Script generated by TTT

Title: groh: profile1 (13.05.2014)

Date: Tue May 13 11:59:57 CEST 2014

Duration: 89:39 min

Pages: 83

- If Graph is dense → cliques exist:
- (Turan 1941 (see [2])): If $|E| > |V|^2/2$ (k-2)/(k-1) then G contains a clique of size k.
- Usually many different maximal cliques exist in a graph; they can even overlap without being identical

- A subset U⊆V of a Graph (V,E) is a clique if G([U]) is a complete graph; G([U]) is the sub-graph induced by U.
- A clique is maximal if there is no clique U' with $U \subset U'$ in G
- A clique is a maximum clique if there is no clique with more vertices in G

N-Cliques, N-Clubs, N-Clans

- Cliques are very "strict" → Alternative candidates for groups: Distance based structures:

 - U is N-club iff diam(G([U])) ≤ N
 - U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N
- Criticisms:
 - Since dist is evaluated w.r.t. to G and not G([U]) (thus N-cliques are not local structures), N-cliques need not even be connected and can have a diameter diam(G([U]) > N

- Cliques are very "strict" → Alternative candidates for groups:
 Distance based structures:
 - U is N-clique iff $\forall u, v \in U$: $dist_G(u, v) \leq N$ (non-local def.!)
 - U is N-club iff diam(G([U])) ≤ N
 - U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N
- Criticisms:
 - Since dist is evaluated w.r.t. to G and not G([U]) (thus N-cliques are not local structures), N-cliques need not even be connected and can have a diameter diam(G([U]) > N

N-Cliques, N-Clubs, N-Clans

- U is N-clique iff $\forall u, v \in V$: $dist_G(u, v) \leq N$
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N
- → N-clan: restrict dist-condition to paths of nodes within the structure: easy to find (just drop all n-cliques with diameter greater than N)
- N-club: regard all induced graphs with diameter less than N: harder to find
- It can be shown / seen from the def.:
 - -- all N-clans are N-cliques;
 - -- all N-clubs are contained within N-cliques;
 - -- all N-clans are n-clubs
 - -- there are N-clubs that are not N-clans

- U is N-clique iff $\forall u, v \in V : dist_G(u, v) \leq N$
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N
- → N-clan: restrict dist-condition to paths of nodes within the structure: easy to find (just drop all n-cliques with diameter greater than N)
- → N-club: regard all induced graphs with diameter less than N: harder to find
- It can be shown / seen from the def.:
 - -- all N-clans are N-cliques;
 - -- all N-clubs are contained within N-cliques;
 - -- all N-clans are n-clubs
 - -- there are N-clubs that are not N-clans

(1) (b) (2) (6) (9) (w)

N-Cliques, N-Clubs, N-Clans

- U is N-clique iff $\forall u, v \in V$: $dist_G(u,v) \leq N$
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, {3, 4, 5, 6}

2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}\{1, 2, 3, 5\}, {2, 3, 4, 5, 6}

2-clan: {2, 3, 4, 5, 6}

U is N-clique iff $\forall u, v \in V$: dist_{\(\inft\)}(u,v) ≤ N
U is N-club iff diam(G([U])) ≤ N

- U is N-clique iff $\forall u, v \in V$: dist_G(u,v) \leq N
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, {3, 4, 5, 6}

b

2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} 2-clan: {2, 3, 4, 5, 6} cliques: {1, 2, 3}, {1, 3, 5}, {3, 4, 5, 6}

2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

2-clan: {2, 3, 4, 5, 6}

[11]

- U is N-clique iff $\forall u,v \in V$: $dist_G(u,v) \leq N$
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, {3, 4, 5, 6}

2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} 2-clan: {2, 3, 4, 5, 6}

- U is N-clique iff $\forall u, v \in V : dist_G(u,v) \leq N$
 - U is N-club iff diam(G([U])) ≤ N
 - U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, {3, 4, 5, 6}

2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

2-clan: {2, 3, 4, 5, 6}

N-Cliques, N-Clubs, N-Clans

- U is N-clique iff $\forall u, v \in V$: dist_G(u,v) \leq N U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, $\{3, 4, 5, 6\}$

2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} 2-clan: {2, 3, 4, 5, 6}

- U is N-clique iff $\forall u, v \in V$: $dist_G(u, v) \leq N$
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, $\{3, 4, 5, 6\}$

maximal 2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} 2-clan: {2, 3, 4, 5, 6}

> ত জ = ? 团 - □ X SNA DenseSubnetworks.pptx - PowerPoint EINFÜGEN ENTWURF ÜBERGÄNGE ANIMATIONEN BILDSCHIRMPRÄSENTATION ÜBERPRÜFEN ANSICHT Anmelden ✓ Kommentare wiedergeben ✓ Anzeigedauern verwenden Von Ab aktueller Online Benutzerdefinierte Bildschirmpräsentation Folie vorführen * Bildschirmpräsentation einrichten N-Cliques, N-Clubs, N-Clans U is N-clique iff ∀u,y ∈ V : dist_G(u,y) ≤ N U is N-club iff diam(G([U])) ≤ N U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N cliques: {1, 2, 3}, {1, 3, 5} 2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} 2-cjan: {2, 3, 4, 5, 6} CONTROL CO. Klicken Sie, um Notizen hinzuzufügen **Ø** Start | **Ø □ □ □ ○ □ □ □ □** 100% C A P all 6 8 12:17 13.05.2014

N-Cliques, N-Clubs, N-Clans

- U is N-clique iff $\forall u, v \in V$: dist_G(u,v) $\leq N$
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N

cliques: {1, 2, 3}, {1, 3, 5}, $\{3, 4, 5, 6\}$

maximal 2-cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6}

2-clan: {2, 3, 4, 5, 6}

N-Cliques, N-Clubs, N-Clans

- U is N-clique iff $\forall u, v \in V$: dist_G(u,v) \leq N
- U is N-club iff diam(G([U])) ≤ N
- U is N-clan iff U is maximal N-clique and diam(G([U])) ≤ N
- → N-clan: restrict dist-condition to paths of nodes within the structure: easy to find (just drop all n-cliques with diameter greater than N)
- N-club: regard all induced graphs with diameter less than N: harder to find
- It can be shown / seen from the def.:
 - -- all N-clans are N-cliques;
 - -- all N-clubs are contained within N-cliques;
 - -- all N-clans are n-clubs
 - -- there are N-clubs that are not N-clans

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again: If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again: If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

R

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although $u \not \triangleright to \binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again: If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if U ⊆ V is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again: If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again: If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

Cliques: Algorithms

B

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again: If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

Cliques: Algorithms

- In connection with cliques: Algorithms with time complexity O(|E| + |V|) for the problems:
 - Determine if $U \subseteq V$ is a clique (Test pairs of vertices of U if they are in E. Although up to $\binom{|V|}{2}$ such pairs may exist: If |E| edges have been searched, search is over
 - Determine if clique U is maximal (Test all vertices in V-U if they are connected to all vertices in U; again $_{\Bbbk}$ If |E| edges have been searched, search is over)
 - Compute lexicographically smallest maximal clique containing U: Assume vertices are sorted; Test all vertices in V-U in ascending order: if they are connected to all vertices in U, add to U; again: If |E| edges have been searched, search is over)

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique \rightarrow O($|V|^2$ 2|V|) worst case
- Is there a substantially better algorithm? Probably not: The decision problem CLIQUE(G,k): "Has G a clique of size at least k" is NP complete. (Solving the decision problem in time T(|V|) would yield an alg for determining the maximal k in $O(T(|V|) \log (|V|))$ via binary search.

Proof: Reduce CLIQUE on SATISFIABILITY;

• → Unless P=NP there is no P algorithm X to compute clique of size k if G is guaranteed to contain such a clique.

Proof: Having X we could decide CLIQUE in P time;

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique \rightarrow O(n² 2ⁿ)
- Is there a slightly better algorithm? Yes: We can improve the exponential function's base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem "how many cliques with exactly k nodes exist"? \rightarrow Exhaustive search: $\Theta(|V|^k)$
- For triangles we can be better than $\Theta(|V|^3)$: An alg with $O(|V|^{2.376})$ exists \odot
- For other k: An analogous technique allows for alg with $O(|V|^{\beta(k)})$ with $\beta(k) < k$

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique \rightarrow O(n² 2ⁿ)
- Is there a slightly better algorithm? Yes: We can improve the exponential function's base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem "how many cliques with exactly k nodes exist"? \rightarrow Exhaustive search: $\Theta(|V|^k)$
- For triangles we can be better than $\Theta(|V|^3)$: An alg with $O(|V|^{2.376})$ exists \odot
- For other k: An analogous technique allows for alg with $O(|V|^{\beta(k)})$ with $\beta(k) < k$

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique \rightarrow O(n² 2ⁿ)
- Is there a slightly better algorithm? Yes: We can improve the exponential function's base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem "how many cliques with exactly k nodes exist"? \rightarrow Exhaustive search: $\Theta(|V|^k)$
- For triangles we can be better than $\Theta(|V|^3)$: An alg with $O(|V|^{2.376})$ exists \odot
- For other k: An analogous technique allows for alg with $O(|V|^{\beta(k)})$ with $\beta(k) < k$

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique \rightarrow O(n² 2ⁿ)
- Is there a slightly better algorithm? Yes: We can improve the exponential function's base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem "how many cliques with exactly k nodes exist"? → Exhaustive search: $\Theta(|V|^k)$
- For triangles we can be better than $\Theta(|V|^3)$: An alg with $O(|V|^{2.376})$ exists \odot
- For other k: An analogous technique allows for alg with $O(|V|^{\beta(k)})$ with $\beta(k) < k$

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search:
 Compute all subsets of V and check for clique → O(n² 2n)
- Is there a slightly better algorithm? Yes: We can improve the exponential function's base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem "how many cliques with exactly k nodes exist"? \rightarrow Exhaustive search: $\Theta(|V|^k)$
- For triangles we can be better than $\Theta(|V|^3)$: An alg with $O(|V|^{2.376})$ exists \odot
- For other k: An analogous technique allows for alg with $O(|V|^{\beta(k)})$ with $\beta(k) < k$

Cliques: Enumeration

- Binary tree, n levels, leaves only at level n
- each level i ↔ vertex v_i
- nodes at level i: maximal cliques in G[v_1,v_2,...,v_i]]
- level i+1: determine children of node U at level i: two cases :
 - (1) v i+1 adjacent to all nodes in U (U⊆N(v_i+1):
 - → U ∪ {v_i+1} is maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - \rightarrow U \cup {v_i+1} is only child of U

- (2) \exists vertex in U not adjacent to v_i+1 (U \nsubseteq N(v_i+1):
 - $\rightarrow \ \, \text{U itself} \, \underline{\text{is}} \, \, \text{a maximal clique in} \, \, \text{G[v_1,v_2,...,v_i, v_i+1}]$
 - → if $(U \overline{N}\{v_i+1\}) \cup \{v_i+1\}$ is maximal it is also a maximal clique in $G[v_1,v_2,...,v_i,v_i+1]$
 - ightarrow (U $N\{v_i+1\}$) U $\{v_i+1\}$ is potentially child of many possible nodes ightarrow define it als child of lexiographically smallest clique (node) Uʻ at level i

Cliques: Enumeration

- Binary tree, n levels, leaves only at level n
- each level i ↔ vertex v_i
- nodes at level i: maximal cliques in G[v_1,v_2,...,v_i]]

- (1) v i+1 adjacent to all nodes in U (U⊆N(v_i+1):
 - → U ∪ {v_i+1} is maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - \rightarrow U \cup {v_i+1} is only child of U

- (2) ∃ vertex in U not adjacent to v_i+1 (U⊈N(v_i+1):
 - → U itself is a maximal clique in G[v 1,v 2,...,v i, v i+1]]
 - \rightarrow if (U \overline{N} {v_i+1}) \cup {v_i+1} is maximal it is also a maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - ightarrow (U $\[N_v_i+1 \}$) $\[V_i+1 \}$ is potentially child of many possible nodes $\[\rightarrow \]$ define it als child of lexiographically smallest clique (node) U' at level i

Cliques: Enumeration

- Binary tree, n levels, leaves only at level n
- each level i ↔ vertex v i
- nodes at level i: maximal cliques in G[v_1,v_2,...,v_i]]
- level i+1: determine children of node U at level i: two cases :
 - (1) v i+1 adjacent to all nodes in U (U⊆N(v_i+1):
 - \rightarrow U \cup {v_i+1} is maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - \rightarrow U \cup {v i+1} is only child of U

- (2) ∃ vertex in U not adjacent to v_i+1_N(U⊈N(v_i+1):
 - → U itself is a maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - → if $(U \overline{N}\{v_i+1\}) \cup \{v_i+1\}$ is maximal it is also a maximal clique in G[v 1,v 2,...,v i, v i+1]]
 - \rightarrow (U $\overline{N}\{v_i+1\}$) U $\{v_i+1\}$ is potentially child of many possible nodes \rightarrow define it als child of lexiographically smallest clique (node) U' at level i

Cliques: Algorithms

- Naive algorithm for finding the maximum clique: Exhaustive Search: Compute all subsets of V and check for clique → O(n² 2n)
- Is there a slightly better algorithm? Yes: We can improve the exponential function's base from 2 to approx. 1.38 (see [2])
- Can we expect to find the answer to the problem "how many cliques with exactly k nodes exist"? \rightarrow Exhaustive search: $\Theta(|V|^k)$
- For triangles we can be better than $\Theta(|V|^3)$: An alg with $O(|V|^{2.376})$ exists \odot
- For other k: An analogous technique allows for alg with $O(|V|^{\beta(k)})$ with $\beta(k) < k$

R

Cliques: Enumeration

- Binary tree, n levels, leaves only at level n
- each level i ↔ vertex v i
- nodes at level i: maximal cliques in G[v_1,v_2,...,v_i]]
- level i+1: determine children of node U at level i: two cases :
 - (1) v i+1 adjacent to all nodes in U (U⊆N(v_i+1):
 - \rightarrow U \cup {v_i+1} is maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - \rightarrow U \cup {v i+1} is only child of U

- (2) ∃ vertex in U not adjacent to v i+1 (U⊈N(v i+1):
 - → U itself is a maximal clique in G[v_1,v_2,...,v_i, v_i+1}]
 - → if $(U \overline{N}\{v_i+1\}) \cup \{v_i+1\}$ is maximal it is also a maximal clique in $G[v_1, v_2, ..., v_i, v_i+1]$
 - \rightarrow (U \overline{N} {v_i+1}) \cup {v_i+1} is potentially child of many possible nodes \rightarrow define it als child of lexiographically smallest clique (node) U' at level i

Cliques: Enumeration

- Binary tree, n levels, leaves only at level n
- each level i ↔ vertex v_i
- nodes at level i: maximal cliques in G[v_1,v_2,...,v_i]]
- level i+1: determine children of node U at level i: two cases :

- \rightarrow U \cup {v_i+1} is maximal clique in G[v_1,v_2,...,v_i, v_i+1]]
- \rightarrow U \cup {v_i+1} is only child of U

- (2) ∃ vertex in U not adjacent to v_i+1 (U⊈N(v_i+1):
 - → U itself is a maximal clique in G[v 1,v 2,...,v i, v i+1]]
 - → if $(U \overline{N}\{v_i+1\}) \cup \{v_i+1\}$ is maximal it is also a maximal clique in G[v 1,v 2,...,v i, v i+1]]
 - \rightarrow (U $\overline{N}\{v_i+1\}$) \cup { $v_i+1\}$ is potentially child of many possible nodes \rightarrow define it als child of lexiographically smallest clique (node) U' at level i

Cliques: Enumeration

- → tree constructed in principle
- Algorithm: traverse and construct tree depth first, output leaves
- neccesary primitives:
 - -- Parent(U,i): for node U at level i determine lexicographically smallest clique in G[v_1,v_2,..., v_i-1}]: O(m+n)
 - -- LeftChild(U,i): either U or U ∪ {v i+1} : O(m+n)
 - -- RightChild(U,i):
 - if case (1): no right child;
 - if case (2): if $X:=(U \mathbb{N}\{v_i+1\}) \cup \{v_i+1\}$ is maximal (takes O(m+n) time to determine) then X is right child if
 - U = Parent(X, i+1) (takes O(m+n))
- longest path between two leaves passes over 2n-1 nodes; for each node: O(m+n) time → maximal delay: O(n³)

De.

Cliques: Enumeration

- → tree constructed in principle
- Algorithm: traverse and construct tree depth first, output leaves
- neccesary primitives:
 - -- Parent(U,i): for node U at level i determine lexicographically smallest clique in G[v_1,v_2,..., v_i-1}]: O(m+n)
 - -- LeftChild(U,i): either U or U \cup {v_i+1} : O(m+n)
 - -- RightChild(U,i):
 - if case (1): no right child;
 - if case (2): if $X:=(U \mathbb{N}\{v_i+1\}) \cup \{v_i+1\}$ is maximal (takes O(m+n) time to determine) then X is right child if
 - U = Parent(X, i+1) (takes O(m+n))
- longest path between two leaves passes over 2n-1 nodes; for each node: O(m+n) time \rightarrow maximal delay: $O(n^3)$

Cliques: Enumeration

- → tree constructed in principle
- Algorithm: traverse and construct tree depth first, output leaves
- neccesary primitives:
 - -- Parent(U,i): for node U at level i determine lexicographically smallest clique in G[v_1,v_2,..., v_i-1]] : O(m+n)
 - -- LeftChild(U,i): either U or U ∪ {v_i+1} : O(m+n)
 - -- RightChild(U,i):
 - if case (1): no right child;
 - if case (2): if X:=(U \overline{N} {v_i+1}) \cup {v_i+1} is maximal (takes O(m+n) time to determine) then X is right child if
 - U = Parent(X, i+1) (takes O(m+n))
- longest path between two leaves passes over 2n-1 nodes; for each node: O(m+n) time → maximal delay: O(n³)

Plexes and Cores

- A N-Plex is maximal iff it is not strictly contained in another larger N-Plex; A N-Plex is a maximum N-Plex iff it has a maximum number of vertices among all N-Plexes in G
- N-Plexes are closed under exclusion; N-Plexes are nested → good candidates for social groups
- Furthermore: If the set of nodes V of G is an N-Plex we have: (Combinatorial Proof: see [2]):
 - if N < (|V|+2)/2 then diam(G) ≤ 2
- → If an N-Plex has a not too large "sloppyness" N "its" diameter is very small → Socially realistic
- So far: wonderful but:

Plexes and Cores

- But the decision problem NPLEX(G,k,N): "Does G contain an N-Plex of size at least k?" is NP-complete for all N. Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).
- Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?
- A subset $U \subseteq V$ is a N-Core iff $\delta(G([U])) \ge N$
- (Defs for maximal and maximum apply accordingly)
- If U is N-core, U is also a (|V|-N)-plex; Socially: If N is small compared to |U|, N-cores are not very meaningful

Plexes and Cores

- But the decision problem NPLEX(G,k,N): "Does G contain an N-Plex of size at least k?" is NP-complete for all N. Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).
- Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?
- A subset $U \subseteq V$ is a N-Core iff $\delta(G([U])) \ge N$
- (Defs for maximal and maximum apply accordingly)
- If U is N-core, U is also a (|V|-N)-plex; Socially: If N is small compared to |U|, N-cores are not very meaningful

Plexes and Cores

- But the decision problem NPLEX(G,k,N): "Does G contain an N-Plex of size at least k?" is NP-complete for all N. Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).
- Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?
- A subset $U \subseteq V$ is a N-Core iff $\delta(G([U])) \ge N$
- (Defs for maximal and maximum apply accordingly)
- ullet If U is N-core, U is also a (|V|-N)-plex; Socially: If N is small compared to |U|, N-cores are not very meaningful

(1) (b) (C) (B) (Q) (...)

Plexes and Cores

- But the decision problem NPLEX(G,k,N): "Does G contain an N-Plex of size at least k?" is NP-complete for all N. Proof: Informal argument: CLIQUE(G,k)=NPLEX(G,k,1); formal: reduce CLIQUE(G,k) to N-PLEX (see [2]).
- Ok, so (instead of fixing how many edges can be missed at most): why not demand a minimum degree for every node in the structure?
- A subset $U \subseteq V$ is a N-Core iff $\delta(G([U])) \ge N$ ⊾
- (Defs for maximal and maximum apply accordingly)
- If U is N-core, U is also a (|V|-N)-plex; Socially: If N is small compared to |U|, N-cores are not very meaningful

Plexes and Cores

- If U1 and U2 are N-cores. U1 U U2 is also an N-core; Socially; not very desirable; (math: → maximum N-core is unique)
- If U1 and U2 are connected maximal N-cores → U1 and U2 are disjoint; Socially: not very desirable
- N-cores are not closed under exclusion (Example: cycle is 2-core but subset not) and are generally not nested
- N-cores need not be connected.
- → N-cores do not seem to be good candidates for social groups
- But: We can easily compute the maximum N-core (see [2])

R

LS-Sets and Lambda Sets

- We will now look at some non-local concepts:
- LS-sets (Luccio-Sami-Sets): Formalize the paradigm "Intra-cluster coherence, inter-cluster decoherence": An LS-set is a "network region where internal ties are more significant than external ties" [2] (extreme version of paradigm: "strong alliance": complete component (disconnected clique))
- A subset U ⊆ V is a LS-set iff all proper subsets of U share more ties with the network outside than U does:

$$\mathsf{U'} \!\!\subset \mathsf{U} \xrightarrow{} |\mathsf{E}(\mathsf{U'}, \mathsf{V} \!\!-\!\! \mathsf{U'})| > |\mathsf{E}(\mathsf{U}, \mathsf{V} \!\!-\!\! \mathsf{U})|$$

- LS-sets have some interesting properties (e.g. no trival overlaps; if $u1 \cap u2 \neq \emptyset \rightarrow u1 \subseteq u2$ or $u2 \subseteq u1$; min degree of LS set is at least half the number of outgoing edges) and may be good candidates for social groups (overlap property can be a counter argument)
- LS-sets can be computed with reasonable complexity ([2])

Plexes and Cores

- If U1 and U2 are N-cores, U1 U U2 is also an N-core; Socially; not very desirable: (math: → maximum N-core is unique)
- If U1 and U2 are connected maximal N-cores → U1 and U2 are disjoint; Socially: not very desirable
- N-cores are not closed under exclusion (Example: cycle is 2-core but subset not) and are generally not nested
- N-cores need not be connected

V

- ◆ N-cores do not seem to be good candidates for social groups
- But: We can easily compute the maximum N-core (see [2])

LS-Sets and Lambda Sets

- Lambda Sets are another related concept: In a lambda set, members are connected to other members by more (edge disjoint) paths than to outside nodes
- Let λ(u,v) denote the number of edge-disjoint paths between nodes u and v:

A subset U ⊆ V is a Lambda set iff

Lambda sets can be computed in P time [2]

- Lambda Sets are another related concept: In a lambda set, members are connected to other members by more (edge disjoint) paths than to outside nodes
- Let $\lambda(u,v)$ denote the number of edge-disjoint paths between nodes u and v;

A subset U ⊆ V is a Lambda set iff

$$\min_{u,v \in U} \lambda(u,v) > \max_{u \in U, v \in V-U} \lambda(u,v)$$

Lambda sets can be computed in P time [2]

- Lambda Sets are another related concept: In a lambda set, members are connected to other members by more (edge disjoint) paths than to outside nodes
- ullet Let $\lambda(u,v)$ denote the number of edge-disjoint paths between nodes u and v;

A subset U ⊆ V is a Lambda set iff

$$\min_{u,v \in U} \lambda(u,v) > \max_{u \in U, v \in V-U} \lambda(u,v)$$

Lambda sets can be computed in P time [2]

Graph Clustering

- Usually: Clustering: Unsupervised Classification ("partition a set of patterns {v_i} into subsets (classes) {C_j} without training data")
- Contrast: Supervised Classifier: Train the parameters of a classifier system (e.g. the weights of a neural net, the probabilities of a naive Bayes classifier, the support weights of a support vector machine, etc.) with a pre-classified set of "training instances" {(v_train_i, C(v_train_i))}
- Al: Application of Supervised Classifiers manifold; e.g.: textclassification (Classification (supervised or unsupervised): one of the most elementary intelligent "actions"
- Usually: Clustering: In metric spaces: example: K Means. We will come back to this in next lecture (Clustering of Profile Elements)

Graph Clustering

- Usually: Clustering: Unsupervised Classification ("partition a set of patterns {v_i} into subsets (classes) {C_j} without training data")
- Contrast: Supervised Classifier: Train the parameters of a classifier system (e.g. the weights of a neural net, the probabilities of a naive Bayes classifier, the support weights of a support vector machine, etc.) with a pre-classified set of "training instances" {(v_train_i, C(v_train_i))}
- Al: Application of Supervised Classifiers manifold; e.g.: text-classification (Classification (supervised or unsupervised): one of the most elementary intelligent "actions"
- Usually: Clustering: In metric spaces: example: K-Means. We will come back to this in next lecture (Clustering of Profile Elements)

- Usually: Clustering: Unsupervised Classification ("partition a set of patterns {v_i} into subsets (classes) {C_j} without training data")
- Contrast: Supervised Classifier: Train the parameters of a classifier system (e.g. the weights of a neural net, the probabilities of a naive Bayes classifier, the support weights of a support vector machine, etc.) with a pre-classified set of "training instances" {(v_train_i, C(v_train_i))}
- Al: Application of Supervised Classifiers manifold; e.g.: text-classification (Classification (supervised or unsupervised): one of the most elementary intelligent "actions"
- Usually: Clustering: In metric spaces: example: K-Means. We will come back to this in next lecture (Clustering of Profile Elements)

- Usually: Clustering: Unsupervised Classification ("partition a set of patterns {v_i} into subsets (classes) {C_j} without training data")
- Contrast: Supervised Classifier: Train the parameters of a classifier system (e.g. the weights of a neural net, the probabilities of a naive Bayes classifier, the support weights of a support vector machine, etc.) with a pre-classified set of "training instances" {(v_train_i, C(v_train_i))}
- Al: Application of Supervised Classifiers manifold; e.g.: text-classification (Classification (supervised or unsupervised): one of the most elementary intelligent "actions"
- Usually: Clustering: In metric spaces: example: K-Means. We will come back to this in next lecture (Clustering of Profile Elements)

Graph Clustering

- Given directed, weighted graph G=(V,E,w); A graph clustering C={C_1, C_2, ..., C_k} is a partition of V into non-empty subsets C_i;
- Notations:
 - E(C_i,C_j): Set of edges in G from C_i to C_j;
 - E(C) = U_{i=1,...k}E(C_i): Set of intra-cluster edges;
 - E(C) = E \ E(C) : Set of inter-cluster edges;
 - $m(\mathbf{C}) = |E(\mathbf{C})|; \overline{m}(\mathbf{C}) = |\overline{E(\mathbf{C})}|;$
 - G([C i]): subgraph induced by C i;
 - **C** with k=1: 1-clustering; **C** with k=|V|: singletons; (both: *Trivial clustering*);
 - C with k=2: cut;
 - A(G): Set of all possible clusterings on G;

Graph Clustering

- Given directed, weighted graph G=(V,E,w); A graph clustering C={C_1, C_2, ..., C_k} is a partition of V into non-empty subsets C_i;
- Notations:

R

- E(C_i,C_j): Set of edges in G from C_i to C_j;
- E(**C**) = U_{i=1 k}E(C i): Set of intra-cluster edges;
- E(C) = E \ E(C) : Set of inter-cluster edges;
- $m(\mathbf{C}) = |E(\mathbf{C})|; \overline{m}(\mathbf{C}) = |\overline{E(\mathbf{C})}|;$
- G([C i]): subgraph induced by C i;
- C with k=1: 1-clustering; C with k=|V|: singletons; (both: Trivial clustering);
- C with k=2: cut;
- A(G): Set of all possible clusterings on G;

- Given directed, weighted graph G=(V,E,w); A graph clustering
 C={C_1, C_2, ..., C_k} is a partition of V into non-empty subsets C_i;
- Notations
 - E(C i,C j): Set of edges in G from C i to C j;
 - E(C) = U_{i=1,...k}E(C_i): Set of intra-cluster edges;
 - $\overline{E(C)} = E \setminus E(C)$: Set of inter-cluster edges;
 - $m(\mathbf{C}) = |E(\mathbf{C})|; \overline{m}(\mathbf{C}) = |\overline{E(\mathbf{C})}|;$
 - G([C_i]): subgraph induced by C_i;
 - C with k=1: 1-clustering; C with k=|V|: singletons; (both: Trivial clustering);
 - C with k=2: cut;
 - A(G): Set of all possible clusterings on G;

Graph Clustering

- Given directed, weighted graph G=(V,E,w); A graph clustering C={C_1, C_2, ..., C_k} is a partition of V into non-empty subsets C_i;
- Notations:
 - E(C i,C j): Set of edges in G from C i to C j;
 - E(C) = U_{i=1} _kE(C i): Set of intra-cluster edges;
 - E(C) = E \ E(C) : Set of inter-cluster edges;
 - $m(\mathbf{C}) = |E(\mathbf{C})|; \overline{m}(\mathbf{C}) = |\overline{E(\mathbf{C})}|;$
 - G([C i]): subgraph induced by C i;
 - C with k=1: 1-clustering; C with k=|V|: singletons; (both: Trivial clustering);
 - C with k=2: cut;
 - A(G): Set of all possible clusterings on G:

- Given directed, weighted graph G=(V,E,w); A graph clustering C={C_1, C_2, ..., C_k} is a partition of V into non-empty subsets C_i;
- Notations
 - E(C_i,C_j): Set of edges in G from C_i to C_j;
 - E(**C**) = U_{i=1....k}E(C_i): Set of intra-cluster edges; ⊾
 - $\overline{E(C)} = E \setminus E(C)$: Set of inter-cluster edges;
 - m(C) = |E(C)|; $\overline{m}(C) = |\overline{E(C)}|$;
 - G([C i]): subgraph induced by C i;
 - C with k=1: 1-clustering; C with k=|V|: singletons; (both: Trivial clustering);
 - C with k=2: cut;
 - A(G): Set of all possible clusterings on G;

Graph Clustering

- Notations (continued):
 - Let C_1={C_1, C_2, ..., C_k} and C_2={C'_1, C'_2, ..., C'_l}:
 C_1 ≤ C_2 ↔ ∀i ∃j : C_i ⊆C'_j;
 C_1: refinement of C_2; C_2: coarsening of C 1;
 - Chain (comparable set) of clusterings: hierarchy;
 - Hierarchy is total ← → Both trivial clusterings are contained;
 - Hierarchy that contains one clustering for each {1,2,...,|V|}: complete;
 - S(V): (Proper) Cut function: Cutting the node-set in two (nonempty) subsets: S(V) and V \ S(V);

• Notations (continued):

Chain (comparable set) of clusterings: hierarchy;

Hierarchy is total ←→ Both trivial clusterings are contained;

 Hierarchy that contains one clustering for each {1,2,...,|V|}: complete;

S(V): (Proper) Cut function: Cutting the node-set in two (non-empty) subsets: S(V) and V \ S(V);

- Quality measure: Objective function $A(G) \rightarrow \mathbb{R}$ that formalizes the clustering paradigm in a special way
- G= (V,E,w): Weight function w: E $\rightarrow \mathbb{R}^+$ is interpreted as "similarity" (higher weights correspond to more intense tie); also possible: negative weights = dissimilarity; or w: E \rightarrow [0,1] or w: E \rightarrow [-1,1] etc.

Distinguish between no edge and edge with weight zero;

• Notation: $w(E) = \sum_{e \in E} w(e)$

Quality Measures for Clusterings

- Quality measure: Objective function $\mathbf{A}(G) \to \mathbb{R}$ that formalizes the clustering paradigm in a special way
- G= (V,E,w): Weight function w: E $\rightarrow \mathbb{R}^+$ is interpreted as "similarity" (higher weights correspond to more intense tie); also possible: negative weights = dissimilarity; or w: E \rightarrow [0,1] or w: E \rightarrow [-1,1] etc.
- Distinguish between no edge and edge with weight zero;
- Notation: $w(E) = \sum_{e \in E} w(e)$

6: Graph Clustering

General framework for a quality index of a clustering:

$$index(\mathbf{C}) = \frac{f(\mathbf{C}) + g(\mathbf{C})}{\max\{f(\mathbf{C}') + g(\mathbf{C}') : \mathbf{C}' \in \mathbf{A}(G)\}}$$

f: A(G) → R⁺ measures intra cluster density (coherence);
 g: A(G) → R⁺ measures inter cluster sparseness (decoherence);

B

6: Graph Clustering

General framework for a quality index of a clustering:

$$index(\mathbf{C}) = \frac{f(\mathbf{C}) + g(\mathbf{C})}{\max\{f(\mathbf{C}') + g(\mathbf{C}') : \mathbf{C}' \in \mathbf{A}(G)\}}$$

f: A(G) → R⁺ measures intra cluster density (coherence);
 g: A(G) → R⁺ measures inter cluster sparseness (decoherence);

Coverage

First quality measure: Coverage

$$\gamma(\mathbf{C}) = \frac{w(E(\mathbf{C}))}{w(E)} = \frac{\sum_{e \in E(\mathbf{C})} w(e)}{\sum_{e \in E} w(e)}$$

- Thus: f = w(E(C)) and g = 0; \rightarrow only accumulated intra cluster density is measured
- Maximum value 1 achieved for C={V} (1-clustering)
- A clustering has coverage $\gamma(\mathbf{C})=1$ iff $\overline{\mathbb{E}(\mathbf{C})}=\emptyset$ (clustering is composed of connected components of G) or $\overline{W(\mathbb{E}(\mathbf{C}))}=0$
- **C** with k>1 can be transformed into **C**' with k'<k and γ (**C**) $\leq \gamma$ (**C**') by merging two clusters in **C** \rightarrow optimal non-trivial **C** is a minimum cut
- ullet \rightarrow "Monotonic" behavior of coverage \Rightarrow coverage is not a good sole quality index

6: Graph Clustering

General framework for a quality index of a clustering:

f: A(G) → R⁺ measures intra cluster density (coherence);
 g: A(G) → R⁺ measures inter cluster sparseness (decoherence);

Coverage

• First quality measure: Coverage

$$\gamma(\mathbf{C}) = \frac{w(E(\mathbf{C}))}{w(E)} = \frac{\sum_{e \in E(\mathbf{C})} w(e)}{\sum_{e \in E} w(e)}$$

- Thus: f = w(E(C)) and g = 0; \rightarrow only accumulated intra cluster density is measured
- Maximum value 1 achieved for C={V} (1-clustering)
- A clustering has coverage $\gamma(\mathbf{C})=1$ iff $\overline{\mathbb{E}(\mathbf{C})}=\emptyset$ (clustering is composed of connected components of G) or $\overline{\mathrm{w}(\mathbb{E}(\mathbf{C}))}=0$
- C with k>1 can be transformed into C' with k'<k and $\gamma(C) \le \gamma(C')$ by merging two clusters in C \rightarrow optimal non-trivial C is a minimum cut
- → "Monotonic" behavior of coverage → coverage is not a good sole quality index

- Clustering paradigm reformulated: Clusters should be well connected (many edges need to be removed to make it unconnected); few inter cluster edges (ideally none)
- Conductance: Measure for bottlenecks (Bottleneck: Cut that separates V into roughly same size harves and "cuts across" relatively few edges)
- Let $C=\{C_1, V \setminus C_1\}$ be a cut. Conductance φ of C is defined as

$$\varphi(\mathbf{C}) = \begin{cases} 1 & \text{if } \mathbf{C} = \{\emptyset, V\} \\ 0 & \text{if } \mathbf{C} = \{\emptyset, V\}, \ \mathbf{W}(\overline{\mathbf{E}(\mathbf{C})}) = 0 \end{cases} & \text{the smaller } \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C}), \text{ the more }} \frac{\varphi(\mathbf{C}), \text{ the more }}{\varphi(\mathbf{C})$$

Conductance

- Clustering paradigm reformulated: Clusters should be well connected (many edges need to be removed to make it unconnected); few inter cluster edges (ideally none)
- Conductance: Measure for bottlenecks (Bottleneck: Cut that separates V into roughly same size halves and "cuts across" relatively few edges)
- Let $C=\{C_1, V \setminus C_1\}$ be a cut. Conductance φ of C is defined as

$$\varphi(\mathbf{C}) = \begin{cases} 1 & \text{if } \mathbf{C} = \{\varnothing, \mathbf{V}\} \\ 0 & \text{if } \mathbf{C} = \{\varnothing, \mathbf{V}\}, \ \mathbf{W}(\overline{\mathbf{E}(\mathbf{C})}) = 0 \end{cases}$$

$$\frac{w(\overline{E(\mathbf{C})})}{\min(\sum_{e \in E(\mathbf{C}, \mathbf{I}, \mathbf{V})} w(e), \sum_{e \in E(\mathbf{V} \setminus \mathbf{C}, \mathbf{I}, \mathbf{V})} w(e))} \qquad \text{otherwise}$$

Conductance

- Clustering paradigm reformulated: Clusters should be well connected (many edges need to be removed to make it unconnected); few inter cluster edges (ideally none)
- Conductance: Measure for bottlenecks (Bottleneck: Cut that separates V into roughly same size halves and "cuts across" relatively few edges)
- Let C={C 1, V \ C 1} be a cut. Conductance φ of C is defined as

$$\varphi(\mathbf{C}) = \begin{cases} 1 & \text{if } \mathbf{C} \mathbf{1} \in \{\varnothing, \mathsf{V}\} \\ 0 & \text{if } \mathbf{C} \mathbf{1} \notin \{\varnothing, \mathsf{V}\}, \ w(\overline{\mathbf{E}(\mathbf{C})}) = 0 \end{cases} & \text{the smaller } \\ 0 & \text{if } \mathbf{C} \mathbf{1} \notin \{\varnothing, \mathsf{V}\}, \ w(\overline{\mathbf{E}(\mathbf{C})}) = 0 \end{cases} & \text{the smaller } \\ \frac{w(\overline{E(\mathbf{C})}) \ \mathbb{R}}{\min(\sum_{e \in E(\mathbb{C}_{\mathbf{1}}, V)} w(e), \sum_{e \in E(V \setminus \mathbb{C}_{\mathbf{1}}, V)} w(e))} & \text{otherwise} \end{cases}$$

Conductance

- Clustering paradigm reformulated: Clusters should be well connected (many edges need to be removed to make it unconnected); few inter cluster edges (ideally none)
- Conductance: Measure for bottlenecks (Bottleneck: Cut that separates V into roughly same size halves and "cuts across" relatively few edges)
- Let $C=\{C \ 1, V \setminus C \ 1\}$ be a cut. Conductance φ of C is defined as

Conductance φ of G is defined as

$$\varphi(G) = \min_{C \mid 1 \subset V} \varphi(C_1, V \setminus C_1)$$

- Small conductance ←→ "good cut possible"
- All unconnected graphs have conductance 0
- Theorem: If G is undirected and positively weighted, G has maximum conductance $\phi(G)$ =1 iff G is connected and has at most three nodes or is a star.

Conductance

Conductance φ of G is defined as

$$\varphi(G) = \min_{C \in I \subset V} \varphi(C_1, V \setminus C_1)$$

- Small conductance ←→"good cut possible"
- All unconnected graphs have conductance 0
- Theorem: If G is undirected and positively weighted, G has maximum conductance $\phi(G)$ =1 iff G is connected and has at most three nodes or is a star.

Conductance φ of G is defined as

$$\varphi(G) = \min_{C \mid 1 \subset V} \varphi(C_1, V \setminus C_1)$$

- Small conductance ←→"good cut possible"
- All unconnected graphs have conductance 0
- Theorem: If G is undirected and positively weighted, G has maximum conductance $\phi(G)$ =1 iff G is connected and has at most three nodes or is a star

Conductance

Conductance φ of G is defined as

$$\varphi(G) = \min_{C \mid 1 \subset V} \varphi(C_1, V \setminus C_1)$$

- Small conductance ←→ "good cut possible"
- All unconnected graphs have conductance 0
- Theorem: If G is undirected and positively weighted, G has maximum conductance $\phi(G)$ =1 iff G is connected and has at most three nodes or is a star.

•Theorem: If G is undirected and positively weighted, G has maximum conductance $\varphi(G)=1$ iff G is connected and has at most three nodes or is a star. (Proof: see [1])

Conductance

Theorem: If G is undirected and positively weighted, G has maximum conductance $\varphi(G)=1$ iff G is connected and has at most three nodes or is a star. (Proof: see [1])

Proof `←'
$$\sum_{e \in E(C_{-1}, V)} w(e) = w(E(C_{-1})) + w(\overline{E(C)}) \rightarrow \frac{w(\overline{E(C)})}{\min(\sum_{e \in E(C_{-1}, V)} w(e), \sum_{e \in E(V \setminus C_{-1}, V)} w(e))} =$$

$$\frac{w(\overline{E(\mathbf{C})})}{w(\overline{E(\mathbf{C})}) + \min(w(E(\mathbf{C}_{\underline{1}})), w(E(\mathbf{V} \setminus \mathbf{C}_{\underline{1}})))} = 1$$

$$= 0 \text{ if star or at most 3 nodes}$$

Theorem: If G is undirected and positively weighted, G has maximum conductance $\varphi(G)=1$ iff G is connected and has at most three nodes or is a star. (Proof: see [1])

Proof `\(\sum_{e \in E(C_1, V)} w(e) = w(E(C_1)) + w(\overline{E(C)}) \)
$$\frac{w(\overline{E(C)})}{\min(\sum_{e \in E(C_1, V)} w(e), \sum_{e \in E(V \setminus C_1, V)} w(e))} = \frac{w(\overline{E(C)})}{w(\overline{E(C)}) + \min(w(E(C_1)), w(E(V \setminus C_1)))} = 1$$

Conductance

- Conductance appears to be a good element for a quality measure, but: calculating it is NP hard \otimes but: it can be approximated with guarantee O((log |V|)^{1/2}) (see [1]) (This means: approximation * O((log |V|)^{1/2}) = true value)
- The conductance of a complete graph is asymptotically 0.5: Let n be an integer:

$$\varphi(K_n) = \begin{cases} 0.5 \frac{n}{n-1} & \text{if } n \text{ is even} \\ 0.5 + \frac{1}{n-1} & \text{if } n \text{ is odd} \end{cases}$$

clusterinas:

• Conductance appears to be a good element for a quality measure, but: calculating it is NP hard \odot but: it can be approximated with guarantee O((log |V|)^{1/2}) (see [1]) (This means: approximation * O((log |V|)^{1/2}) = true value)

• The conductance of a complete graph is asymptotically 0.5: Let n be an integer:

$$\varphi(K_n) = \begin{cases} 0.5 \frac{n}{n-1} & \text{if } n \text{ is even} \\ 0.5 + \frac{1}{n-1} & \text{if } n \text{ is odd} \end{cases}$$

• If the measure is small: At least one of the clusters (more precisely: the induced subgraph) contains at least one bottleneck → This cluster is too coarse → Use minimum conductance cut to cut this cluster in "halves"

• With conductance we can define two appropriate quality measures for

• From theorem before: Only clusterings where the clusters induce subgraphs that are stars or have size at most three have f=1 (f is called intra cluster conductance)

Conductance

• With conductance we can define two appropriate quality measures for clusterings:

• First measure: g=0 and $f(\mathbf{C}) = \min_{1 \le i \le k} \varphi(G[\mathbf{C_i}])$

• If the measure is small: At least one of the clusters (more precisely: the induced subgraph) contains at least one bottleneck → This cluster is too coarse → Use minimum conductance cut to cut this cluster in "halves"

• From theorem before: Only clusterings where the clusters induce subgraphs that are stars or have size at most three have f=1 (f is called intra cluster conductance)

(1) (b) (2) (6) (9) (w)

Conductance

• With conductance we can define two appropriate quality measures for clusterings:

• First measure: g=0 and $f(\mathbf{C}) = \min_{1 \le i \le k} \varphi(G[\mathbf{C_i}])$

• If the measure is small: At least one of the clusters (more precisely: the induced subgraph) contains at least one bottleneck → This cluster is too coarse → Use minimum conductance cut to cut this cluster in "halves"

• From theorem before: Only clusterings where the clusters induce subgraphs that are stars or have size at most three have f=1 (f is called intra cluster conductance)