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General “Definition”: Structural Index General “Definition”: Structural Index
® “Importance” has many aspects but minimal def. for centrality: Only ¢ “Importance” has many aspects but minimal def. for centrality: Only
depends on structure of graph: depends on structure of graph:
® Structural Index: Let G = (V,E,w) be a weighted directed or undirected ® Structural Index: Let G = (V,E,w) be a weighted directed or undirected
multigraph. A functions: V 2> X (ors: E 2 R)[}igs a structural index iff multigraph. A function s: V =2 E (or s: E = E) is a structural index iff
s
Vx:G=H - s5,(x) =5,(4(x)) Vx:G=H - s5,(x)=5,(4(x))

(Recall: Two graphs G and H are isomorphic (G=H) iff exists a bijective (Recall: Two graphs G and H are isomorphic (G=H) iff exists a bijective
mapping ®: G 2 H so that (u,v) € G iff (®(u),P(v)) €H) mapping ®: G 2 H so that (u,v) € G iff (®(u),P(v)) €H)
® structural index induces (total) partial-order (<) on nodes/edges ® structural index induces (total) partial-order (=) on nodes/edgesl%
*> centrality can usually only be viewed as measured on an ordinal *> centrality can usually only be viewed as measured on an ordinal

scale only (not interval or ratio scale) scale only (not interval or ratio scale)
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General “Definition”: Structural Index

H &
Distance- and Neighborhood-based Centralities

® “Importance” has many aspects but minimal def. for centrality: Only
depends on structure of graph:

® Structural Index: Let G = (V,E,w) be a weighted directed or undirected
multigraph. A function s: V 2 R (or s: E 2 R) is a structural index iff

Vx:G=H - s (x)=s,(#(x))

(Recall: Two graphs G and H are isomorphic (G=H) iff exists a bijective
mapping ®: G = H so that (u,v) € G iff (®(u),P(v)) €H)

® structural index induces (total) partial-order (<) on nodes/edges N

*> centrality can usually only be viewed as measured on an ordinal
scale only (not interval or ratio scale)

CIEN .
Distances: Eccentricity

¢ Centrality-measures defined on the basis of distances or
neighbourhoods in the graph:

Centrality of vertex €< “reachability” of a vertex

&

Neighborhoods: Degree Centrality

® Most basic: Degree centrality: c(u) = deg(u) (or c(u)=in-deg(u) or
c(u) = out-deg(u)) = local measure

¢ Applicable: If edges have “direct vote” semantics

& i
Distances: Eccentricity

° Eccentricity e(u)=max{d(u,v); veV}

® Centerofa graph: Set of all nodes with minimum%ccentricity

° Eccentricity based centrality measure:

e L 1
V= ) T max{d(u,v)very

® > nodes in the center
of the graph have
maximal centrality ©

graph with
e(u) values

® Eccentricity e(u)=max{d(u,v); veV}

® Center ofa graph: Set of all nodes with minimum eccentricity

¢ Eccentricity based centrality measure:

e L 1
N ey, max{d@u,v)ver)

® > nodes in the center
of the graph have
maximal centrality ©

graph with
e(u) values
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Distances: Eccentricity Distances: Eccentricity

° Eccentricity e(u)=max{d(u,v); veV} ¢ Eccentricity e(u)=max{d(u,v); veV}
® Centerofa graph: Set of all nodes with minimum eccentricity ® Center ofa graph: Set of all nodes with minimum eccentricity
s i
° Eccentricity based centrality measure: ¢ Eccentricity based centrality measure:
1 1 1 1

c(u) =

c(u)

T e(u)  max{d(u,v):veV} e(u)  max{d(u,v):veV}

® > nodes in the center
of the graph have
maximal centrality ©

® 3 nodes in the center
of the graph have
maximal centrality ©

graph with graph with

e(u) values e(u) values
| & . @
Distances: Eccentricity Distances: Closeness
° Eccentricity e(u)=max{d(u,v); veV} ® Minisum problem: find nodes whose sum of distances to other nodes
is minimal (= service facility location problem): For all u minimize total

® Centerofa graph: Set of all nodes with minimum eccentricity sum of minimal distances %, .,d(u,v)

® Eccentricity based centrality measure: ® Social analog: Determine central figure for coordination tasks

e L 1
V= ) T max{d(u,v)very

® Example:
s

32

° _ 36 26 24 22 2
- nodes in the center

of the graph have

maximal centrality ©

&

g(f)pca“l'\‘:g; graph with %, d(u,v) values
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Distances: Closeness

@
Distances: Closeness

® Minisum problem: find nodes whose sum of dis&gnces to other nodes
is minimal (= service facility location problem): For all u minimize total
sum of minimal distances 2,.,d(u,v)

® Social analog: Determine central figure for coordination tasks

® Example:

B
32

36 26 24 22 2

graph with X, _,d(u,v) values

H &
Distances: Closeness

® Possible resulting centrality index: closeness:

® Other possibility

1
)= Z d(u,v)

vel

> (Mg +1-d(u,v))

c(u) =L

V-1

i

Only applicable to
connected graphs;
disconnected graph:
all nodes will get the
same centrality 1/

Ag is the diameter

of the graph

®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via directed path - problematic !): using in-
distances: ,integration, using out-distances ,radiality” (see [6])

@
Distances: Closeness

. . N . . . .
Possible resulting centrality index: closeness: Only applicable to

connected graphs;

1 : :

c(u) = dlsconnectgd graph:
Z d(u,v) all nodes will get the

vel I same centrality 1/«

® Other possibility

> (Ag+1—=d(u,v))
c(u) — vel
V-1

Ag is the diameter

of the graph

®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via directed path = problematic !): using in-
distances: ,integration”, using out-distances ,radiality” (see [6])

® Possible resulting centrality index: closeness:

® Other possibility

1
R YT

vel [

> (Mg +1-d(u,v))

c(u) =L

V-1

Only applicable to
connected graphs;
disconnected graph:
all nodes will get the
same centrality 1/

Ag is the diameter

of the graph

®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via directed path - problematic !): using in-
distances: ,integration, using out-distances ,radiality” (see [6])
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Distances: Closeness
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Distances: Closeness

. . N . . . .
Possible resulting centrality index: closeness: Only applicable to

connected graphs;

c(u) = # disconnected graph:
Z d(u,v) all nodes will get the
vel same centrality 1/«
® Other possibility
> (Mg +1-d(u,v) .

= Ag is the diameter
c(u)="=

V-1 of the graph
®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via directed path = problematic !): using in-
distances: ,integration”, using out-distances ,radiality” (see [6])

H &
Distances: Closeness

. . . . . . -
Possible resulting centrality index: closeness: Only applicable to

1 connected graphs;

()= disconnectgd graph:
Z d(u,v) all nodes will get the
vel same centrality 1/

® Other possibility

> (A +1-d@v)

g Ag is the diameter
c(u) == L=

of the graph
®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0

if u,v are unreachable via directed path - problematic !): using in-
distances: ,integration, using out-distances ,radiality” (see [6])

@
Distances: Closeness

. . N . . . .
Possible resulting centrality index: closeness: Only applicable to

1 connected graphs;

c(u) = disconnectgd graph:
Z d(u,v) all nodes will get the
vel same centrality 1/«

® Other possibility

> (Ag+1-d@v)
c(u) — vel
V-1

Ag is the diameter

of the graph

®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via dire%ed path = problematic !): using in-
distances: ,integration”, using out-distances ,radiality” (see [6])

. . . . . . -
Possible resulting centrality index: closeness: Only applicable to

1 connected graphs;

c(u) = disconnectgd graph:
Z d(u,v) all nodes will get the
vel same centrality 1/

® Other possibility

> (Mg +1-d(u,v))
c(u) =L
V-1

Ag is the diameter

of the graph

®if computed on directed graph: (set d(u,u) = 0 and set d(u,v) =0
if u,v are unreachable via directed path - problematic !): using in-
distances: ,integration, using out-distances ,radiality” (see [6])

i
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Distances: Centroids
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Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

s
® Social Problem: Example: find “social ecological niche”

® Formalization: Foru, v : y,(v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

m)+;(| V| =7, (v) =7, (1) = ; v +;(m)—m(u))

customers

H & ]
Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: For u, v : y,(vJ=number of vertices closer to u than to v;
If one salesman selects u ar1d competitor selects v as locations, the first N
will have

mv)+;( V=7, () =7, () = ;| V) +;(n(V)—m(u))

customers
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Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: Foru, v : y,(v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

n(v)%q V| =70 (v) =7, () = % V) +%(n(v)—m.(u))

customers .

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: For u, v : 1, (v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have

1 1 1
VH(V)+5(\ Vi —VH(E)—?G(H)) = 5' Vi 57 =7.)

customers
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Distances: Centroids
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Distances: Centroids

® Competitive objective: Given number of competitors: where to open a
store (Customers will just choose store based on minimal distance)?

® Social Problem: Example: find “social ecological niche”

® Formalization: Foru, v : y,(v)=number of vertices closer to u than to v;
If one salesman selects u and competitor selects v as locations, the first
will have s

m)+;(| V| =7, (v) =7, (1) = ; v +;(m)—m(u))

customers
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Distances: Centroids

® - Competitor will want to minimize
S @)=y, )=y, @)

® 5 Possible centrality index: First salesman &(nows the strategy of the
competitor and calculates for each location the worst case:

e(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v

O &

Distances: Centroids

® - Competitor will want to minimize
J@v)=y,0)=7r,@)

® > Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

c(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u;
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v

® - Competitor will want to minimize
J@v)=y,0 =y, @)

® 5 Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

e(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v Iz
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Distances: Centroids

o e
Shortest Paths

® - Competitor will want to minimize

J.v)=7,0)=7,@)

® > Possible centrality index: First salesman knows the strategy of the
competitor and calculates for each location the worst case:

c(u)y=min {f(u,v):veV /{u}}

® c(u) is called centroid value: measures the advantage of location u
compared to other locations: Minimal loss of customers if he choses u
and a competitor choses v ke

H &
Shortest Paths: Shortest Path Betweenness

® Indices of this section can be applied to weighted, unweighted,

directed, undirected and multigraphs and to edges and vertices (“graph

elements” x).

® Assume that set of all shortest paths APSP is known (e.g. by
application of Floyd Warshall algorithm in O(|V|®) worst case time)

ke
° Reminder:
® BFS: SSSP; O(|V]+|E]) worst cas% time complexity, edge-weights==1
* Djikstra: SSSP; O(|V] log|V| +|E|) with Fibonacci heap; edge-weights = 0

® Floyd Warshall: APSP, O(|V|?) worst case time, arbitrary weights, no negative cycles allowed

(but can be detected via the alg.), dynamic programming;

® Bellman Ford: SSSP; O(|V] |E]), arbitrary weights, no negative cycles allowed (but can be
detected via the alg.)

@
Shortest Paths: Shortest Path Betweenness

® Again assume that communication (workflows etc.) happen along
shortest paths only. Let

O-ab (V)

ab

0,(v)= $

with g, : total number of shortet paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between
aandb

® Shortest Path Betweenness (SPB) centrality is then:

cM=2.> 5,V

a#v b#v

¢ Interpretation: Control that v exerts on the communication in the
graph
® Also applicable to disonnected graphs

¢ Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|?log|V|)
time
i
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Shortest Paths: Shortest Path Betweenness Deriving edge centralities from vertex centralities

® Define c_SPB for edges analogously

c@)=Y.> 5,

aeV beV

® What we have seen so far: Various centrality measures mostly for
vertices (based on degree, closeness, betweenness)

® > Formal way to translate a given vertex centrality index to a
corresponding edge centrality: Apply the given vertex centrality to a

® Possible: Interpret quantity J_,(v) as general relative information flow transformed version of G, the edge graph

through v (“rush”) Iy
° . ® Given original G =(V,E) then the edge grgph G’ = (E,K) is defined by
Other variants: Instead of shortest paths between a and b regard taking original edges as vertices. Two original edges are connected in

® the set of all paths ks G’ if they are originally incident to the same original node.

® the set of the k-shortest paths (interesting for social case; choose small k) o
® ihe set of the k-shortest node disjoint paths Size of G’ may be quadratic (w.r.t. number of nodes) compared to G

® the set of paths not longer than (1+&)d(a,b)

k-shortest
paths: paths
not longer
than k

& . . ® . -
Deriving edge centralities from vertex centralities Deriving edge centralities from vertex centralities
G GJ a GJJ G G? a G”
c C c c
c b c b

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new
“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is Q

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new
“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.
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Vitality

Deriving edge centralities from vertex centralities
G GJ a GJJ
Cc c
c b

® Remember: Vertex stress centrality for node x: Number of shortest
paths that use x; Straightforward version for edge e: Number of shortest
paths that use e;

*> Upper Example: G: Stress centrality of edge a would be 3; But in
edge graph G’ stress centrality of original edge a (now a node) is 0.

® > Formal translations of vertex centrality indices to edge centralities
with edge graphs are not well suited for all purposes

® > Introduce incidence graph G”: Each original edge is split by new

“edge vertex” that represents the edge - Now vertex indices can be
applied, preserving the intuition.

R
Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})
s

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@

ec{Out—Edgesof s}  ec{In—Edgesof t}

where the local flows J respect capacity contraints: (< f(e) <w(e)

and balance conditions: — ~
VveV \{s,t}: Zf(e): Zf(e)

ec{Out—Edges of v} ec{In—Edges of v}

@
Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow ffs.#) from node s (source) to node t (sink) is
defined as:

fsn=" Y fe = > f@

ec{Out—Edgesof s}  ec{In-Edgesof 1}

= ~ R
where the local flows [ respect capacity contraints: 0 < f'(e) < w(e)

and balance conditions: - -
VvelV \{s,}: > fley= > f(e

ec{Out—Edges of v} ec{In—Edges of v}

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@

ec{Out—Edgesof s}  ec{In—Edgesof t}

where the local flows J respect capacity contraints: (< f(e) <w(e)

and balance conditions: - -
VveV\{s,1}: > fle)= > f(e

ec{Out—Edges of v} ec{In—Edges of v}
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Vitality

e
Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow ffs.#) from node s (source) to node t (sink) is

defined as:
e = i

f(s.0) =
ec{Out—Edgesof s}  ec{In-Edgesof 1}

where the local flows [ respect capacity contraints: (< f(e) <w(e)

and balance conditions: _ ~
PACEEIWAC)

Yvel\ {g, t}:
ec{Out—Edges of v} ec{In—Edges of v}

R
Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is

defined as:
i = S fe

f(s.0) =
ec{Out—Edgesof s}  ec{In—Edgesof t} s

where the local flows J respect capacity contraints: (< f(e) <w(e)

and balance conditions: — ~
Vve V\{g,t}: Zf(e): Zf(e)

ec{Out—Edges of v} ec{In—Edges of v}

@
Vitality

® Computing a flow f: E 2 R of maximum value (tweaking the local
flows): O(|V] |E| log(]V|¥|E])) (Algorithm by Goldberg & Tarjan (see
(21))

® Now define quality measure by e.g.:

q(G)= > max f(s.0)

stV

ke
® Social analog of flow: Workflow, Information-flow, “Doing favors
flow” etc.

K
® Computing a flow f: E & R of maximum value (tweaking the local
flows): O(|V| |E| log(|V|¥|E|)) (Algorithm by Goldberg & Tarjan (see
[21) &

® Now define quality measure by e.g.:

q(G)= > max f(s,1)

s.tel

® Social analog of flow: Workflow, Information-flow, “Doing favors
flow” etc.
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Vitality

e
Vitality

ks
® Computing a flow f: E 2 R of maximum value (tweaking the local
flows): O(|V] |E| log(]V|¥|E])) (Algorithm by Goldberg & Tarjan (see
(21))

® Now define quality measure by e.g.:

q(G)= > max f(s.0)

stV
ke
® Social analog of flow: Workflow, Information-flow, “Doing favors
flow” etc.
&
Vitality

® Intuition: Measure importance of vertex (or edge) by the difference of
a given quality measure q on G with or without the vertex (edge):

*> Vitality v(x) of graph element x : v(x) = q(G) - q(G\{x})
L,
s

® Example 1 for quality measure q: Flow:

® Given directed graph G with positive edge weights w modeling
capacities. The flow fis,#) from node s (source) to node t (sink) is
defined as:

fsn= Y e = > f@

ec{Out—Edgesof s}  ec{In—Edgesof t}

where the local flows J respect capacity contraints: (< f(e) <w(e)

and balance conditions: — ~
VveV \{s,t}: Zf(e): Zf(e)

ec{Out—Edges of v} ec{In—Edges of v}

& : L
Stress Centrality as Vitality

® Possible Interpretation: Distance d(v,w) represents costs to send
message from v to w

® If x is a cut-vertex or bridge-edge - Graph is disconnected after
removal = centrality cannot be computed.

&

® We had: stress centrality of v or e is equal to humber of shortest
paths through v or e

Coness() = D D 040 Coress (€) =D ()

acl,a#v beV ;b#v acV belV

® Intuition: cstress(v) seems to measure the number of shortest paths
that would be lost if v wasn‘t avaliable any more

® Why can‘t we directly use ¢, as a graph quality index to construct
a vitality index ? Iy

® >Because actual number of shortest paths can INCREASE if e.g.
edge is taken away
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Stress Centrality as Vitality

H &
Stress Centrality as Vitality

® > In order to define a vitality-like version of stress: Consider only
those shortest paths that haven‘t changed their length:

K
cv.i!afity(vﬂ G) = Cs!ress (V> G) - cstress (VJ G \‘ {V})
with

Cones V-GN = Y D o,lds(a.b) =d,(a,b)]

acV ,a#v beV ;b#v

(Ilverson notation)

. "
Cnitique on Betweeness Based Centralities

® > In order to define a vitality-like version of stress: Consider only
those shortest paths that haven‘t changed their length:

Cvitaf.ily(v> G) = cstress (V, G) - Cs!ress (V, G \‘ {V})
with

Copress V, G\ {V}) = Z Zo-ab [d;(a,b)= dG\{v}(aa b) &

aclV azv beV b#v

(Ilverson notation)

@
andom Walk Centrality == Current Flow Btw. Centrality (see [3])

® major critique: Max-Flow betweenness centrality (suggested to
counteract this drawback) may exhibit similar problems

® here: special Max-Flow betweenness
centrality mfb:

-- limit edge capacity to one (b) A

-- mfb(i) := maximum possible flow

B

through i over all possible solutionsto | Groupl :C . Growp2
the s-t-maximum flow problem, averaged e

over all s and t.

Ik

(b) In calculations of flow betweenness, vertices A and B in
this configuration will get high scores while vertex C will not.

Source: [9]

® random walk based centrality rwb: idea:
rwb(i) := number of times that a random walk starting at s and
ending at t passes through i along the way, averaged over all s
and t

® rwb spb: opposite ends:

® rwb: info has no idea where its going

° spb: info knows exactly where its going
s

¢ compute for all i rwb(i): O((m+ n)n2) worst case time complexity
(comparable to spb) s



@
andom Walk Centrality == Current Flow Btw. C%ntrality (see [9])
I

H e
Random Walk Centrality == Current Flow Btw. Ce[;ntrality (see [5])

® flow of electric current in a resistor network;
V, = voltage (potential) at vertex i

® . Current Flow betweenness cfb centrality : cfb(i) := amount of
current that flows through i in this setup, averaged over all s and t.

&

\

one unit of current in

\mew 4

t
VAVAVA e S VAVAVAVA
,\.\1\ \

o« one unit of current out
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® flow of electric current in a resistor network;
V; = voltage (potential) at vertex i

® . Current Flow betweenness cfb centrality : ¢fb(i) := amount of
current that flows through i in this setup, averaged over all s and t.

i

"\

one unit of current in

\é\mlzw

VAT AV e e VAVAVAVA
,\.\1\ \

o« one unit of current out

/
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@
andom Walk Centrality == Current Flow Btw. Centrality (see [3])

® flow of electric current in a resistor network;
V, = voltage (potential) at vertex i

® > Current Flow betweenness cfb centrality : c¢fb(i) := amount of
current that flows through i in this setup, averaged over all s and t.

\

one unit of current in

\leéw 5

t
VAVAVA e S VAVAVAVA
,\.\1\ \

o« one unit of current out

VWVAAA

® flow of electric current in a resistor network;
V; = voltage (potential) at vertex i

® o Current Flow betweenness cfb centrality : cfb(i) := amount of
current that flows through i in this setup, averaged over all s and t.

"\

one unit of current in

\ /‘/\/\fv\&\f S ’
a%\ z

t

VAT AV e e VAVAVAVA
,\.\1\ \

o« one unit of current out
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Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® Kirchhoffs point law (current conservation): total current flow in / out of
node is zero:

N A (Vi V) = b —
7 L

1 if there is an edge between i and j,
Ay = e
0 otherwise,
one unit of current 1n j/\z . 1 iti=j,
> Z A herwise
\ AN va otherwise,
s v %
7 >
4 3
12
VATAYA A S VAVAVAVA \
~N
N
o« one unit of current out

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

> i Aij = k. the degree of vertex i

(D-A) V=5
H_/

“Graph Laplacian”

> Ay(Vi = V) = i — O
J i

D is the diagonal matrix with elements I};; = k;

+1 for 1 = s,
source vector s s; = -1 for i = t.
0 otherwise.

V=D,—A,) s

@
andom Walk Centrality == Current Flow Btw. Centrality (see [3])

> j Aij = ky, the degree of vertex i

(D—A) V=5
%(_)

“Graph Laplacian” |,

3 Ay (Vi = V3) = di — b
J

D is the diagonal matrix with elements D;; = k;

N
+1 for i = s,
source vector s 8 = —1 for i =t,
0 otherwise.

V=(D,—A,) " s

> i Aij = k. the degree of vertex i
L
D AV = V) =i — 0 (D-A)-V=s
-

! “Graph Laplacian” |,

D is the diagonal matrix with elements I};; = k;
S

+1 for i = s,

-1 for i =t,

source vector s S = {
0 otherwise.

V=(D,—A,)""s
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>, Aij = ki, the degree of vertex i

(D-A) V=s
%(_)

[N “Graph Laplacian”

D AG(Vi = V) = 0ie — 0t
i

D is the diagonal matrix with elements D;; = k;

+1 for i = s,
source vector s 5 = —1 fori =t,
0 otherwise.

V=(D,-A,)" s

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

(D-A)-V=s
- —

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) - now invertible

V=MD,-A,) ! s (matrix inversion: O(n?))
let us now add a vth row and column back into (D, — A,) !

with values all equal to zero.
The resulting matrix we will denote T.

A(st) _
—— I",-( ) = Tie — Tt
(st) l[}g r(st) ~(st)
——current flow at node i: I; " = 3 ZAUH"}' -V
J

@
andom Walk Centrality == Current Flow Btw. Centrality (see [3])

(D-A) - V=s
—
Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. >
remove the v-th row and column (since V,=0) = now invertible

V=(D,-A,) ' s (matrix inversion: O(n%))

let us now add a vth row and column back into (D, — A,)"*

with values all equal to zero. R

The resulting matrix we will denote T
A(st)
— "’i( ) = Tis — T

— s current flow at node i: 1" = : Z Ay |9 — 1[f"j(“q”|
J

>.; Aij = ki, the degree of vertex i

D AV = V) = 6is — 0ut (D-A)-V=s
3 —
“Graph Laplacian”

D is the diagonal matrix with elements I};; = k;

+1 for 1 = s,
source vector s 8 = -1 for ¢ = t,
0 otherwise.
I

V=(D,-A,)"" s
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(D-A) - V=s
H_)

Laplacian is not invertible, det = 0, because system of eq. is
overdetermined - set one V,=0 and measure voltages relative to v. 2>
remove the v-th row and column (since V,=0) = now invertible

V=(D,-A,) ' s

(matrix inversion: O(n3))

let us now add a vth row and column back into (D, — A,)~*
with values all equal to zero.
The resulting matrix we will denote T.

v =T -1y

7

— - current flow at node i I.*" = %Zﬂijﬂf:-(m - ‘i-f'}(“q”|
J

SN
Random Walk Centrality == Current Flow Btw. Centrality (see [5])

® current flow at node i:

(st) 1 (st) (st)
LY =33 AV = v
J
=33 Ay|Tie = Tie = Tje + Ty, for i # s.t.
i
® unit current flow at nodes s and t:

159 =1, 1Y =1.

¢ cfb(i) (denoted as b;) is then:

(takes O(m n2) for all i) — %
(plus matrix inversion:)
O((m+n) n?) for everything

(st)
hi — —Zﬂ<t Ii .
%n{_n —1)

@
Example ([5])

® current flow at node i:

st st st
1 = 53 AV - v

J
= 3> Ay|Tie = Tt — Tja + Tje|.  for i # s.t.
;

® unit current flow at nodes s and t:

10 =1 1Y =1,

S

® cfb(i) (denoted as b;) is then:

§ (takes O(m n?) for all i) —

(plus matrix inversion:)
O((m+n) n2) for everything

(st)
Zs({fi )

b; =
in(n-1)

Network 1 Network 2
betweenness measnre ‘
network shortest-path _max-flow  oomwalk/ =
Network 1:  vertices A & B 0.636 0.631 0.670
vertex C 0.282 0.333
vertices X & Y 0.200 0.068 0.269
Network 2:  vertices A & B 0.265 0.269 0.321
vertex C 0.243 0,267
vertices X & Y 0.125 0.024 0.194



@
Example ([5])

X A
X c Y
A B _ _
Y B
Network 1 Network 2
betweenness measure ol
network shortest-path max-llow '
Network 1:  vertices A & B 0.636 0.631 0.670
vertex C 0.200 0.282 0.333
vertices X &Y 0.200 0.068 0.269
Network 2:  vertices A & B 0.265 0.269 0.321
vertex C 0.243 0.004 0‘267%
vertices X & Y 0.125 0.024 0.194




