Script generated by TTT

Title:

Date:

Seidl: Virtual Machines (03.06.2014)

Tue Jun 03 10:15:10 CEST 2014

37 Clause Indexing
Observation:

Often, predicates are implemented by case distinction on the first argument.

Duration: 90:41 min Inspecting the first argument, many alternatives can be excluded :-)
Failure is earlier detected :-)
Pages- 46 Backtrack points are earlier removed. :-))
Stack frames are earlier popped :-)))
330
Example: The app-predicate: Idea:

app(X,Y,Z) « X=[]Y=Z
app(X,Y,Z) + X=|[H|X'|, Z=[H|Z'], app(X", Y, Z")

e If the root constructor is | |, only the first clause is applicable.

o If the root constructor is [|], only the second clause is applicable.

e Every other root constructor should fail !!

e Only if the first argument equals an unbound variable, both alternatives

must be tried ;-)

331

* Introduce separate try chains for every possible constructor.
o Inspect the root node of the first argument.

¢ Depending on the result, perform an indexed jump to the appropriate try
chain.

Assume that the predicate p/k is defined by the sequence rr of clauses ry ... 7.

Let tchains rr denote the sequence of try chains as built up for the root

constructors occurring in unifications X; = .

3R

Example:

Consider again the app-predicate, and assume that the code for the two clauses
start at addresses A and Ay, respectively.

Then we obtain the following four try chains:

Example:

Consider again the app-predicate, and assume that the code for the two clauses
start at addresses A, and A», respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jumph A, // atom [] VAR: setbtp // variables NIL: jump A, // atom][]
tr try Ay
delbtp CONS: ium // constructor [|] delbtp CONS: jump As // constructor [|]
jum]:@ jump As
ELSE: fail // default ELSE: fail // default
The new instruction fail takes care of any constructor besides [| and [|] ...
fail = backtrack()
It directly triggers backtracking :-)
333 3534
Then we generate for a predicate p/k: The instruction getNode returns “R” if the pointer on top of the stack points
to an unbound variable. Otherwise, it returns the content of the heap object:
codeprr = putref 1

getNode, // extracts the root label
index p/k // jumps to the try block
tchains rr

Ay coder rq

Ay codec #py

335

getNode

[|={s[m]) L]

getNode

switch (H[S[SP]]) {
case (S, f/n): S[SP] = f/n; break;

case (A,a) S[SP] = a; break;
case (R,_): S[SP] =R;
}

336

The instruction index p/k performs an indexed jump to the appropriate try
chain:

\

index p/k
PC

PC =map (p/kS[SP]);
S

’

337

The instruction index p/k performs an indexed jump to the appropriate try
chain:

index p/k
PC

PC = map (p/k,S[SP]);
S .

”

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)

It typically is defined through some hash table :-))

338

The instruction index p/k performs an indexed jump to the appropriate try
chain:

index p/k
PC |map (p/k,a)

PC =map (p/kS[SP]);
S B .

v

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)

It typically is defined through some hash table :-))

338

38 Extension: The Cut Operator

seyar

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X,Y) « p(X),Lq(X,Y)
branch(X,Y) « q(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

339

38 Extension: The Cut Operator

arper

Realistic Prolog additionally provides an operator (cut) which explicitly

allows to prune the search space of backtracking.

Example:

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

3%

The Basic Idea:

o We restore the oldBP from our current stack frame;

o We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

340

38 Extension: The Cut Operator

g

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X,Y) +« p(X),L,q(X,Y)
branch(X,Y) <« q(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

339

38 Extension: The Cut Operator

seyar

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:
U l

branch(X,Y) <+ p(X),Lai(X,Y)
branch(X,Y) « q(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the
left-hand side ...

339

The Basic Idea:

o We restore the oldBP from our current stack frame;

. op all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

340

38 Extension: The Cut Operator

Realistic Prolog additionally provides an operator “!” (cut) which ex]

allows to prune the search space of backtracking.

Example:

/

tly

branch(X,Y) « p(X)mch XY) kl’k‘

branch(X,Y) <+ gq(X,Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the

left-hand side ...

339

The Basic Idea:

¢ We restore the oldBP from our current stack frame;

e We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

340

Example:

Consider our example:

branch(X,Y) <« | p(X),, a1(X,Y)

branch(X,Y) <« g (X,Y)

We obtain:

setbtp A: C: prune lastmark

try A mark C pushenv 2 putref 1
delbtp putref 1 putref 2
jump B callp/1 lastcall q;/2 2

341

pushenv 2
putref 2
putref 2
move 2 2

jump qz/2

Example:

Consider our example:

branch(X,Y) < p(X),Lai(X,Y)
branch(X,Y) + (X,Y)

We obtain:

Example:

Consider our example:

branch(X,Y) <« p(X),,qi(X,Y)
branch(X,Y) + q2(X,Y)

In fact, an optimized translation even yields here:

setbip A: pushenv2 C: prune lastmark B: pushenv2 setbtp A: pushenv2 C. prune putref 1 pushenv 2
try A mark C pushenv 2 putref 1 putref 2 try A mark C pushenv 2 putref 2 putref 1
delbtp putref 1 putref 2 putref 2 delbtp putref 1 move 22 putref 2
jump B call p/1 lastcall g1 /22 move 2 2 jump B call p/1 jumpq, /2 move 2 2
jump qz/2 jump q2/2
341 342
The new instruction prune simply restores the backtrack pointer: Problem:
FP — EP = If a clause is single, then (at least so far ;-) we have not stored the old BI inside
| [] the stack frame :~(
a prune (&
A Pt
HP — HP — o))
P TP For the cut to work also with single-clause predicates or try chains of length 1,
BP : BP : we insert an extra instruction setcut before the clausal code (or the jump):
BP = BPold;
3B 344

Problem:

Theinstruction setcut just stores the current value of BP:

If a clause is single, then (at least so far ;-) we have not stored the old BP inside FP 1 EP]
the stack frame :-(|
7 setcut .
o . . HP — HP =
For the cut to work also with single-clause predicates or try chains of length 1, TP TP
we insert an extra instruction setcut before the clausal code (or the jump): BP BP :
BPold = BP;
S 345
The Final Example: Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X) <+ p(X),!, fail
notP(X) <

where the goal fail never succeeds. Then we obtain for notP :

setbtp A: pushenv 1 C: prune B: pushenv 1
try A mark C pushenv 1 popenv
delbtp putref 1 fail
jump B call p/1 popenv

346

39 Garbage Collection

e Both during execution of a MaMa- as well as a WiM-programs, it may

happen that some objects can no longer be reached through references.

e Obviously, they cannot affect the further program execution. Therefore,

these objects are called garbage.
e Their storage space should be freed and reused for the creation of other
objects.
Warning:

The WiM provides some kind of heap de-allocation. This, however, only frees

the storage of failed alternatives !!!

347

39 Garbage Collection

e Both during execution of a MaMa- as well as a WiM-programs, it may

happen that some objects can no longer be reached through references.

e Obviously, they cannot affect the further program execution. Therefore,

these objects are called garbage.

e Their storage space should be freed and reused for the creation of other

objects.
Warning;:

The WiM provides some kind of heap de-allocation. This, however, only frees

the storage of failed alternatives !!!

347

Operation of a stop-and-copy-Collector:

e Division of the heap into two parts, the to-space and the from-space —

which, after each collection flip their roles.
o Allocation with new in the current from-space.

¢ In case of memory exhaustion, call of the collector.

The Phases of the Collection:

1. Marking of all reachable objects in the from-space.
2. Copying of all marked objects into the to-space.
3. Correction of references.

4. Exchange of from-space and to-space.

348

(1) Mark: Detection of live objects:
e all references in the stack point to live objects;

* every reference of a live object points to a live object.

Graph Reachability

349

350

(2) Copy: Copying of all live objects from the current from-space into the

current to-space. This means for every detected object:

¢ Copying the object;

¢ Storing a forward reference to the new place at the old place :-)

b
all references of the copied objects point to the forward references in the
from-space.
=
1 d
351 352

(2) Copy: Copying of all live objects from the current from-space into the

current to-space. This means for every detected object:

e Copying the object;

e Storing a forward reference to the new place at the old place :-) 7—__|:|
d
all references of the copied objects point to the forward references in the b
from-space. —] c

382 356

(3) Traversing of the to-space in order to correct the references.

I
] — d
d N\
b \\\ ’—> ®
C \\
_ N,
— N
da
< =]
357 360
d d
’—> c ’+ C
H H
d d

362

362

Warning:

The garbage collection of the WiM must harmonize with backtracking.

This means: 1

e The relative position of heap objects must not change during copying :-!
e The heap references in the trail must be updated to the new positions.

o If heap objects are collected which have been created before the last

backtrack point, then also the heap pointers in the stack must be updated.

363 364
b nks a
- =T T
]
= d ‘ d
366 367

Classes and Objects

368

Example:

int count = 0;
class list {
int info;

class list = next;

list (int x) {
/i info = x; count++; next = null;

}
virtual int last () {
if (next == null) return info;

else return next — last ();

369

Example:

int count = 0;
class list {
int info;
class list * next;
list (int x) {
info = x; count++; next = null;
1
virtual int last () {
if (next == null) return info;

else return next — last ();

369

