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2 Fundamentals

Ulrik Brandes and Thomas Evrlebach

In this chapter we discuss basic terminology and notation for graphs, some fun-
damental algorithms, and a few other mathematical preliminaries.

‘We denote the set of integers by Z, the set of real numbers by R, the set of
complex numbers by ', and the set of rationals by ). For a set X of numbers,
X+ denotes the subset of positive numbers in X, and X the subset of non-
negative mimbers. The set of positive integers is denoted by N = Z+ and the
set of non-negative integers by INg = 7.}

‘We use R"*™ to denote the set of all real-valued matrices with n rows and m
columns. If the entries of the matrix can be complex numbers, we write ('?*™,
The n-dimensional identity matrix is denoted by I,. The n-dimensional vector
with all entries equal to 1 {equal to 0) is denoted by 1, (by 0,).

For two functions f : IV — N and g : I\ — IV, we say that f is in O(g)
if there are positive constants ng & IV and ¢ € RF such that f(n) < ¢ g(n)
holds for all n > ng. Furthermore, we say that f is in £2(g) if g is in Q(f). This
notation is useful to estimate the asymptotic growth of functions. In particular,
running-times of algorithms are usually specified using this notation.

=inotz A] | D

3 Centrality Indices

Dirk Koschiitzki* Katharina Anna Lehmann,* Leon Peeters, Stefan Richter,
Dagmar Tenfelde-FPodehl,* and Oliver Zlotawski*

&

Centrality indices are to quantify an intuitive feeling that in most networks some
vertices or edges are more central than others. Many vertex centrality indices
were introduced for the first time in the 1950s: e.g., the Bavelas index [50, 51],
degree centrality [483] or a first feedback centrality, introduced by Seeley [510].
These early centralities raised a rush of research in which manifold applications
were found. However, not every centrality index was suitable to every application,
so with time, dozens of new centrality indices were published. This chapter will
present some of the more influential, ‘classic’ centrality indices. We do not strive
for completeness, but hope to give a catalog of basic centrality indices with some
of their main applications.

In Section 3.1 we will begin with two simple examples to show how centrality
indices can help to analyze networks and the situation these networks represent.
In Section 3.2 we discuss the properties that are minimally required for a real-
valued function on the set of vertices or edges of a graph to be a centrality index
for vertices and edges, respectively.

In subsequent Sections 3.3-3.9, various families of vertex and edge centrali-
ties are presented. First, centrality indices based on distance and neighborhood
are discussed in Section 3.3. Additionally, this section presents in detail some
instances of facility location problems as a possible application for centrality
indices Nevt we discuss the centrality indices hased on shartest naths in Sec
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andom Walk Centrality == Current Flow Btw. Centrality (see [9]) Random Walk Centrality == Current Flow Btw. Centrality (see [5])

3
® random walk based centrality rwb: idea: ® flow of electric current in a resistor network;
rwh(i) := number of times that a random walk starting at s and V; = voltage (potential) at vertex i
ending at t passes through i along the way, averaged over all s
and t ® . Current Flow betweenness cfb centrality : ¢fb(i) := amount of

current that flows through i in this setup, averaged over all s and t.
rwb « spb: opposite ends:
® rwb: info has no idea where its going
¢ spb: info knows exactly where its going
'\

one unit of current in

° compute for all i rwb(i): O((m+ n)n?) worst case time complexity \
A g A

/

(comparable to spb) é.\/«/\/\ -

VAAAA

t

VAT AV e e VAVAVAVA
,\.\1\ \

o« one unit of current out

FIEN @
Random Walk Centrality == Current Flow Btw. Centrality (see [5]) andom Walk Centrality == Current Flow Btw. Centrality (see [3])

i
ks
® Kirchhoffs point law (current conservation): total current flow in / out of ® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero: node is zero:
3" A4V~ Vi) = dis — . D Au(Vi = V) = dis — due,
i i
1. = 1 if there is an edge between i and j, 1. = 1 if there is an edge between ¢ and j,
W 0 otherwise, W 0 otherwise,
\ "\

one unit of current in 5o 1 iti=j, one unit of current in 5. = 1 if i =7,

& = Y = 0 otherwise.

VWVAAA

\ 0 otherwise. \
SEA N— & SR YV Al &
\ ‘\ >
S
P

T
WAV AN e A
NN\ \ NN\ \

o« one unit of current out o« one unit of current out
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

E :L,(-[: — 1']) = (5,'3 — r)}-t.

’ B
if there is an edge between i and j,
otherwise,
ifi = j.

one unit of current in
otherwise.

t

L VAVAVAVA
e \

one unit of current out

r
@\4‘:\
VIVAAA

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:
D Ay(Vi = Vi) = bis — dit,
i
) 1 if there is an edge between ¢ and j,
Ay = { 0

otherwise,

1 if i =,

one unit of current in
otherwise,

t

L EVAVAVAVA
W \

one unit of current out

v
L\éf
WAVAVAVA

@
andom Walk Centrality == Current Flow Btw. Centrality (see [3])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

> AV = Vi) = bis — a,
J
otherwise,

if i =,

one unit of current in
otherwise.

t

L VAVAVAVA
e \

one unit of current out

r
@\4‘:\
VIVAAA

if there is an edge between i and j,

> i Aij = k. the degree of vertex i

D AG(Vi = Vy) = i — ut (D-A)-V=s
- -
“Graph Laplacian”
s
D is the diagonal matrix with elements I};; = k;
+1 for i = s,
source vector s s§; = -1 for i =t,
0 otherwise.

V=(D,—A,)""s
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>, Aij = ki, the degree of vertex i

(D-A) V=s
%(_)

“Graph Laplacian”

EZAUH}—E)=6m—5¢%
i

D is the diagonal matrix with elements D;; = k;

+1 for i = s,
source vector s 5 = —1 fori =t,
0 otherwise.

V=(D,-A,)" s

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

>.; Aij = ki, the degree of vertex i

> Ay (Vi = Vi) = bis — b (D-A)-V=s
H_)

! “Graph Laplacian”

D is the diagonal matrix with elements I};; = k;

+1 for 1 = s, 5
source vector s s, = —1 fori =1
0 otherwise.

V=(D,-A,)" " s

@
andom Walk Centrality == Current Flow Btw. Centrality (see [3])

>, Aij = ki, the degree of vertex i

(D-—A)- V=s1
—

“Graph Laplacian”

> Ay (Vi = Vi) = is — 0
J

D is the diagonal matrix with elements D;; = k;

+1 for i = s,
source vector s 8 = —1 for i =t¢,
0 otherwise.

V=(D,-A,)" s

(D-A)-V=s
- —

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. 2
remove the v-th row and column (since V,=0) - now invertible

i

V=(D,-A,) ! s (matrix inversion: O(n?))
let us now add a vth row and column back into (D, — A,)*

with values all equal to zero.
The resulting matrix we will denote T.

r(st ‘
— I",-( ' = Tis — Tt

— current flow at node i: 1\*") = L Z Ay [V — If}(sr)|
J
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(D-A)- V=5
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. 2>
remove the v-th row and column (since V,=0) = now invertible

(matrix inversion: O(n3))

V= (Dt.%— A ts

let us now add a vth row and column back into (D, — A,)~!
with values all equal to zero.
The resulting matrix we will denote T.

— VY =T -1,

—— current flow at node i: Ij(m = é Z Aijﬂ';{m - T-‘}(St)|
J

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

(D-A)-V=s
- —

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) - now invertible

(matrix inversion: O(n3))

V=(D,-A,) ! s .

&
let us now add a vth row and column back into (D, — A,) !
with values all equal to zero.
The resulting matrix we will denote T.

V(sf) o

e i —Tis_ it

—— current flow at node i: I;St) = é Z :—h;ﬂf}{ﬁ) — Is"}(sf)|
J

@
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(D-A)- V=5
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) = now invertible

(matrix inversion: O(n3))

V=(D,-A,) ' s
k :

let us now add a vth row and column back into (D, — A,)"*

with values all equal to zero. N

The resulting matrix we will denote T.

LV =T~ Ty,

— s current flow at node i: 1" = : Z Ay |9 — 1[f"j(“q”|
J

(D-A)-V=s
- —

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. 2
remove the v-th row and column (since V,=0) - now invertible

V=MD,-A,) ! s (matrix inversion: O(n?))
let us now add a vth row and column back into (D, — A,)*
with values all equal to zero.

The resulting matrix we will denote T.
s

r(st ‘
— I",-( ' = Tis — Tt

— current flow at node i: 1\*") = L Z Ay [V — If}(sr)|
J
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(D-A)- V=5
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. 2>
remove the v-th row and column (since V,=0) = now invertible

V=(D,-A,) ' s (matrix inversion: O(n%))

let us now add a vth row and column back into (D, — A,)~!
with values all equal to zero.

The resulting matrix we will denote T.

— VY =T -1,

—— current flow at node i: Ij(m =1 E AUH';{S“ - T-‘}(St)|
ks =
j

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

(D-A)-V=s
- —

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) - now invertible

V=(D,-A,) ! s (matrix inversion: O(n?))

let us now add a yth row and column back into (D, — A,)~!
with values all equal to zero.
The resulting matrix we will denote T.

r(st ‘
— I",-( } = Tis — Tt

—— current flow at node i: I;St) = é Z :—h;ﬂf}{ﬁ) — Is"}(sf)|
J
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(D-A)- V=5
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) = now invertible

(matrix inversion: O(n3))

V=(D,-A,) ' s

let us now add a vth row and column back into (D, — A,)"*
with values all equal to zero.
The resulting matrix we will denote T.
F(st)
v =1, -1

2

— s current flow at node i: 1" = : Z Ay |9 — ‘[f"j(“qtg
i

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

ST Ay(Vi = V) = i — bt
7

it there is an edge between i and j,
otherwise,

it i = j,

one unit of current in A
0 otherwise,

rd
S -v_&
‘\’ ]
=

;

VAT AV e e VAVAVAVA
W B \

one unit of current out
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Random Walk Centrality ==

Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

> A(Vi— Vi) =4
i

1. = { 1 if there is an edge between i and j,
W 0 otherwise,
\
one unit of current in 5 1 iti=j,
¥ 0 otherwise,

\mew 4

VAVAVA e S VAVAVAVA
,\.\1\ \

o« one unit of current out

VWVAAA
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

current flow at node i:

(st A(st) Qf)
Iz)_lZJlaJ“( e
- %Zﬁa_fliﬂs—

J

for i #£ s.t.

Tt — Tis + Tiel.

® unit current flow at nodes s and t:

=1, 1Y =1.

¢ cfb(i) (denoted as b;) is then:

@ _
Random Walk Centrality ==

(takes O(m n?) for all i) —
(plus matrix inversion:)
O((m+n) n?) for everything

_ Z.q(t Ii(qu) i

B %n{_n —1) &

Current Flow Btw. Centrality (see [5])

® current flow at node i:

(st ] y (st ~(st)
160 = 13 4V )

J
1 §

= 2 -4-7_1 ‘Tis -
;

® unit current flow at nodes s and t:

Ty — T.is + T_J'l‘|-

for i # s.t.

® cfb(i) (denoted as b;) is then:

h (takes O(m n?) for all i) —
(plus matrix inversion:)
O((m+n) ng) for everything

(st)
_ Z.-:({ Ii

N %n(n —1)

i

cfb == random walk betweenness centrality (rwb):
i

rwb(i): move around ,messages‘: start (absorbing) random walk at s,

end at t:
rwb(i):= net number of times that a message passes through i on

its journey (averaged over a large number of trials and averaged
over s, t)

(,net* number of times: ,cancel back and fourth passes®)

if in node |, probability that in next step at node i is:

M;; = A_,J for j #1,
M=A D! with D = diag(k,)

Dzi == 'I"i
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® c¢fb == random walk betweenness centrality (rwb):
s

¢ rwb(i): move around ,messages*: start (absorbing) random walk at s,
end at t: 3
rwb(i):= net number of times that a message passes through i on
its journey (averaged over a large number of trials and averaged
over s, 1)

(,net* number of times: ,cancel back and fourth passes®) &

® ifin node j, probability that in next step at node i is:

M;; = A_,J for j #1t,
M=A D! with D = diag(k,)

Dii = k;
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® ¢fb == random walk betweenness centrality (rwb):

¢ rwb(i): move around ,messages”: start (absorbing) random walk at s,

end at t:
rwb(i):= net number of times that a message passes through i on
its journey (averaged over a large number of trials and averaged

over s, t)

(,net* number of times: ,cancel back and fourth passes®)

® ifin node & probability that in next step at node i is:

&
M;; = %c% for j #1.
]
M=A D! with D = diag(k,)

Dzi = 'l"i
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andom Walk Centrality == Current Flow Btw. Centrality (see [3])

® c¢fb == random walk betweenness centrality (rwb):

® rwb(i): move around ,messages”: start (absorbing) random walk at s,
end at t:
rwb(i):= net number of times that a message passes through i on
its journey (averaged over a large number of trials and averaged

over s, 1)

(,net* number of times: ,cancel back and fourth passes®)

® ifin node j, probability that in next step at node i is:

M, = Ay

3 for j #1,
M=A D! with D = diag(k,)

D:i - f.','
ks

® we never leave t, once we get there (“Hotel California effect” -)) —
M;; =0 forall i

— possible: remove column t without affecting transitions between any
other vertices;

denote by M; = A, - Dt_1 the matrix with these elements removed,

and similarly for 4; and D,.

® forawalk starting at s, the probability that we find ourselves at vertex
j after r steps is given by [1\_.[1‘]
tlis

¢ probability that we then take a step to an adjacent vertex i is

kM5
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® we never leave t, once we get there (“Hotel California effect” :-)) —

M;; =0 for all {

— possible: remove column t without affecting transitions between any
other vertices;

denote by M, = A, - D;*
and similarly for 4, and D,.

the matrix with these elements removed,

® for a walk starting at s, the probability that we find ourselves at vertex
j after r steps is given by [1\.1,-] N
t11s

® probability that we then take a step to an adjacent vertex i is

kM)

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

¢ previous slide: probability at j after r steps and then j — i was:

kMg ;s
L ]

summing over r from 0 to < | — geometric series —

the total number of times V;_; we go from j to i, averaged over all
possible walks is

k(T = M) ;6

- V=D;'-I-M) ' s=(D;—A)"" s

as before: the net flow of the random walk along the edge .
fromjtoi==|V,-V,|
net flow through vertex i is a half the sum of the flows on the incident edges
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® previous slide: probability at j after r steps and then j — i was:

ki My js

® summing over r from 0 to = : — geometric series —

the total number of times V;_,; we go from j to i, averaged over all
possible walks is

5 (T = M)~

- V=D;'I-M)'s=(D;-A)"" s

as before: the net flow of the random walk along the edge
fromjtoi==1|V;- V|,
net flow through vertex i is a half the sum of the flows on the incident edges

¢ previous slide: probability at j after r steps and then j — i was:

kM
’ i

¢ summing over r from 0 to < | — geometric series —

the total number of times V;_; we go from j to i, averaged over all
possible walks is

k(T = M)~

- V=D;'(I-M) ' s=(Di—A) s

as before: the net flow of the random walk along the edge
fromjtoi==|V,- V|
net flow through vertex i is a half the sum of the flows on the incident edges
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® ® we never leave t, once we get there (“Hotel California effect” -)) —

M;; =0 forall i

previous slide: probability at j after r steps and then j — i was:

kM

— possible: remove column t without affecting transitions between any
other vertices;

® summing over r from 0 to = : — geometric series —

oo

denote by M; = A, - Dt_1 the matrix with these elements removed,

M™ =({-M)"' i  wvi|i|<1 Where\ Eigenvalues of M
= | E ' and similarly for 4, and D,.

r

ks

S T A S A ¥ L
® forawalk starting at s, the probability that we find ourselves at vertex

j after r steps is given by [1\_.[1‘]
tlis

ks
probability that we then take a step to an adjacent vertex i is

- V=D;'I-M)'s=(D;-A)"" s

L]
as before: the net flow of the random walk along the edge

fromjtoi==|V;- V| A,—l[hllr] y
net flow through vertex i is a half the sum of the flows on the incident edges a e
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Example ([5]) Example ([5])

Network 1 Network 2 Network 1 Network 2
betweenness measure P betweenness measnure P—
network shortest-path max-llow oot ™ network shortest-path max-llow .. "0 ™
Network 1: vertices A & B 0.636 0.631 0.670 Network 1: vertices A & B 0.636 0.631 0.670
vertex C 0.282 0.333 vertex C y 0.282 0.333
vertices X & Y 0.200 0.068 0.269 vertices X & Y 0.200 0.068 0.269
Network 2: vertices A & B 0.265 0.269 0.321 Network 2: vertices A & B 0.265 0.269 0.321
vertex C 0.243 0.004 0.267 vertex C 0.243 0.004 0.267
vertices X & Y 0.125 {).()24 0.194 vertices X & Y 0.125 0.024 0.194
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Network 1 Network 2

betweenness measure P
network shortest-path max-llow oo '

Network 1: vertices A & B 0.636 0.631 0.670

vertex C 0.282 0.333

vertices X & Y 0.200 0.068 0.269

Network 2: vertices A & B 0.265 0.269 0.321

vertex C 0.243 0.004 0.267

vertices X & Y 0.125 0.024 0.194

Basic idea: Node is more central the more central its neighbors are.

example: Hubbell index
Iy
® weighted, directed graph G=(V,E): weighted adjacency matrix W

® centralilty s(v) of node v is proportional to sum of centralities s(w)
of adjacent nodes w (multiplied with corresp. edge weight). >
centrality vector s of the nodes is thus an eigenvector of W: s=Ws

® In order to make this equation solvable, introduce a ,centrality
input” or ,external information” E(v) for every node v: s=E+Ws
> s=(I-W)'E

- k
® |-W is invertible if ;Wconverges <—>the largest eigenvalue of W
is less than one (see[1]).
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Basic idea: Node is more central the more central its neighbors are. Basic idea: Node is more central the more central its neighbors are.

example: Hubbell index example: Hubbell index

s
® weighted, directed graph G=(V,E): weighted adjacency matrix W

® centralilty s(v) of node v is proportional to sum of centralities s(w)
of adjacent nodes w (multiplied with corresp. zdge weight). >
centrality vector s of the nodes is thus an eigenvector of W: s=Ws

® In order to make this equation solvable, introduce a ,centrality
input” or ,external information” E(v) for every node v: s=E+Ws
2> s=(I-W)'E

= k
® |-W is invertible if ;W converges < —>the largest eigenvalue of W
is less than one (see[1]).

® weighted, directed graph G=(V,E): weighted adjacency matrix W

® centralilty s(v) of node v is proportional to sum of centralities s(w)
of adjacent nodes w (multiplied with corresp. edge weight). >
centrality vector s of the nodes is thus an eigenvector of W: s=Ws

® In order to make this equation solvable, introduce a ,centrality
input” or ,external information” E(v) for every node v: s=E+Ws
> s=(I-W)'E s

- k
® |-W is invertible if ;Wconverges <—>the largest eigenvalue of W
is less than one (see[1]).
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® previous slide: probability at j after r steps and then j — i was:

ki M ;s

® summing over r from 0 to = : — geometric series —

oo

M =(I-M)"" i i |1l<1 Wwhere A Eigenvalues of M

r=0

VX T 175

- V=D;'I-M) ' s=(D;—A)H s

as before: the net flow of the random walk along the edge
fromjtoi==|V;- V|
net flow through vertex i is a half the sum of the flows on the incident edges

SN
Feedback-Centrality

® Further example: Random surfer on Web-pages

® Directed unweighted graph G=(V,E)

® Define Markov transition matrix as

m if(i,j)e E
0 G jek
if deg"(1)=0

V]

(choose one outgoing link randomly, probability inverse propotional to
out degree of current node; if node is a sink (no outgoing links) choose

a random page)
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® Further example: Random surfer on Web-pages
® Directed unweighted graph G=(V,E)

® Define Markov transition matrix as

1 P
m if(i,j)eE
t,=1 0 if(i,j))eE
if deg' (1) =0 |

V]

(choose one outgoing link randomly, probability inverse propotional to
out degree of current node; if node is a sink (no outgoing links) choose
a random page)

® Ry

® Di

® D¢

In order to avoid getting stuck in “sink circles”,
we can add a small probability here of
choosing randomly. After that we have to /
renormalize to keep the matrix T stochastic.

N

fg{

(1
T, if (i, )
0 if(i,j)eE 5

5 Ve =0

(choose one outgoing link randomly, probability inverse propotional to
out degree of current node; if node is a sink (no outgoing links) choose

a random page)
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® Question: is there a unique stationary distribution ? (= in essence is
the chain irreducible and positively recurrent?)

® > make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choice).

® social analog: ,assigning leadership®, ;seeking friends®; ,expert
seeking” etc.

° Stationary distributions €< degree centrality: Assume undirected,
unweighted graph with adjacency matrix A; we have then:

Vo= deg(i)

t. = =
Y deg(i) CY deg(v)
velr de v A
Proof: (nT), :Zﬁgg = g’: 5y _ ; ! _ deg( ) x
i >deg(v) D deg(v) Y deg(v)
vel’ vel vel’
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® Question: is there a unique stationary distribution m? (= in essence is
the chain irreducible and positively recurrent?)

® > make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choice).

® social analog: ,assigning leadership“, ;seeking friends”; jexpert
seeking“ etc. K

¢ Stationary distributions <= degree centrality: Assume undirected,
unweighted graph with adjacency matrix A; we have then:

A L .
Vg = deg(i)

t.= =
!odeg(i) ' Y deg(v)
vel de . A
Proof: (nT), ijzi’: e _ ZV Y deg()) _7,
iV Z deg(v) Z deg(v) Z deg(v)
velV’ vel vel
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® Question: is there a unique stationary distribution ? (= in essence is
the chain irreducible and positively recurrent?)

® > make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choice).

® social analog: ,assigning leadership®, ,seeking friends®; ;expert
seeking” etc.

° Stationary distributions €< degree centrality: Assume undirected,

unweighted graph with adjacency matrix A; we have then: &
: %
;= Ay, —~ 7 = deg(i)
g . i~
deg(i) > deg(v) .
T Sdeg(i), D4, _
' _ _ & v _ deg())
Proof: (T[T)j - Z ]rj‘t;;i

T S dep(v) | > deg(v) Y dea(v)

vel vel’ vel

® Question: is there a unique stationary distribution m? (= in essence is
the chain irreducible and positively recurrent?)

® 3 make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choice).

® social analog: ,assigning leadership“, ;seeking friends”; jexpert
seeking” etc.

¢ Stationary distributions <= degree centrality: Assume undirected,

unweighted graph with adjacency matrix A; we have then: I
4, deg(i
Iy_ = v = jr.i = A
deg(i) > deg(v)
T S deg(it, D4, _
Proof: (nT), =2 mt, =& = = _ el
' ko T Dideg(v)  Dldeg(v)  Dldeg(v)
vel/ vel” vel”
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® Question: is there a unique stationary distribution ? (= in essence is

the chain irreducible and positively recurrent?)

® > make it irreducible: T=aT+(1- a)E where E is the matrix with all
entries equal to 1/n (completely stochastic choice).

® social analog: ,assigning leadership®, ,seeking friends®; ;expert
seeking” etc.

° Stationary distributions €< degree centrality: Assume undirected,
unweighted graph with adjacency matrix A; we have then:

ti' = v o 7[;' = M
7 deg(i) > deg(v)

vel” )
Z sty Z AU& deg( /)
Proof: (nT), = Z T, = eV _wr -

ST S dep(v) | Y dep(v) > deg(v)

veV vel’ velV

SN
Feedback-Centrality: Page Rank

® Famous ingredient of Google

® Centrality of a web-page depends on the centralities of the pages
linking to it:

e(p)=d 3 @) q_a

+
gef{"In—neighborsof p"}=1"(p) deg (q)

where d is a damping factor; deg*(q) is the out degree of g.

® Matrix Notation:

c=dPc+(1-d)LL..1)7

where transition matrix Py =1/deg*(j) if (j,i)eE and P;=0 otherwise
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® Famous ingredient of Google

® Centrality of a web-page depends on the centralities of the pages
linking to it:

e(p)=d 3 DL q_a

T
ge{"In—neighborsof p"}=1"(p) deg (Q)

where d is a damping factor; deg*(q) is the out degree of q.

® Matrix Notation:

c=dPc+(1-d)LL...)T

where transition matrix Py =1/deg*(j) if (j,i)eE and P;=0 otherwise

® Famous ingredient of Google

® Centrality of a web-page depends on the centralities of the pages
linking to it:

co(p)=dh 3 D g

+
gef{"In—neighborsof p"}=1"(p) deg (q)

where d is a damping factor; deg*(q) is the out degree of g.

® Matrix Notation:

c=dPc+(1-d)LL..1)7

where transition matrix Py =1/deg*(j) if (j,i)eE and P;=0 otherwise



@
Feedback-Centrality: Page Rank

LN
Feedback-Centrality: Page Rank

® Solving the equation ¢ =d Pc+(1-d)(LL...1)7 :
®1f0=d<1the equation has a unique solution

c=(1-d)1-dP)'(LL..)T

® How do we compute the solution avoiding matrix inversion? - Jacobi
power iteration:

g7

¢ "M=d> Pe O +(1-d)
J
or improved variant (Gauss-Seidel iteration): (see [3])
¢“M=d (> Pc " +3 P +(1-d)

i g
J<i Jzi
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® Solving the equation € =d Pc+(1-d)(LL...)7 :

®1f0=<d<1the equation has a unique solution

c=1-d)I-dP)"@L..D" |

® How do we compute the solution avoiding matrix inversion? 2 Jacobi
power iteration:

gJ

¢ M=d> Pe M +(1-a)
Jj
or improved variant (Gauss-Seidel iteration): (see [3])
¢ M=d (> P +> Py +(1-d)

i g
J<i Jzi
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® Solving the equation ¢ =d Pc+(1-d)(LL...1)7 :

®1f0=d<1the equation has a unique solution

c=(1-d)I-dP)*AL..DT

® How do we compute the solution avoiding matrix inversion? - Jacobi
power iteration:

u-J

¢=dY PcV+(1-d)
J

or improved variant (Gauss-Seidel iteration): (see [3])

¢M=d (> Pc " +> P )+(1-d)
J<i Jzi

® Solving the equation € =d Pc+(1-d)(LL...)7 :

®f0=d<1the equation has a unique solution

c=(1-)1-dP)'(L..]D)T

® How do we compute the solution avoiding matrix inversion? 2 Jacobi
power iteration:

g

¢V=dY Pec+(1-d)
7

or improved variant (Gauss-Seidel iteration): (see [3])

¢ M=d (> P +> Py +(1-d)

i g
J<i Jzi
ks
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Recommended Reading Recommended Reading
® minimal approach: ® minimal approach:
o study the slides and mentally review the introduced concepts, o study the slides and mentally review the introduced concepts,
definitions and connections definitions and connections
i
® standard approach: ® standard approach:
o minimal approach + read the corresponding parts of [1] ald [5] o minimal approach + read the corresponding parts of [1] and [5]
ks
® interested students: ® interested students:
o standard approach + read [4] o standard approach + read [4]
i
students with problems w.r.t. graph theory: read [2] students with problems w.r.t. graph theory: read [2]
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Groups in Social Psychology
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Groups in Social Psychology

® F. Tonnis (1887)[3]: Gemeinschaft €-> Gesellschaft
® From 1930s: Small group research (see [4,5,6])

° Historically:

Individualist school of thought (All phenomena
and structures in a SN (incl groups) can be derived
from analyzing dyadic individual relations)
<—>Collectivistic school of thought (assign reality
and parameters to groups independent of its
members). Modern view : Emerggnce

® Homans (1950) [6]: “A group is a number of persons who
communicate with one another often over a span of time, and
who are few enough so that each person is able to
communicate with all the others, not at second hand, through
other people, but face-to-face.”

| &
Groups in Social Psychology

® Number of group members < 20 (see [7])€—> human social perception
limits)

¢ Group members: Share network of interpersonal attraction ([4, 5])

® Often: common goals, common norms, special con&munication
structure, a special role- and affect-structure, group awareness ([4, 7])

® Small groups ée.g. friends clique) €-> large groups (e.g. political party)
¢ Primary group (e.g. familiy) €- secondary group (e.g. colleagues)

¢ In-group (“my group”) (special in group is reference group) €<-> out-
group (“the others”)

® Quasi groups (Profile clusters only)
® “Crowd”, “mass”, “clique”, “gang’, “community”, “company”, “squad”,

“team”, ...
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® Number of group members < 20 (see [7])€—> human social perception
limits)

° Group members: Share network of interpersonal attraction ([4, 5])

® Often: common goals, common norms, special communication
structure, a special role- and affect-structure, group awareness ([4, 7])

® Small groups (e.g. friends clique) €-> large groups (e.g. political party)
® Primary group (e.g. familiy) €-> secondary group (e.g. colleagues)

ks
¢ In-group (“my group”% (special in group is reference group) €-> out-
group (“the others”)

® Quasi groups (Profile clusters only)

nou nou now

® “Crowd”, “mass”, “clique”, “gang”, “community”, “company”, “squad”,
“‘team”, ...

® Number of group members < 20 (see [7])€—> human social perception
limits)

¢ Group members: Share network of interpersonal attraction ([4, 5])

® Often: common goals, common norms, special communication
structure, a special role- and affect-structure, group awareness ([4, 7])

® Small groups (e.g. friends clique) €-> large groups (e.g. political party)
¢ Primary group (e.g. familiy) €- secondary group (e.g. colleagues)

s
¢ In-group (“my group”) (special in group is reference group) <-> out-
group (“the others”)  °

® Quasi groups (Profile clusters only) &
® “Crowd”, “mass”, “clique”, “gang’, “community”, “company”, “squad”,

“team”, ...
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Finding Dense Subnetworks in Social Networks

Two basic possibilities to determine groups:

® Cluster profile elements of individuals
(danger: quasi groups)

® or determine groups via social getwork (=
sociometry / network analysis)

&
Finding Dense Subnetworks in Social Networks

® What characterizes groups in sociometry? [11, 2]: groups are
sub-graphs in a social network with the following properties:

® Density: groups are denser than randomly chosen sub-graphs,
(nodes have large neighborhood in G) = “Intra cluster coherence”

° Compactness: mean avezage path-lengths are small within
groups and/or connectivity is high (compare [1] for definitions)
—> “Intra cluster coherence”

® Mutuality: many ties are reciprocal - “Intra cluster coherence”

® Separation: group members have more ties within the group than
outside = “inter cluster decoherence”

® Criteria are not independent: Moon [12]: Each member is connected
to at least 1/k other members - distance between members is at most
k. (see [2])

CICY
Cliques

® What characterizes groups in sociometry? [11, 2]: groups are
sub-graphs in a social network with the following properties:

¢ Density: groups are denser than randomly chosen sub-graphs,
(nodes have large neighborhood in G) = “Intra cluster coherence”

¢ Compactness: mean average path-lengths are small within
groups and/or connectivity is high (compare [1] for definitions)
- “Intra cluster coherence”

¢ Mutuality: many ties are reciprocal = “Intra cluster coherence”

¢ Separation: group members have more ties within the group than
outside = “inter cluster decoherence”

® Criteria are not independent: Moon [12]: Each %nember is connected
to at least 1/k other members - distance between members is at most
k. (see [2])

® Asubset UCV of a Graph (V,E) is a clique if G([U]) is a complete
graph; G(JU]) is the sub-graph induced by U.

*A clique is maximal if there is no clique U’ withU c U’ in G N

*A clique is a maximum clique if there is no clique with more
vertices in G



Ha
Cliques

LY
Cliques

® Cliques are “perfect” in that they are

¢ perfectly dense: Maximum degree A (G([U])) = |U]-1; minimum
degree & (G([U])) = |U|-1; average degree s (G([U]))=|U]|-1

¢ perfectly compact: diam(G([U]))=1, mean av. path length =1,
perfectly connected: if |U|=k then G(JU]) is
(k-1) vertex- and edge-connected

Ik

G is n-vertex connected if [V| > n and G — X is connected for every
X c Vwith [X] <n;

G is n-edge connected if [V| > 2 and and G - Y is connected for
every Y c E with |Y] <n;
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every Y c E with |Y]| <n;



