Scri pt generated by TTT Therefore, we translate:

code exit (e); p = codegep
exit

term

Title: Seidl: Virtual Machines (24.06.2014)

next

The instruction term is explained later :-)

Date: Tue Jun 24 10:15:35 CEST 2014

The instruction exit successively pops all stack frames:

Duration: 89:02 min

result = S[SP];

while (FP # -1) {
SP = FP-2;
FP = S[FP-1];
1

S[SP] = result;

Pages: 55

421
Therefore, we translate:
codeexit (e); p = codegep
exit
term
next
FP |:|_)-_ FP The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

exit

result = S[SPJ;

while (FP # -1) {
SP = FP-2;
FP = S[FP-1];
}

S[SP] = result;

422 421

The instruction xt activates the next executable thread:
in contrast to thc current thread is not inserted into RQ.

RQ
cr[13 T
SP |39
next PC [4
FP |2
4 5 1
7
2
D

423

The instruction
in contrast to

next activates the next executable thread:

yield the current thread is not inserted into RO.

next

423

RQ

[13]
sp [39]
EX

s
o
S~
e

N[

(8]
L'=]

(8]
iy

If the queue RO is empty, we additionally terminate the whole program:

iff (0 > ct = dequeue(RQ) \ halt;

restore ();

424

42

exit

52 Waiting for Termination

Occationally, a thread may only continue with its execution, if some other thread
has terminated. For that, we have the expression join (¢) where we assume

that ¢ evaluates to a thread id tid.

e If the thread with the given tid is already terminated, we return its returmn
value.

e Ifitis not yet terminated, we interrupt the current thread execution.

* We insert the current thread into the queue of treads already waiting for the

termination.

We save the current registers and switch to the next executable thread.

e Thread waiting for termination are maintained in the table JTab.

Example:

JTab
.
[2]3]
s CT RQ
— o] [}
5 L
4

Thread 0 is running, thread 1 could run, threads 2 and 3 wait for the termination
of 1, and thread 4 waits for the termination of 3.

e There, we also store the return values of threads :-)
425 426
Thus, we translate: .
... accordingly:

codeg join (¢) p = coderep

Sp [}

join i

finalize
finalize =]

... where the instruction join is defined by:

tid @
if (TTaBAAI[1] > 0) {

enqueue (JTab[tid][1], CT);

next

427

S[SP] = JTab[tid][0];

428

Thus, we translate:
codep join (e) p = codegep
join
finalize
... where the instruction join is defined by:

tid = S[SP;
if (TTab[tid][1] = 0) {

52 Waiting for Termination

Occationally, a thread may only continue with its execution, if some other thread
has terminated. For that, we have the expression join (¢) where we assume

that ¢ evaluates to a thread id tid.

o If the thread with the given tid is already terminated, we return its return
value.

If it is not yet terminated, we interrupt the current thread execution.

enqueue { JTab[tid][1], CT); e We insert the current thread into the queue of treads already waiting for the
next termination.
} We save the current registers and switch to the next executable thread.
o Thread waiting for termination are maintained in the table JTab.
e There, we also store the return values of threads :-)
427 425
The instruction sequence:
term PC=-1;
mext JTab[CT][0] = S[SP];
freeStack(SP);

is executed before a thread is terminated.
Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that,

though,

e ... the last stack frame must be popped and the result be stored in the table
JTab at offset 0;

e ... the thread must be marked as terminated, e.g., by additionally setting the
PCto —1;

e .. all threads must be notitied which have waited for the termination.

For the instruction term this means:

429

while (0 < tid = dequeue (JTab[CT][1]))
enqueue (RQ, tid);

The run-time function freeStack (int adr) removes the (one-element) stack at

the location adr:

freeStack (adr)

430

53 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the
programmer to dedicate exclusive access to a shared resource (mutual

exclusion).

The datatype supports the following operations:

A mutex me consists of:

e the tid of the current owner (or —1 if there is no one);

e the queue BQ ofblocked threads which want to acquire the mutex.

1 BQ
Mutex * newMutex (); — creates a new mutex;
void lock (Mutex *me); — tries to acquire the mutex; 0 owner
void unlock (Mutex *me); — releases the mutex;
Warning;:
A thread is only allowed to release a mutex if it has owned it beforehand :-)
43 432
Then we translate:
Then we translate:
code lock (e); p = codegep
codegr newMutex () p = newMutex lock
where:
where:
CT cT |17 I
newMutex -1 :

433

lock

434

A mutex me consists of:

e the tid of the current owner (or —1 if there is no one);

e the queue BQ of blocked threads which want to acquire the mutex.

1 BQ

0 owner

432

Then we translate:

code lock (¢); p = codegep

lock

where:

CT CT [17] I

lock

434

If the mutex is already owned by someone, the current thread is interrupted:
CT — CT J

-

lock

if (S[S[SP]] < 0) S[S[SP--]] = CT;
else {
enqueue (S[SP--]+1,CT);

next;

435

If the mutex is already owned by someone, the current thread is interrupted:
CT — CT J

i [

lock

if (S[S[SP]] < 0) S[S[SP-~-]] = CT;
else {
enqueue (S[SP- -]+1, CT);

next;

435

Accordingly, we translate:

code unlock (¢); p =

where:

cr

unlock

436

coder ¢ p

unlock

cr

If the queue BQ is empty, we release the mutex:

cr

(5]

unlock

cr [3]

if (S[S[SP]] # CT) Error (“Illegal unlock!");

if (0 > tid = dequeue (S[SP]+1))

else {
_| SISISE=)] = tid;

enqueue

437

SISISIE}] = -1;

Accordingly, we translate:
code unlock (e); p =

where:

CT

17

i

unlock

436

codeg ¢ p

unlock

CT

Then we translate:

code lock (e); p =

where:

cT

lock

434

codeg e p

lock

CT [17]

If the mutex is already owned by someone, the current thread is interrupted:

CT = CcT [}

17 54 Waiting for Better Weather
o
lock . .
It may happen that a thread owns a mutex but must wait until some extra
condition is true.
Then we want the thread to remain in-active until it is told otherwise.
For that, we use condition variables. A condition variable consists of a queue
if (S[S[SP]] < 0) S[S[SP--]] = CT; WQ of waiting threads :-)
else {
enqueue (S[SP--]+1,CT); 0
next; wQ
t
435 438
Then we translate:
For condition variables, we introduce the functions: codey newCondVar () p = newCondVar

Cond Var * newCondVar (); — creates a new condition variable;
where:

void wait (CondVar * c@, Mutex * me); — enqueues the current thread;

void signal (Cond Var * cv); — re-animates one waiting thread; |:|

void broadcast (CondVar * cv); — re-animates all waiting threads. newCond Var

439 440

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

Therefore, we translate:

code wait (eg,e1); p = codepey p
coder ¢ p
wait
dup
unlock
next

lock

where ...

41

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

Therefore, we translate:

code wait (eg,e1); p = codegeq p
codeg eq p
wait
dup
unlock
next

lock

where ...

441

cr [3] :

s

wait

if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--;

442

After enqueuing the current thread, we release the mutex. After re-animation,

though, we must acquire the mutex again.

Therefore, we translate:

code wait (eg,e1); p = codegeqp
codeg ey p
wait
dup
unlock
next

lock

where ...

441

if ﬁ] # CT) Error (“Illegal wait!”);
enqueue S[SP], CT); SP--;

442

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

Therefore, we translate:

code wait (eg,e1); p = codegeq p

codeg eq p

where ...

441

CT CT [3] @

wait

if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--;

442

After enqueuing the current thread, we release the mutex. After re-animation,

though, we must acquire the mutex again.

Therefore, we translate:

code wait (eg,e1); p = codegeqp
codeg ey p
wait
dup
unlock
next

where ...

441

ct cr 5] 5

wait

if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--;

442

Accordingly, we translate:

code signal (¢); p = codepep

signal

RQ RQ 17

lix |

signal

if (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP--;

443

Amnalogously:

code broadcast (¢); p = codegep

broadcast

where the instruction broadcast enqueues all threads from the queue

into the ready-queue RQ

while (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP--;

Warning:
The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex

44

wQ

)

Analogously:

code broadcast (¢); p = coderep

broadcast

where the instruction broadcast enqueues all threads from the queue

into the ready-queue RQ

while (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
5P--;

Warning:
The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex

4

WQ

)

55 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded

number of (identical) resources.

Operations:
Sema * newSema (intn) — creates a new semaphore;
void Up (Sema = s) — increases the number of free resources;
void Down (Sema = s) — decreases the number of available resources.

445

Therefore, a semaphore consists of:
e acounter of type int;
e amutex for synchronizing the semaphore operations;

e acondition variable.

typedef struct {
Mutex * me;
Cond Var * cv;
int count;

} Sema;

446

Sema = newSema (intn) {
Sema * g;
s = (Sema *) malloc (sizeof (Sema));
s—me = newMutex ();
s—rcv = newCond Var ();
s—count =n;

return (s);

447

Therefore, a semaphore consists of:
e acounter of type int;
e amutex for synchronizing the semaphore operations;

e acondition variable.

typedef struct {
O Mutex = me;
/1 CondVar = cv;
7~ intcount;
} Sema;

446

The translation of the body amounts to:

Sema * newSema (int n) {

Sema = s;
alloc 1 newMutex newCondVar loadr -2 loadr 1 s = (Sema *) malloc (sizeof (Sema));
loadc 3 loadr 1 loadr 1 loadr 1 storer -2 s—me = newMutex ();
s—cv = newCondVar ();
new store loadc 1 loadc 2 return) o
s—count = n;
storer 1 pop add add return (s);
pop store store
pop pop
448 447
The translation of the body amounts to:
Sema * newSema (intn) {
Sema * s;
alloc 1 newMutex newCondVar loadr -2 loadr 1 s = (Sema *) malloc (sizeof (Sema));
loadc 3 loadr 1 loadr 1 loadr 1 storer -2 s—yme = newMutex ();
s—cv = newCondVar ();
new store loadc 1 loadc 2 return
s—count = n;
storer 1 pop add add return (s);
pop store store
pop pop
448 447

The translation of the body amounts to:

Sema * newSema (int n) {

Sema = s;
alloc 1 newMutex newCondVar loadr -2 loadr 1 s = (Sema =) malloc (sizeof (Sema));
loadc 3 loadr 1 loadr 1 loadr 1 storer -2 s—me = newMutex ();
s—cv = newCondVar ();
new store loadc 1 loadc 2 return) o
s—count = n;
storer 1 pop add add return (s);
pop store store
pop pop
448 447
The function Down() decrements the counter.
The translation of the body amounts to: If the counter becomes negative, wait is called:
alloc 1 newMutex newCondVar loadr -2 loadr 1 void Down (Sema # s) {
loadc 3 loadr 1 loadr 1 loadr 1 storer -2 Mutex *me;
new store loadc 1 loadc 2 return me = s—me,
lock (me);
storer 1 pop add add (me)
s—rcount——;
pop store store if (s—count < 0) wait (s—cv,me);
pop pop unlock (me);
448 449

