Script generated by TTT

Title: groh: profile1 (06.05.2014)

Date: Tue May 06 12:08:37 CEST 2014

Duration: 82:20 min

Pages: 68

General "Definition": Structural Index

- "Importance" has many aspects but minimal def. for centrality: Only depends on structure of graph:
- Structural Index: Let G = (V,E,w) be a weighted directed or undirected multigraph. A function $s: V \to \mathbb{R}$ (or $s: E \to \mathbb{R}$) is a structural index iff

$$\forall x : G \cong H \rightarrow s_G(x) = s_H(\phi(x))$$

(Recall: Two graphs G and H are isomorphic ($G \cong H$) iff exists a bijective mapping $\Phi: G \xrightarrow{} H$ so that $(u,v) \in G$ iff $(\Phi(u),\Phi(v)) \in H$)

- structural index induces (total) partial-order (≤) on nodes/edges
- → centrality can usually only be viewed as measured on an ordinal scale only (not interval or ratio scale)

General "Definition": Structural Index

- "Importance" has many aspects but minimal def. for centrality: Only depends on structure of graph:
- Structural Index: Let G = (V,E,w) be a weighted directed or undirected multigraph. A function s: $V \to \mathbb{R}$ (or s: $E \to \mathbb{R}$) is a structural index iff

$$\forall x : G \cong H \rightarrow s_G(x) = s_H(\phi(x))$$

(Recall: Two graphs G and H are isomorphic (G \simeq H) iff exists a bijective mapping Φ : G \rightarrow H so that $(u,v) \in G$ iff $(\Phi(u),\Phi(v)) \in$ H)

- structural index induces (total) partial-order (≤) on nodes/edges
- → centrality can usually only be viewed as measured on an ordinal scale only (not interval or ratio scale)

• Structural Index: Let G = (V,E,w) be a weighted directed or undirected multigraph. A function s: $V \rightarrow \mathbb{R}$ (or s: $E \rightarrow \mathbb{R}$) is a structural index iff

$$\forall x : G \simeq H \rightarrow s_G(x) = s_H(\phi(x))$$

(Recall: Two graphs G and H are isomorphic (G \simeq H) iff exists a bijective mapping Φ : G \rightarrow H so that $(u,v) \in G$ iff $(\Phi(u),\Phi(v)) \in$ H)

- structural index induces (total) partial-order (≤) on nodes/edges
- → centrality can usually only be viewed as measured on an ordinal scale only (not interval or ratio scale)

(1) (b) (C) (B) (Q) (co)

Distances: Eccentricity

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

→ nodes in the center of the graph have maximal centrality

○

• Centrality-measures defined on the basis of distances or neighbourhoods in the graph:

Centrality of vertex ← → "reachability" of a vertex

L

Neighborhoods: Degree Centrality

- Most basic: Degree centrality: c(u) = deg(u) (or c(u)=in-deg(u) or c(u) = out-deg(u)) → local measure
- Applicable: If edges have "direct vote" semantics

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)_{\geqslant}} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

 → nodes in the center of the graph have maximal centrality ©

Distances: Eccentricity

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

→ nodes in the center of the graph have maximal centrality ©

4) (b) (C) (E) (Q) (...)

Distances: Eccentricity

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

→ nodes in the center of the graph have maximal centrality ©

- Eccentricity e(u)=max{d(u,v); v∈V}
- Center of a graph: Set of all nodes with minimum eccentricity
- Eccentricity based centrality measure:

$$c(u) = \frac{1}{e(u)} = \frac{1}{\max\{d(u, v) : v \in V\}}$$

→ nodes in the center of the graph have maximal centrality ©

Distances: Closeness

- Minisum problem: find nodes whose sum of distances to other nodes is minimal (\rightarrow service facility location problem): For all u minimize total sum of minimal distances $\sum_{v \in V} d(u,v)$
- Social analog: Determine central figure for coordination tasks
- Example:

B

Distances: Closeness

- Minisum problem: find nodes whose sum of distances to other nodes is minimal (→ service facility location problem): For all u minimize total sum of minimal distances $\sum_{v \in V} d(u, v)$
- Social analog: Determine central figure for coordination tasks
- Example:

graph with $\sum_{v \in V} d(u, v)$ values

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_{G} is the diameter

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs: disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_{G} is the diameter of the graph

• if computed on directed graph; (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$
 Δ_G is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs: disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$
 Δ_G is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{v \in V} d(u, v)}$$

Only applicable to connected graphs: disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$
 Δ_G is the diameter of the graph

of the graph

• if computed on directed graph; (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path → problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

Distances: Closeness

Possible resulting centrality index: closeness:

$$c(u) = \frac{1}{\sum_{u \in V} d(u, v)}$$

Only applicable to connected graphs; disconnected graph: all nodes will get the same centrality 1/∞

Other possibility

$$c(u) = \frac{\sum_{v \in V} (\Delta_G + 1 - d(u, v))}{|V| - 1}$$

 Δ_{G} is the diameter of the graph

• if computed on directed graph: (set d(u,u) = 0 and set d(u,v) = 0 if u,v are unreachable via directed path \rightarrow problematic!): using indistances: "integration", using out-distances "radiality" (see [6])

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v: $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

Distances: Centroids

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v: $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_u(v) + \frac{1}{2}(|V| - \gamma_u(v) - \gamma_v(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_u(v) - \gamma_v(u))$$

customers

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_{u}(v) + \frac{1}{2}(|V| - \gamma_{u}(v) - \gamma_{v}(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_{u}(v) - \gamma_{v}(u))$$

customers

Competitor will want to minimize

- Competitive objective: Given number of competitors: where to open a store (Customers will just choose store based on minimal distance)?
- Social Problem: Example: find "social ecological niche"
- Formalization: For u, v : $\gamma_u(v)$ =number of vertices closer to u than to v; If one salesman selects u and competitor selects v as locations, the first will have

$$\gamma_u(v) + \frac{1}{2}(|V| - \gamma_u(v) - \gamma_v(u)) = \frac{1}{2}|V| + \frac{1}{2}(\gamma_u(v) - \gamma_v(u))$$

customers

f(x,y) = f(y) + f(y)

$$f(u,v) = \gamma_u(v) - \gamma_v(u)$$

Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

Distances: Centroids

◆Competitor will want to minimize

$$f(u,v) = \gamma_u(v) - \gamma_v(u)$$

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

R

(1) (b) (2) (B) (Q) (...)

◆Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

• c(u) is called centroid value: measures the advantage of location u compared to other locations: Minimal loss of customers if he choses u and a competitor choses v

Competitor will want to minimize

$$f(u, v) = \gamma_u(v) - \gamma_v(u)$$

◆ Possible centrality index: First salesman knows the strategy of the competitor and calculates for each location the worst case:

$$c(u) = \min_{v} \{ f(u, v) : v \in V / \{u\} \}$$

Shortest Paths: Shortest Path Betweenness

 Again assume that communication (workflows etc.) happen along shortest paths only. Let

$$\delta_{ab}(v) = \frac{\sigma_{ab}(v)}{\sigma_{ab}} \quad \dot{s}$$

with σ_{ab} : total number of shortest paths between nodes a and b.

Interpretation. Probability that v is involved in a communication between a and b

- Indices of this section can be applied to weighted, unweighted, directed, undirected and multigraphs and to edges and vertices ("graph elements" x).
- Assume that set of all shortest paths APSP is known (e.g. by application of Floyd Warshall algorithm in O(|V|³) worst case time)

C

- Reminder
 - BFS: SSSP; O(|V|+|E|) worst case time complexity, edge-weights==1
 - Djikstra: SSSP; O(|V| log|V| +|E|) with Fibonacci heap; edge-weights ≥ 0
 - Floyd Warshall: APSP, $O(|V|^3)$ worst case time, arbitrary weights, no negative cycles allowed (but can be detected via the alg.), dynamic programming:
 - $^{\bullet}$ Bellman Ford: SSSP; O(|V| |E|), arbitrary weights, no negative cycles allowed (but can be detected via the alg.)

Shortest Paths: Shortest Path Betweenness

Shortest Path Betweenness (SPB) centrality is then:

$$c(v) = \sum_{a \neq v} \sum_{b \neq v} \delta_{ab}(v)$$

- Interpretation: Control that v exerts on the communication in the graph
- Also applicable to disonnected graphs
- Algorithm by Ulrik Brandes computes SPB in O(|V||E| + |V|²log|V|) time

■ [®] Shortest Paths: Shortest Path Betweenness

Define c_SPB for edges analogously

$$c(e) = \sum_{a \in V} \sum_{b \in V} \delta_{ab}(e)$$

- $^{\bullet}$ Possible: Interpret quantity $\delta_{ab}(v)$ as general relative information flow through v ("rush")
- Other variants: Instead of shortest paths between a and b regard
 - the set of all paths

- L_g
- the set of the k-shortest paths (interesting for social case; choose small k)
- the set of the k-shortest node disjoint paths
- the set of paths not longer than (1+ε)d(a,b)

k-shortest paths: paths not longer than k

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Deriving edge centralities from vertex centralities

- What we have seen so far: Various centrality measures mostly for vertices (based on degree, closeness, betweenness)
- ◆ Formal way to translate a given vertex centrality index to a corresponding edge centrality: Apply the given vertex centrality to a transformed version of G, the edge graph
- Given original G =(V,E) then the edge graph G' = (E,K) is defined by taking original edges as vertices. Two original edges are connected in G' if they are originally incident to the same original node.
- Size of G' may be quadratic (w.r.t. number of nodes) compared to G

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e;
- \rightarrow Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is ϱ .
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

Deriving edge centralities from vertex centralities

- Remember: Vertex stress centrality for node x: Number of shortest paths that use x; Straightforward version for edge e: Number of shortest paths that use e:
- → Upper Example: G: Stress centrality of edge a would be 3; But in edge graph G' stress centrality of original edge a (now a node) is 0.
- → Formal translations of vertex centrality indices to edge centralities with edge graphs are not well suited for all purposes
- → Introduce incidence graph G": Each original edge is split by new "edge vertex" that represents the edge → Now vertex indices can be applied, preserving the intuition.

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure g on G with or without the vertex (edge):
 - → Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)^{\aleph}$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$$

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - ◆ Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s, t\} : \sum_{e \in \{Out - Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In - Edges \ of \ v\}} \widetilde{f}(e)$$

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure g on G with or without the vertex (edge):
 - \rightarrow Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges\ of\ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges\ of\ v\}} \widetilde{f}(e)$$

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - \rightarrow Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s, t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$$

- Computing a flow f: $E \to \mathbb{R}$ of maximum value (tweaking the local flows): $O(|V| |E| \log(|V|^2/|E|))$ (Algorithm by Goldberg & Tarjan (see [2]))
- Now define quality measure by e.g.:

$$q(G) = \sum_{s,t \in V} \max f(s,t)$$

• Social analog of flow: Workflow, Information-flow, "Doing favors flow" etc.

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
 - → Vitality v(x) of graph element x : v(x) = q(G) q(G\{x})
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

$$\forall v \in V \setminus \{s, t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$$

- Computing a flow f: $E \to \mathbb{R}$ of maximum value (tweaking the local flows): $O(|V| |E| \log(|V|^2/|E|))$ (Algorithm by Goldberg & Tarjan (see [2]))
- Now define quality measure by e.g.:

$$q(G) = \sum_{s,t \in V} \max f(s,t)$$

Social analog of flow: Workflow, Information-flow, "Doing favors flow" etc.

- Computing a flow f: $E \to \mathbb{R}$ of maximum value (tweaking the local flows): $O(|V| |E| \log(|V|^2/|E|))$ (Algorithm by Goldberg & Tarjan (see [2]))
- Now define quality measure by e.g.:

$$q(G) = \sum_{s,t \in V} \max f(s,t)$$

Social analog of flow: Workflow, Information-flow, "Doing favors flow" etc.

- ${}^{\bullet}$ Possible Interpretation: Distance d(v,w) represents costs to send message from v to w
- If x is a cut-vertex or bridge-edge → Graph is disconnected after removal → centrality cannot be computed.

B

- Intuition: Measure importance of vertex (or edge) by the difference of a given quality measure q on G with or without the vertex (edge):
- Example 1 for quality measure q: Flow:
 - Given directed graph G with positive edge weights w modeling capacities. The flow f(s,t) from node s (source) to node t (sink) is defined as:

$$f(s,t) = \sum_{e \in \{Out-Edges \ of \ s\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ t\}} \widetilde{f}(e)$$

where the local flows \widetilde{f} respect capacity contraints: $0 \le \widetilde{f}(e) \le w(e)$ and balance conditions:

 $\forall v \in V \setminus \{s,t\} : \sum_{e \in \{Out-Edges \ of \ v\}} \widetilde{f}(e) = \sum_{e \in \{In-Edges \ of \ v\}} \widetilde{f}(e)$

Stress Centrality as Vitality

hg.

• We had: stress centrality of v or e is equal to number of shortest paths through v or e

$$c_{stress}(v) = \sum_{a \in V: a \neq v} \sum_{b \in V: b \neq v} \sigma_{ab}(v) \qquad c_{stress}(e) = \sum_{a \in V} \sum_{b \in V} \sigma_{ab}(e)$$

- Intuition: $c_{\it stress}(v)$ seems to measure the number of shortest paths that would be lost if v wasn't avaliable any more
- Why can't we directly use $c_{\it stress}$ as a graph quality index to construct a vitality index ?
- →Because actual number of shortest paths can INCREASE if e.g. edge is taken away

• → In order to define a vitality-like version of stress: Consider only those shortest paths that haven't changed their length:

$$c_{vitality}(v, G) = c_{stress}(v, G) - c_{stress}(v, G \setminus \{v\})$$

with

$$c_{stress}(v, G \setminus \{v\}) = \sum_{a \in V: a \neq v} \sum_{b \in V: b \neq v} \sigma_{ab} [d_G(a, b) = d_{G \setminus \{v\}}(a, b)]$$

(Iverson notation)

Critique on Betweeness Based Centralities

- major critique: Max-Flow betweenness centrality (suggested to counteract this drawback) may exhibit similar problems
- here: special Max-Flow betweenness centrality mfb:
 - -- limit edge capacity to one
 - -- mfb(i) := maximum possible flow through i over all possible solutions to the s-t-maximum flow problem, averaged over all s and t.

(b) In calculations of flow betweenness, vertices A and B in this configuration will get high scores while vertex C will not.

Source: [5]

• → In order to define a vitality-like version of stress: Consider only those shortest paths that haven't changed their length:

$$c_{vitality}(v, G) = c_{stress}(v, G) - c_{stress}(v, G \setminus \{v\})$$

with

$$c_{stress}(v, G \setminus \{v\}) = \sum_{a \in V: a \neq v} \sum_{b \in V: b \neq v} \sigma_{ab}[d_G(a, b) = d_{G \setminus \{v\}}(a, b)] \quad \mathbb{R}$$

(Iverson notation)

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- random walk based centrality rwb: idea:
 rwb(i) := number of times that a random walk starting at s and
 ending at t passes through i along the way, averaged over all s
 and t
- rwb ↔ spb: opposite ends:
 - rwb: info has no idea where its going
 - spb: info knows exactly where its going
- compute for all i rwb(i): $O((m+n)n^2)$ worst case time complexity (comparable to spb)

- flow of electric current in a resistor network; V_i = voltage (potential) at vertex i
- Current Flow betweenness cfb centrality : cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

one unit of current in

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- flow of electric current in a resistor network; V_i = voltage (potential) at vertex i
- Current Flow betweenness cfb centrality : cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- flow of electric current in a resistor network; V_i = voltage (potential) at vertex i
- Current Flow betweenness cfb centrality : cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

- flow of electric current in a resistor network; V_i = voltage (potential) at vertex i
- Current Flow betweenness cfb centrality : cfb(i) := amount of current that flows through i in this setup, averaged over all s and t.

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

• Kirchhoffs point law (current conservation): total current flow in / out of node is zero:

$$\sum_{j} A_{ij} (V_i - V_j) = \delta_{is} - \delta_{it},$$

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge between } i \text{ and } j, \\ 0 & \text{otherwise,} \end{cases}$$

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

one unit of current out

$$\sum_{j} A_{ij} (V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

 $\sum_{i} A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{``Graph Laplacian''}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$$(\mathbf{D} - \mathbf{A}) \cdot \mathbf{V} = \mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one V_v =0 and measure voltages relative to v. \rightarrow remove the v-th row and column (since V_v =0) \rightarrow now invertible

$$V = (D_v - A_v)^{-1} \cdot s$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote $\mathbf{T}^{\mathbb{R}}$

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

$$\underbrace{(\mathbf{D} - \mathbf{A})}_{} \cdot \mathbf{V} = \mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one V_v =0 and measure voltages relative to v. \rightarrow remove the v-th row and column (since V_v =0) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote T.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

$$\longrightarrow \text{current flow at node i:} \quad I_i^{(st)} = \frac{1}{2} \sum_j^{\aleph} A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

 $\sum_i A_{ij} = k_i$, the degree of vertex i.

$$\sum_{j} A_{ij}(V_i - V_j) = \delta_{is} - \delta_{it} \qquad \underbrace{(\mathbf{D} - \mathbf{A})}_{\text{"Graph Laplacian"}} \mathbf{V} = \mathbf{s}$$

D is the diagonal matrix with elements $D_{ii} = k_i$

source vector
$$\mathbf{s}$$
 $s_i = \begin{cases} +1 & \text{for } i = s, \\ -1 & \text{for } i = t, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$

$$\underbrace{(\mathbf{D}-\mathbf{A})}\cdot\mathbf{V}=\mathbf{s}$$

Laplacian is not invertible, det = 0, because system of eq. is overdetermined \rightarrow set one $V_v=0$ and measure voltages relative to v. \rightarrow remove the v-th row and column (since $V_v=0$) \rightarrow now invertible

$$\mathbf{V} = (\mathbf{D}_v - \mathbf{A}_v)^{-1} \cdot \mathbf{s}$$
 (matrix inversion: O(n³))

let us now add a vth row and column back into $(\mathbf{D}_v - \mathbf{A}_v)^{-1}$ with values all equal to zero.

The resulting matrix we will denote **T**.

$$\longrightarrow V_i^{(st)} = T_{is} - T_{it}$$

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

current flow at node i:

$$I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

= $\frac{1}{2} \sum_j A_{ij} |T_{is} - T_{it} - T_{js} + T_{jt}|$, for $i \neq s, t$.

unit current flow at nodes s and t:

$$I_s^{(st)} = 1, \qquad I_t^{(st)} = 1.$$

cfb(i) (denoted as b_i) is then:

$$b_i = \frac{\sum_{s < t} I_i^{(st)}}{\frac{1}{2}n(n-1)}.$$

(takes O(m n²) for all i) → (plus matrix inversion:) O((m+n) n²) for everything

Random Walk Centrality == Current Flow Btw. Centrality (see [5])

current flow at node i:

$$I_i^{(st)} = \frac{1}{2} \sum_j A_{ij} |V_i^{(st)} - V_j^{(st)}|$$

= $\frac{1}{2} \sum_j A_{ij} |T_{is} - T_{it} - T_{js} + T_{jt}|$, for $i \neq s, t$.

unit current flow at nodes s and t:

$$I_s^{(st)} = 1, I_t^{(st)} = 1.$$

cfb(i) (denoted as b_i) is then:

$$b_i = \frac{\sum_{s < t} I_i^{(st)}}{\frac{1}{2}n(n-1)}.$$

(takes O(m n²) for all i) \rightarrow (plus matrix inversion:) O((m+n) n²) for everything

Network 1

Network 2

			betw		
	$n\epsilon$	etwork	shortest-path	max-flow	random walk / — current-flow
Netv	work 1:	vertices A & B	0.636	0.631	0.670
		vertex C	0.200	0.282	0.333
		vertices X & Y	0.200	0.068	0.269
Netv	work 2:	vertices A & B	0.265	0.269	0.321
		vertex C	0.243	0.004	0.267 0.194
		vertices X & Y	0.125	0.024	0.194

Network 1

Network 2

		betweenness measure		
$\mathbf{n}\epsilon$	etwork	shortest-path	max-flow	random walk / — current-flow
Network 1:	vertices A & B	0.636	0.631	0.670
	vertex C	0.200	0.282	0.333
	vertices X & Y	0.200	0.068	0.269
Network 2:	vertices A & B	0.265	0.269	0.321
	vertex C	0.243	0.004	$\begin{array}{c} 0.267_{ \scriptsize \scriptstyle \raisebox{4ex}{$\scriptstyle \triangleright$}} \\ 0.194 \end{array}$
	vertices X & Y	0.125	0.024	0.194

