Script generated by TTT

Title: Seidl: Virtual Machines (23.06.2014)
Date: Mon Jun 23 10:15:58 CEST 2014
Duration: 90:22 min

Pages: 45

Threads

394

46 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:
e generating new threads: create();
e terminating a thread: exit();
e waiting for termination of a thread: join();

e mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the virtual machine
(what else? =)

395

46 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:
e generating new threads: create();
e terminating a thread: exit();
e waiting for termination of a thread: join();

e mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the virtual machine

(what else? :-)

395

47 Storage Organization

All threads share the same common code store and heap:

39

.. similar to the CMa, we have:

C = Code Store — contains the CMa program;

every cell contains one instruction;
PC = Program-Counter — points to the next executable instruction;
H = Heap -

every cell may contain a base value or an address;

the globals are stored at the bottom;

NP = New-Pointer - points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment.

The function malloc() then fails whenever NI’ exceeds the topmost border.

397

47 Storage Organization

All threads share the same common code store and heap:

396

In constrast to the CMa, we have:

SSet = Set of Stacks — contains the stacks of the threads;

every cell may contain a base value of an address;

S = common address space for heap and the stacks;
SP = Stack-Pointer — points to the current topmost ocupied stack cell;
FP = Frame-Pointer — points to the current stack frame.

Warning;:

o If all references pointed into the heap, we could use separate address spaces
for each stack.

Besides SP’ and FP°, we would have to record the number of the current stack
=)

¢ In the case of C, though, we must assume that all storage regions live within
the same address space — only at different locations :-)

SP Und FP then uniquely identify storage locations.

e For simplicity, we omit the extreme-pointer EP.

399

Every thread on the other hand needs its own stack:

H SSet

398

In constrast to the CMa, we have:

SSet = Set of Stacks — contains the stacks of the threads;

every cell may contain a base value of an address;

S = common address space for heap and the stacks;
SP = Stack-Pointer — points to the current topmost ocupied stack cell;
FP = Frame-Pointer - points to the current stack frame.

Warning:

o If all references pointed into the heap, we could use separate address spaces
for each stack.
Besides SP and FP, we would have to record the number of the current stack
=)

e In the case of C, though, we must assume that all storage regions live within
the same address space — only at different locations :-)

SP Und FP then uniquely identify storage locations.

o For simplicity, we omit the extreme-pointer ~ EP.

399

Every thread on the other hand needs its own stack:

L s
-~ W

H SSet

398

48 The Ready-Queue

Idea:
e Every thread has a unique number tid.

e A table TTab allows to determine for every tid the corresponding thread.

At every point in time, there can be several executable threads, but only one

running thread (per processor :-)

the tid of the currently running thread is kept in the register CT (Current
Thread).

e The function: tid self () returns the tid of the current thread.
Accordingly:
codey self () p = self
400

... where the instruction self pushes the content of the register CT onto
the (current) stack:

CcT CT

4

self

S[SP++] = CT:

40

¢ The remaining executable threads (more precisely, their tid's) are

maintained in the queue RQ (Ready-Oueue).

o For queues, we need the functions:

void enqueue (queue q, tid t),
tid dequeue (queue q)

which insert a tid into a queue and return the first one, respectively ...

402

e The remaining executable threads (more precisely, their tid’s) are
maintained in the queue RQ (Ready-Queue).

e For queues, we need the functions:

void enqueue (queue q, tid t),
tid dequeue (queue q)

which insert a tid into a queue and return the first one, respectively ...

4m

CT RQ

TTab

DD?DD

403

CT

RQ

TTab TTab

] [L] ¢ O

3] |
l:l enqueue(RQ, 13) |:| CT = dequeue(RQ);
404 406
If a call to dequeue () failed, it returns a value < 0 :-)
CT RQ The thread table must contain for every thread, all information which is needed

TTab for its execution. In particular it consists of the registers 'C, SP’ und FI:

OEEEE

407

2 Sp
1 PC
0 FpP

Interrupting the current thread therefore requires to save these registers:
void save () {
TTab[CT] [0] = FP;
TTab[CT] [1] PC;
TTab[CT] [2] = SP;
¥

408

If a call to dequeue () failed, it returns a value < 0 :-)

The thread table must contain for every thread, all information which is needed

for its execution. In particular it consists of the registers ’C, SI” und FI’:

2 SP
1 PC
0 FP

Interrupting the current thread therefore requires to save these registers:

void save () {
TTab[CT] [0] = FP;

TTab[CT] [1] = PC;
TTab[CT] [2] = SP;
}

408

If a call to dequeue () failed, it returns a value < 0 :-)

The thread table must contain for every thread, all information which is needed

for its execution. In particular it consists of the registers PC, SP und FP:

2 SP
1 PC
0 FP

Interrupting the current thread ﬂfaforc requires to save these registers:
void save ()

{
TTab[CT] [0]
TTab[CT] [1]
TTa [2]
by

408

Analogously, we restore these registers by calling the function:

void restore () {

FP = TTab[CT] [0];
PC = TTab[CT] [1];
SP = TTab[CT] [2];
}
Thus, we can realize an instruction yield which causes a thread-switch:

tid ct = dequeue (RQ);

if (ct = 0) {
save (); enqueue (RQ, CT);
CT = ct;
restore ();

}

Only if the ready-queue is non-empty, the current thread is replaced :-)

409

49 Switching between Threads

Problem:

We want to give each executable thread a fair chance to be completed.

e Every thread must former or later be scheduled for running,.

e Every thread must former or later be interrupted.

Possible Strategies:
e Thread switch only at explicit calls to a function yield() =-(
o Thread switch after every instruction —> too expensive o

e Thread switch after a fixed number of steps > we must install a

counter and execute yield at dynamically chosen points :-(

410

We insert thread switches at selected program points ...
e at the beginning of function bodies;
e before every jump whose target does not exceed the current ’C ...

—— rare =)

The modified scheme for loops s = while (¢) s then yields:

codesp = A: coderep
jumpz B
code s p
yield
jump A

41

Note:
o If-then-else-Statements do not necessarily contain thread switches.
¢ do-while-Loops require a thread switch at the end of the condition.
e Every loop should contain (at least) one thread switch :-)
e Loop-Unroling reduces the number of thread switches.

* At the translation of switch-statements, we created a jump table behind the

code for the alternatives. Nonetheless, we can avoid thread switches here.

e At freely programmed uses of jumpi aswellas jumpz we should

also insert thread switches before the jump (or at the jump target).

e [f we want to reduce the number of executed thread switches even further,
we could switch threads, e.g., only at every 100th call of yield ...

412

50 Generating New Threads ‘[J

We assume that the expression: s = create (e, e1) first evaluates the
expressions ¢; to the values f,a and then creates a new thread which computes

fla).
If thread creation fails, s returns the value —1.

Otherwise, s returns the new thread’s tid.

Tasks of the Generated Code:
e Evaluation of the ¢;;

e Allocation of a new run-time stack together with a stack frame for the

evaluation of f (a);
¢ Generation of a new tid;
e Allocation of a new entry in the TTab;

e Insertion of the new tid into the ready-queue.

413

50 Generating New Threads

We assume that the expression: s = create (e, e1) first evaluates the
expressions e; to the values f,a and then creates a new thread which computes

fla).
If thread creation fails, s returns the value —1.

Otherwise, s returns the new thread’s tid.

Tasks of the Generated Code:
e Evaluation of the ¢;;

e Allocation of a new run-time stack together with a stack frame for the

evaluation of f (a);
e Generation of a new tid;
o Allocation of a new entry in the TTab;

¢ Insertion of the new tid into the ready-queue.

413

The translation of s then is gi\ﬂcn by:

coder s p = “odeg ey p

initStack

initThread

where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function

newStack() which returns a pointer onto the first element of a new stack:

414

The translation of s then is givben by:

coder s p = codegeyp
codeg e p
initStack

initThread
where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function

newStack() which returns a pointer onto the first element of a new stack:

414

SP [—» se

newStack ()

If the creation of a new stack fails, the value 0 is returned.

415

i

SP [}— SP [}—= —
initStack

newStack();

if (S[SP) {
S[SISP]] = S[SP-1];
S[SISP]l+1 =-1;
S[S[SPl+2] =§;
S[SP-1] = S[SP]; SP—

}
else S[SP =SP - 2] =-1;

416

S N — P =

newStack ()

If the creation of a new stack fails;

415

SP |:|—>
initStack

newStack();

if (S[SP]) {
S[S[SP]] = S[SP-1];
S[S[SP]]+1 = -1;
S[S[SPl+2] =§;
S[SP-1] = S[SP]; SP--

}
else S[SP = SP - 2] = -1;

416

Note:

e The continuation address @ points to the (fixed) code for the termination
of threads.

e Inside the stack frame, we no longer allocate space for the EP — the

return value has relative address —2.

e The bottom stack frame can be identified through FPold = -1 :-)

In order to create new thread ids, we introduce a new register TC (Thread
Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

417

SP |:|—> SP |:|—»
initStack

newStack();

if (S[SP) {
SIS[SP]] = S[SP-1];
SIS[SP]]+1 =-1;
S[S[SP]+2] = f;
S[SP-1] = S[SP]; SP—

}
else S[SP = SP - 2] =-1;

416

SP l:l—»- SP |:|—)-—
initStack

newStack();

if(S[SP]) {
S[S[SP]] = S[SP-1];
S[S[SP]J+1 = -1;
S[S[SP]+2] = £;
S[SP-1] = S[SP]; SP—-

}
else S[SP = SP - 2] = -1;

416

Note:

¢ The continuation address f points to the (fixed) code for the termination
of threads.

¢ Inside the stack frame, we no longer allocate space for the EP > the
return value has relative address —2.

® The bottom stack frame can be identified through FPold = -1 :-)

In order to create new thread ids, we introduce a new register TC (Thread
Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

SP [}— SP [}—= —
initStack

new@k();

if (S[SP]) {
S[S[SP]] = S[SP-1];
S[S[SP]]+1 = -1;
S[S[SP]+2] = ;
S[SP-1] = S[SP]; SP--
}
else S[SP = SP - 2] =-1;

416

SP [}— SP [}—= —
initStack

newStack();

if (S[SP) {
S[SISP]] = S[SP-1];
S[SISP]l+1 =-1;
S[S[SPl+2] =§;
S[SP-1] = S[SP]; SP—

}
else S[SP =SP - 2] =-1;

416

Note:

e The continuation address f points to the (fixed) code for the termination

of threads.

¢ Inside the stack frame, we no longer allocate space for the EP’ —= the

return value has relative address —2.

e The bottom stack frame can be identified through FPold = -1 :-)

In order to create new thread ids, we introduce a new register TC (Thread

Count).
Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

47

SP |:|—> SP l:l_"’
initStack

newStack();

if (S[SP]) {
S[S[SP]] = S[SP-1];
S[S[SP]]+1 = -1;
S[S[SP1+2] =f;

S[SP-1] = S[SP]; SP--

}
else S[SP = SP - 2] = -1;

416

SP [= 5
TC
initThread

T 1]

418

if (S[SP] > 0) {
tid = ++TCount;
TTab[tid][0] = S[SP]-1;
TTab[tid][1] = S[SP];
TTab[tid][2] = S[SP];
S[-SP] = tid;
| enqueue(RQ, tid); |
}

419

51 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways
to terminate a thread:

1. The initial function call has terminated. Then the return value is the return
value of the call.

2. The thread executes the statement exit (¢); Then the return value equals
the value of e.

Warning:
e We want to return the return value in the bottom stack cell.

e exit may occur arbitrarily deeply nested inside a recursion. Then we
de-allocate all stack frames ...

e _.and jump to the terminal treatment of threads at address @

420

Therefore, we translate:

code exit (e); p = codegep

exit

term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

P] = result;

421

