidates for social groups

® But: We can easily compute the maximum N-core (see [2])

LS-Sets and Lambda Sets

® We will now look at some non-local concepts:

® L S-sets (Luccio-Sami-Sets): Formalize the paradigm ,Intra-cluster
coherence, inter-cluster decoherence®: An LS-set is a ,network region

where infernal ties are more signiﬁcanL% than external ties” [2] (extreme
version of paradigm: ,strong alliance”: complete component (disconnected clique))

® Asubset UV isalS-set iff all proper subsets of U share more
ties with the network outside than U does:

U'cU = |E(U, V-U)| = |E(U, V-U)]|
® LS-sets have some interesting properties (e.g. no trival overlaps: if
ul nu2 # & > ulcu2 or u2cutl; min degree of LS set is at least half the

number of outgoing edges) and may be good candidates for social
groups (overlap property can be a counter argument)

® LS-sets can be computed with reasonable complexity ([2])

® Lambda Sets are another related concept: In a lambda set, members
are connected to other members by more (edge disjoint) paths than to
outside nodes

® Let A(u,v) denote the number of edge-disjoint paths between nodes u
and v;
A subset U € V is a Lambda set iff

min A(u,v) > max A(u,v)

uvel u€ey,vev-u

® Lambda sets can be computed in P time [2]
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® Lambda Sets are another related concept: In a lambda set, members
are connected to other members by more (edge disjoint) paths than to
outside nodes

® Let A(u,v) denote the number of edge—gisjoint paths between nodes u
and v;
A subset U € V is a Lambda set iff

min A(u,v) > max A{u,v)

uvel u€elU, vev-u

® Lambda sets can be computed in P time [2]

Graph Clustering

® Lambda Sets are another related concept: In a lambda set, members
are connected to other members by more (edge disjoint) paths than to
outside nodes

® Let A(u,v) denote the number of edge-disjoint paths between nodes u
and v;
A subset U € V is a Lambda set iff

min A(u,v) > max A(u,v)

uvel u€ey,vev-u

® Lambda sets can be computed in P time [2]

Graph Clustering

® Usually: Clustering: Unsupervised Classification (“partition a set of
patterns {v_i} into subsets (classes) {C_j} without training data”)

® Contrast: Supervised Classifier: Train the parameters of a classifier
system (e.g. the weights of ajneural net, the probabilities of a naive
Bayes classifier, the support weights of a support vector machine , etc.)
with a pre-classified set of “training instances” {(v_train_i, C(v_train_i))}

® Al Application of Supervised Classifiers manifold; e.g.: text-
classification (Classification (supervised or unsupervised): one of the
most elementary intelligent “actions”

® Usually: Clustering: In meftric spaces: example: K;Means. We will
come back to this in next lecture (Clustering of Profile Elements)
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¢ Usually: Clustering: In metric spaces: example: K-Means. We will
come back to this in next lecture (Clustering of Profile Elements)
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Graph Clustering

¢ Usually: Clustering: Unsupervised Classification (“partition a set of
patterns {v_i} into subsets (classes) {C_j} without training data”)
s

® Contrast: Su pervised Classifier: Train the parameters of a classifier
system (e.g. the weights of a neural net, the probabilities of a naive
Bayes classifier, the support weights of a support vector machine , etc.)
with a pre-classified set of “training instances” {(v_train_i, C(v_train_i))}

® Al Application of Supervised Classifiers manifold; e.g.: text-
classification (Classification (supervised or unsupervised): one of the
most elementary intelligent “actions” Iy

¢ Usually: Clustering: In metric spaces: example: K-Means. We will
come back to this in next lecture (Clustering of Profile Elements)

Graph Clustering

® Given directed, weighted graph G=(V,E,w); A graph clustering
C={C_1,C_2, ..., C_k}is a partition of V into non-empty subsets C_i;

® Notations: 8

¢ E(C_i,C_j): Setofedgesin Gfrom C_ito C_j;

¢ E(C) = Ui-q_ «E(C_li): Set of intra-cluster edges;

¢ (C) = E\E(C) : Set of inter-cluster edges;

® m(C) = [E(C)|; M(C) = [E(C);

¢ G([C_li]): subgraph induced by C _i;

® C with k=1 1-clustering; € with k=|V|: singletons;

(both: Trivial clustering); %

C with k=2: cut;

¢ A(G): Set of all possible clusterings on G;

® Given directed, weighted graph G=(V,E,w); A graph clustering
C={C_1,C_2, .., C _k}is a partition of V into non-empty subsets C_i;
K

® Notations:
® E(C_i,C_j): Set of edges in G from C_ito C_j;
° E(C) = Ui1_«E(C_i): Set of intra-cluster edges;

° (C) = E\E(C) : Set of inter-cluster edges;
® m(C) = [E(C)|; M(C) = [E(C)I;
® G([C_l]): subgraph induced by C _i;
® C with k=1: 1 -clustering; C with k=|V|: singletons;
(both: Trivial clustering);
C with k=2: cut;

® A(G): Set of all possible clusterings on G;
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® Given directed, weighted graph G=(V,E,w); A graph clustering ® Given directed, weighted graph G=(V,E,w); A graph clustering
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¢ G([C_i]): subgraph induced by C_i; ¢ G([C_li]): subgraph induced by C_i;
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Graph Clustering Graph Clustering
® Given directed, weighted graph G=(V,E,w); A graph clustering ® Notations (continued):
C={C_1,C_2, ..., C_k}is a partition of V into non-empty subsets C_i;
° _ i ®letc_1={C_1,C 2,..,C KlandC_2={C’'_1,C" 2, .. C_I}:

Notations: C 1=C 2« Vidj:CLicC_j

C_1: refinement of C_2; C_2: coarsening of C_1;
® Chain (comparable set) of clusterings: hierarchy;
® Hierarchy is total < - Both trivial clusterings are contained;
° Hierarchy that contains one clustering for each {1,2,... |V|}:

¢ E(C_i,C_j): Setofedgesin Gfrom C_ito C_j;
¢ E(C) = Ui-q_ «E(C_li): Set of intra-cluster edges;
¢ E(C) = E\ E(C) : Set of inter-cluster edges;

® m(C) = [E(C)|; W(C) = [E(C));

® G([C_i]): subgraph induced by C_i: complete;
® ( __I])' subgrap m_ vee _y — . ® S(V): (Proper) Cut function: Cutting the node-set in two (non-
C with k=1: 71-clustering; C with k=|V|: singletons; empty) subsets: S(V) and V \ S(V): N
(both: Trivial clustering); ’
C with k=2: cut;

¢ A(G): Set of all possible clusterings on G;



Graph Clustering Quality Measures for Clusterings

® Notations (continued): ® Quality measure: Objective function A(G) = R that formalizes the
clustering paradigm in a special way
®letc_1={C_1,C 2,..,C K}andC_2={C’' 1,C" 2, .., C I

C1<C 2o Vidj:CicC | ®G= (V,E,w): Weight function w: E-> E* is interpreted as “similarity”
C 1: refinement of C 5; C_2: coarsening of C_1; (higher weights correspond to more intense tie); also possible: negative
® Chain (comparable set) of clusterings: hierarchy; weights = dissimilarity; orw: E =2 [0,1] or w: E = [-1,1] etc.

¢ Hierarchy is total <-> Both trivial clusterings are contained;

¢ Distinguish between no edge and edge with weight zero;
¢ Hierarchy that contains one clustering for each {1,2,.._,|V|}:

complete; ® Notation: W(E) = ToceW(e)
® S(V): (Proper) Cut function: Cutting the node-set in two (non-
empty) subsets: S(V) and V \ S(V); ke
Quality Measures for Clusterings 6: Graph Clustering

° Quality measure: Objective function A(G) = E that formalizes the

® General framework for a guality index of a clustering:
clustering paradigm in a special way

index(C) = /(€)+(C)

® G= (V,E,w): Weight function w: E=> E* is interpreted as “similarity” max{f(C')+g(C"):C'c A(G)}
(higher weights correspond to more intense tie); also possible: negative

weights = dissimilarity; orw: E = [0,1] orw: E = [-1,1] etc.

¢ f:A(G) 2> R* measures intra cluster density (coherence);

° Distinguish between no edge and edge with weight zero; g A(G) 2 E* measures inter cluster sparseness (decoherence);
s

® Notation: W(E) = TcewW(e)
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6: Graph Clustering

® General framework for a quality index of a clustering:

S(©)+g(©)
max{f(c')gg(c') C=AG))

index(C) =

® [ A(G) > R* measures intra cluster density (coherence);
g . A(G) > R* measures inter cluster sparseness (decoherence);

Coverage

® General framework for a guality index of a clustering:

_ ) f(C)+g(C)
index(C) = max{ f(C)+g(C):CcAG)} &

¢ f:A(G) 2> R* measures intra cluster density (coherence);
g A(G) 2 R* measures inter cluster sparseness (decoherence);

Coverage

® First quality measure: Coverage

_WEE) _ Liero
WE) Xm0

® Thus: /= w(E(C)) and g = 0; = only accumulated intra cluster density
is measured

7(C)

® Maximum value 1 achieved for C={V} (1-clustering)

*A clustering has coverage y(C)=1 iff E(C)=9 (clustering is composed

of connected components of G) or w(E(C))=0

® € with k>1 can be transformed into C” with k’<k and Y(C) = y(C) by
merging two clusters in € - optimal non-trivial C is a minimum cut

® > Monotonic* behavior of coverage —> coverage is not a good sole
quality index

® First quality measure: Coverage

_WEE©) D™

C
S TR ST

¢ Thus: f=w(E(C)) and g = 0; = only accumulated intra cluster density
is measured

® Maximum value 1 achieved for C={V} (1-clustering)

A clustering has coverage y(C)=1 iff E(C)=% (clustering is composed
of connected components of G) or w(E(C))=0

s
® C with k>1 can be transformed into C” with k’<k and ¥(C) < y(C’) by

merging two clusters in € - optimal non-trivial C is a minimum cut

® > Monotonic* behavior of coverage —» coverage is not a good sole
quality index
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Conductance

® Clustering paradigm reformulated: Clusters should be well connected
(many edges need to be removed to make it unconnected); few inter
cluster edges (ideally none)

® Conductance: Measure for bottlenecks (Bottleneck: Cut that
separates V into roughly same size halives and “cuts acrods” relatively
few edges)

® Let C={C_1,V\C_1} be a cut. Conductance ¢ of C is defined as

1 if C_1 € {@,V} the smaller
9(C), the
. N more
@(C)=+0 if C_1 ¢ {,V}, w(E(C))=0 ,,bott:gr::ecky“
w(E(C)) i )
; otherwise
min( ZQEE(CJ; V)w(e),ZGEE(V . w(e))
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¢ Clustering paradigm reformulated: Clusters should be well connected
(many edges need to be removed to make it unconnected); few inter
cluster edges (ideally none)

® Conductance: Measure for bottlenecks (Bottleneck: Cut that
separates V into roughly same size halves and “cuts across” relatively
few edges)

® Let C={C_1,V\C_1} be a cut. Conductance ¢ of C is defined as

Ky
1 if 0_1 € {an} the smaller
¢(C), the
. JE— more
@(C)=40 if C_1 ¢ {2,V}, w(E(C))=0 ,,bott:gncecky“
w(E©)) erw
i otherwise
mln( ZeEE(CJ, V)w(e)’zeez(v C 1, V)w(e))
s
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Conductance

® Conductance ¢ of G is defined as

o(G) = Cri}lg/ o(C1, T\C_1)

® Small conductance €-"good cut possible”
s
® All unconnected graphs have conductance 0

® Theorem: If G is undirected and positively weighted, G has maximum
conductance @(G)=1 iff G is connected and has at most three nodes or

Soa, ook
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Conductance

® Conductance ¢ of G is defined as

o(G) = Cri}lg/ o(C1, T\C_1)

® Small conductance €-"good cut possible” .
® All unconnected graphs have conductance 0

® Theorem: If G is undirected and positively weighted, G has maximum
conductance @(G)=1 iff G is connected and has at most three nodes or

is a star.
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® Conductance ¢ of G is defined as

o(G) = (31}}13/ o(C 1, V\C_1)

® Small conductance €->"good cut possible”
® All unconnected graphs have conductance 0

® Theorem: If G is undirected and positively weighted, G has maximum
conductance @(G)=1 iff G is connected and has at most three nodes or

is a star.

YAtk
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Conductance

® Theorem: If G is undirected and positively weighted, G has maximum
conductance @(G)=1 iff G is connected and has at most three nodes or

is a star. (Proof: see [1])
A O ok
° C et TC
Proof ¢ ZBEE(C_1, V) W(e) = W(E(C—1)) + W(E(C)) >

W(E(C)) :

mm(deE(CJ V) w(e)’zeeE(V\C_L 7) w(e)) )
- w(E(C)) )
w(E(C)) +min(w(E(C_N). w(E(V\C_1))

0 if star or at most 3 nodes

1

Conductance

®Theorem: If G is undirected and positively weighted, G has maximum
conductance @¢(G)=1 iff G is connected and has at most three nodes or

is a star. (Proof: see [1])
A O ok

®Proof * & Y v sy W@ =WEC_D)+w(EEC) >
1, &

w(E(C)) _
min(zeeg(c_u V) W(e)’ZeeE(V\C_L V) w(e))
- w(E(C)) i
w(E(C)) + min(w(E(C_ 1)), w(E(V\C_1)

0 if star or at most 3 nodes

1

Conductance

® Theorem: If G is undirected and positively weighted, G has maximum
conductance @(G)=1 iff G is connected and has at most three nodes or

is a star. (Proof: see [1])
A Ok

®Proof " & ZeEE(C_me(e):w(E(C_1))+W(ETC)) =

w(E(C)) _
mm(ZeeE(CJ ) W(e)’zeeE(V\c_L nW(e)
. w(E(C)) _
w(E(C)) +min(w(E(C_1), w(E(V\C_N) ~

0 if star or at most 3 nodes

1

® Conductance appears to be a good element for a quality measure,
but: calculating it is NP hard & but: it can be approximated with
guarantee O((log |V|)"?) (see [1]) (This means: approximation * O((log
[V])"2) = true value) s

® The conductance of a complete graph is asymptotically 0.5: Let n be
an integer:

n . ;
0.5—— if niseven

oK)=1 "]
05+—— if nisodd
n—1
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® Conductance appears to be a good element for a quality measure,
but: calculating it is NP hard & but: it can be approximated with
guarantee O((log |V|)"?) (see [1]) (This means: approximation * O((log
[V])¥2) = true value) K

® The conductance of a complete graph is asymptotically 0.5: Let n be
an integer:

n . .
0.5—— if niseven

o(K)=1 "7}
0.5+—— if nisodd
n—1

Conductance

® With conductance we can define two appropriate quality measures for
clusterings:

® First measure: g=0 ahd f(C)= Eglglkl @(G[C_I])

® |f the measure is small: At least one of the clusters (more precisely:
the induced subgraph) contains at least one bottleneck = This cluster is
foo coarse »Use minimum conductance cut to cut this cluster in
“halves”

® From theorem before: Only clusterings where the clusters induce

subgraphs that are stars or have size at most three have /=1 (f'is called
intra cluster conductance)
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