Script generated by TTT

Title: groh: profile1 (30.04.2014)

Date: Wed Apr 30 08:14:37 CEST 2014

Duration: 89:38 min

Pages: 40

R

Contextual Social Networking

Social Networking

Communities: (older term (since end of 1990s)):

- O groups of users associated with web-platforms that support their communication (direct ←→ indirect, 1:1 ←→ n:m, synchronous ←→ asynchronous) through services (discussion boards, chats, blackboards, messaging etc.) [Groh and Schlichter, 2005; in (2)]
- O Community types:
 - Communities of Interest [Koch, 2003a], [Carotenuto et al., 1999 in (2)],
 - Communities of Practice [Lesser and Storck, 2001; in (2)],
 - professional communities [Koch and Richter, 2009; in (2)],
 - Open Innovation communities (see (2) chapter 11)), etc.
- o earlier forms of networks: "Buddylists" etc.
- O often emphasis on distinct common pursuit, and / or collaboration

Social Networking

Communities: (older term (since end of 1990s)):

- O groups of users associated with web-platforms that support their communication (direct ←→ indirect, 1:1 ←→ n:m, synchronous ←→ asynchronous) through services (discussion boards, chats, blackboards, messaging etc.) [Groh and Schlichter, 2005; in (2)]
- O Community types:
 - Communities of Interest [Koch, 2003a], [Carotenuto et al., 1999 in (2)],
 - Communities of Practice [Lesser and Storck, 2001; in (2)],
 - professional communities [Koch and Richter, 2009; in (2)],
 - Open Innovation communities (see (2) chapter 11)), etc.
- o earlier forms of networks: "Buddylists" etc.
- often emphasis on distinct common pursuit, and / or collaboration
- variant of Social Networking platforms which may be viewed as a development from community computing / community platforms

Social Networking

Social Networking: class / paradigm in Social Computing:

- users' main goal: maintaining and expanding their social network via communication
- O users explicate and maintain explicit model of social relations (→ social network) and user-item-relations (Facebook "like", comments etc.)
- users socially interact using bundle of Social Media services (direct communication, information, awareness)
- O users have personal information spaces: sets of items associated with users that they exert control over or whose relations (user-item) they exert control over
- a user has personal profile: publicly accessible sub-space of p.i.s.: used as personal reference: for introducing a person or used as reference point for SN services (e.g. awareness services)
- communication: non-anonymous; content: mostly textual + photos + contextual; non-commercial; discrete transfer

Communities: (older term (since end of 1990s)):

O groups of users associated with web-platforms that support their communication (direct ←→ indirect, 1:1 ←→ n:m, synchronous ←→ asynchronous) through services (discussion boards, chats, blackboards, messaging etc.) [Groh and Schlichter, 2005; in (2)]

O Community types:

- Communities of Interest [Koch, 2003a], [Carotenuto et al., 1999 in (2)],
- Communities of Practice [Lesser and Storck, 2001; in (2)],
- professional communities [Koch and Richter, 2009; in (2)],
- Open Innovation communities (see (2) chapter 11)), etc.
- o earlier forms of networks: "Buddylists" etc.
- O often emphasis on distinct common pursuit, and / or collaboration

Social Networking Services

awareness / contextual:

- services for personal social network management (adding "friends" etc.),
- O awareness services on social network (network analysis, alerts etc.)
- services for privacy management
- o services for group management
- o services for ratings, comments

direct communication:

- o synchronous + asynchronous, threaded + non-threaded, 1:1, 1:n, n:m, ...
- examples: chat, messaging, comments with substantial communicative content etc.

information:

- o personal blogs + microblogs
- O bulletin boards (e.g. Facebook Chronic)

Social Networking Services

awareness / contextual:

- o services for personal social network management (adding "friends" etc.),
- o awareness services on social network (network analysis, alerts etc.)
- o services for privacy management
- o services for group management
- o services for ratings, comments

direct communication:

- o synchronous + asynchronous, threaded + non-threaded, 1:1, 1:n, n:m, ...
- O examples: chat, messaging, comments with substantial communicative content etc.

• information: k

- o personal blogs + microblogs
- o bulletin boards (e.g. Facebook Chronic)

Niopile Social Networking

Mobile Social Networking: scientific view: see [Groh and Fuchs, 2011; in (2)]

working Networking

Mobile Social Networking: scientific view: see [Groh and Fuchs, 2011; in (2)]

working Networking

Mobile Social Networking: scientific view: see [Groh and Fuchs, 2011; in (2)]

Nivopile Social Networking

Mobile Social Networking: actual realizations on the Web (as of 2009): see [Groh and Daubmeier, 2009; in (2)]

[Groh and Daubmeier, 2009; in (2)][Daubmeier, 2009; in (2)]

Social Semantic Web

SKOS: Simple Knowledge Organization System

OPO: Online Presence Ontology

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

User Interface & Applications

Trust

Proof

Unifying Logic

Ontology: Rules: RIF
SPARQL
RDF-S

Data Interchange: RDF

XML

URI

Unicode

Decentralized Social Networking + Social Semantic Web

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Semantic Web: User Interface & Applications Trust Proof Unifying Logic Ontology: Rules OWL Query: SPARQL Crypto RDF-S Data Interchange: RDF XML Unicode

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Semantic Web:

FOAF: Friend Of A Friend

OPO: Online Presence Ontology

SKOS: Simple Knowledge Organization System

SKOS: Simple Knowledge Organization System

Decentralized Social Networking + Social Semantic Web

[NN, 2013]

Social Semantic Web

Semantic Web:

SKOS: Simple Knowledge Organization System

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Semantic Web:

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

1

Semantic Web:

Social Semantic Web

Semantic Web:

SIOC: Semantically-Interlinked Online Communities FOAF: Friend Of A Friend SKOS: Simple Knowledge Organization System OPO: Online Presence Ontology

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Semantic Web:

[OPO, 2013]

SIOC: Semantically-Interlinked Online Communities

SKOS: Simple Knowledge Organization System

FOAF: Friend Of A Friend

OPO: Online Presence Ontology

Decentralized Social Networking + Social Semantic Web

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Semantic Web:

SKOS: Simple Knowledge Organization System

Decentralized Social Networking + Social Semantic Web

Social Semantic Web

Semantic Web:

IVISIN -> Context

Context:

- "[...] where you are, who you are with, and what resources are nearby. Context encompasses more than just the user's location [...]" [Schilit et al., 1994; in (2)].
- O "Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves." [Dey, 2001; in (2)]

Context Awareness:

- "A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task" [Dey, 2001; in (2)]
- "Context is an operational term: Something is context because of the way it is used in interpretation, not due to its inherent properties." [Winograd, 2001; in (2)]

IVISIN → Context

Context:

- "[...] where you are, who you are with, and what resources are nearby. Context encompasses more than just the user's location [...]" [Schilit et al., 1994; in (2)].
- O "Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves." [Dey, 2001; in (2)]

Context Awareness:

- "A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task" [Dey, 2001; in (2)]
- "Context is an operational term: Something is context because of the way it
 is used in interpretation, not due to its inherent properties." [Winograd,
 2001; in (2)]

E

context

Context classes:

- O Computing, User, Physical, Temporal [Schilit et al., 1994; in (2)][Chen and Kotz, 2000; in (2)]
- O Identity, Location, Status [Dey et al., 2001; in (2)].
- Active / Passive Context Awareness [Chen and Kotz, 2000; in (2)]
- higher level / lower level Context (see (2), chapter 1)
- dynamics: 'Context': rapid changes; Personalization info: slower changes (see (2), chapter 1)
- temporal distinction: long term, medium term, short term (see (2), chapter 1)

Context classes:

- O Computing, User, Physical, Temporal [Schilit et al., 1994; in (2)][Chen and Kotz, 2000; in (2)]
- O Identity, Location, Status [Dey et al., 2001; in (2)].
- Active / Passive Context Awareness [Chen and Kotz, 2000; in (2)]
- higher level / lower level Context (see (2), chapter 1)
- **dynamics**: 'Context': rapid changes; Personalization info: slower changes (see (2), chapter 1)
- temporal distinction: long term, medium term, short term (see (2), chapter 1)

Context Classes for CSN

Context classes for Contextual Social Networking:

- Physical Context: at user's spatiotemporal location, independent of user: lighting, temperature etc.; also: computing context: at user's spatiotemporal location, independent of user: available bandwidth etc.
- Individual Context of a user: location, speed, disabilities, personal physiological parameters etc.; computing context involving nature of her device(s), state of the applications running, precise state of interaction of user with device or application.
- Social Context: "social context refers to characterizing the social nature of the situation a user is currently in" (2): Social Context: models of any aspects of social interaction having a relation to IT systems.
 - short term: low level: e.g. set of ids of persons in Bluetooth range;
 higher level: e.g. Social Situations
 - long term: low level: e.g. friendships in Facebook; higher level: e.g. dense Social Network groups the user is part of.

Context Classes for CSN

Context classes for Contextual Social Networking:

- Physical Context: at user's spatiotemporal location, independent of user: lighting, temperature etc.; also: computing context: at user's spatiotemporal location, independent of user: available bandwidth etc.
- Individual Context of a user: location, speed, disabilities, personal physiological parameters etc.; computing context involving nature of her device(s), state of the applications running, precise state of interaction of user with device or application.
- Social Context: "social context refers to characterizing the social nature of the situation a user is currently in" (2): Social Context: models of any aspects of social interaction having a relation to IT systems.
 - short term: low level: e.g. set of ids of persons in Bluetooth range;
 higher level: e.g. Social Situations
 - long term: low level: e.g. friendships in Facebook; higher level: e.g. dense Social Network groups the user is part of.

Social Network

slightly refined Social Network Model: Graph G=(V,E,P_V,P_E, f_{P,v},f_{PE})

- Nodes $V = \bigcup V_i$: represent humans (actors) of "sorts" ($\leftarrow \rightarrow$ modes) V_i ;
- Edges $E \subseteq V \times V$; $E = \biguplus E_i$: represent directed binary social relations (ties) of "sorts" E_i
- O P_V: Set of Node Profiles
- O P_E: Set of Edge Profiles
- \circ $f_{P_V}: V \rightarrow P_V$
- \circ $f_{P_E}: V \rightarrow P_E$

Social Ties

- ontology for social relations: e.g. FOAF [Brickley and Miller, 2010] + Relationship [Davis and Vitiello, 2010]; strong explicification problems (see [Hauffa et al 2012, in (2)],[Bossert 2011; in (2)])
- alternative characterizatio k: use multiple axes (see [Groh, Hauffa, 2011; in (2)], Hammerl, 2011; in (2)):

O intensity

O valence

O hierarchity

O reciprocity

O intimacy

O

The Field "Social Computing"

B

- ontology for social relations: e.g. FOAF [Brickley and Miller, 2010] + Relationship [Davis and Vitiello, 2010]; strong explicification problems (see [Hauffa et al 2012, in (2)],[Bossert 2011; in (2)])
- alternative characterization: use multiple axes (see [Groh, Hauffa, 2011; in (2)], Hammerl, 2011; in (2)):

O intensity

O valence N

O hierarchity

O reciprocity

O intimacy

O

Social Computing and ...

- Social Signal Processing / Affective Computing
- Game Theory, Social Choice, Auctions
- Information Retrieval / Filtering
- Privacy Control
- Social Semantic Web
- Recommender Systems
-

Recommended Reading

- minimal approach:
 - study the slides and mentally review the introduced concepts, definitions and connections
- standard approach:
 - o minimal approach + read chapter 1 of (2)
- interested students
 - standard approach + read [Wikipedia 2013] + 3 articles linked to by this article

History of Social Network Analysis, Main Contributors

- 1930s-1950s: J. Moreno (American Psychiatrist & Sociologist): → Sociometry (quantitative method for measuring social relationships) [11]
- 1930s-1960s: Further contributors: W. Warner (Harvard U., Anthropologist) [12] :→ Native American social structures, E. Mayo (Harvard U., Sociologist) [13]: Hawthorne Studies; A. Radcliffe-Brown (Oxford U., Social Anthropologist): Structural Functionalism (←→ primitive civilizations); M. Gluckman (Manchester U., anthropologist): Urban studies; etc.
- 1960s-1970s-present: H. White (Columbia U. Mathematical Sociologist): Extremely influential contributor to formal SNA [14]; students: M. Granovetter, B. Wellman
- 2000s-present: A. Barabasi, D. Watts, M. Newman, J. Kleinberg: ("Physicists take over"), A. Pentland (Reality Mining) etc.

Analyzing Long-term Social Contexts: Social Network Analysis

Lecture follows [1]. Citations of [1] are mostly omitted because of simplicity

- Centrality indices formalize intuitive feeling that some nodes (or edges) are more central (important, meaningful etc.) than others.
- Interpretations of "centrality": "influence", "prestige", "control", "heavily required for information flow"
- **Example**: n persons vote for a leader; $(u,v) \in E$ if u voted for v, Winner (most central node): node with most incoming edges (highest indegree).
- → Degree Centrality
 Other variant: (u,v) ∈ E if u has convinced v to vote for u's favorite candidate. (Influence network) → node with large out-degree is central
- Other Example: If graph can be split up into groups X and Y and if node u has many edges to X and many edges to Y → u mediates most information between groups → u is central
- → Betweenness centrality

- Centrality indices formalize intuitive feeling that some nodes (or edges) are more central (important, meaningful etc.) than others.
- Interpretations of "centrality": "influence", "prestige", "control", "heavily required for information flow"
- **Example**: n persons vote for a leader; $(u,v) \in E$ if u voted for v, Winner (most central node): node with most incoming edges (highest indegree).
- → Degree Centrality

Other variant: $(u,v) \in E$ if u has convinced v to vote for u's favorite candidate. (Influence network) \rightarrow node with large out-degree is central

- Other Example: If graph can be split up into groups X and Y and if node u has many edges to X and many edges to Y → u mediates most information between groups → u is central
- → Betweenness centrality

