Script generated by TTT

Title: Seidl: Virtual Machines (26.05.2014)
Date: Mon May 26 10:15:38 CEST 2014
Duration: 89:47 min

Pages: 45

L.

A program p is constructed as follows:

too= al| X || flb, ... t)

g = plh,... k)| X=t

c = p(X, LX) gL
pou= O cn?g

e Aterm ! either is an atom, a variable, an anonymous variable or a

constructor application.
e A goal g eitheris a literal, i.e., a predicate call, or a unification.

e Aclause c consists of a head p(Xj, ..., X;) with predicate name and list of

formal parameters together with a body, i.e., a sequence of goals.

* A program consists of a sequence of clauses together with a single goal as
query.

231

A More Realistic Example:

app(X,Y,Z) « X=[],Y=2Z
app(X,Y,Z) « X=[H|X], Z=[H|Z], app(X’, Y, Z')
? app(X,[Y,c|,[n, b, Z])

Xi Q- ?: = -
Remark: V = [0

[l

[H|Z] = binary constructor application

[a,b, Z] == shorteut for: [a|[b|[Z][]]]]

the atom empty list

230

A program p is constructed as follows:

o= a| X || flty.e)
g = plh,.. k)| X=t

e = p(Xy, LX) g
pon= 0. cm?g

e Aterm ! either is an atom, a variable, an anonymous variable or a

constructor application.
e A goal g eitheris a literal, i.e., a predicate call, or a unification.

e Aclause ¢ consists of a head p(Xj, ..., X;) with predicate name and list of
formal parameters together with a body, i.e., a sequence of goals.

e A program consists of a sequence of clauses together with a single goal as

query.

231

A program p is constructed as follows:

b= al|X|_| f(ti,.... t)

g u= plh,...)| X=t

¢ un= p(X LX) gue 8
pPon= ... cn?g

A term t either is an atom, a variable, an anonymous variable or a

constructor application.
A goal g either is a literal, i.e., a predicate call, or a unification.

A clause ¢ consists of a head p(X;, ..., X;) with predicate name and list of

formal parameters together with a body, i.e., a sequence of goals.

A program consists of a sequence of clauses together with a single goal as
query.

23

Procedural View of Proll programs:

literal
predicate
clause

term

unification

binding of variables

Note: Predicate calls ...

e ... do not have a return value.

procedure call
procedure

definition

value

basic computation step

side effect

e ... affect the caller through side effects only :-)

o ... may fail. Then the next definition is tried :-))

backtracking

232

Procedural View of Proll programs:

literal == procedure call
predicate == procedure
clause == definition
term == value
unification === basic computation step
binding of variables == side effect
Note: Predicate calls ...

e ... do not have a return value.

o ... affect the caller through side effects only :-)

e ... may fail. Then the next definition is tried :-))

backtracking

picrd

28 Architecture of the WiM:

The Code Store:

c L[] | |
0 1 T PC
C = Code store — contains WiM program;
every cell contains one instruction;
PC = Program Counter - points to the next instruction to executed;

233

p(X)¢ a((xY),

The Runtime Stack: The Heap:

s DD i [|
0 T Sp 0 1 T HP
FP
H = Heap for dynamicly constructed terms;
S = Runtime Stack - every cell may contain a value or an address; HP = Heap-Pointer - points to the first free cell;
SP = Stack Pointer — points to the topmost occupied cell;
FP = Frame Pointer - points to the current stack frame. ® The heap in maintained like a stack as well :-)

Frames are created for predicate calls, . . L.
P * A new-instruction allocates a object in H.

contain cells for each variable of the current clause

o Obijects are tagged with their types (as in the MaMa) ...

234 235

o teell 29 Construction of Terms in the Heap

variable 1 cell Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment p returns, for each clause variable X its

address (relative to FP’) on the stack. Then codey t p should ...
unbound variable 1 cell e construct (a presentation of) t in the heap; and

e return a reference to it on top of the stack.

— structure (n+1) cells Idea:

? e Construct the tree during a post-order traversal of ¢

e with one instruction for each new node!

e

S | t/n Example: t= f(¢(X,Y),a,2Z).

Assume that X is initialized, i.e., S[FP +p X] contains already a reference,
Y and Z are not yet initialized.

236 237

—

Representing =f(g(X,Y),a,Z)

S | 13~
7

ATe]

S|g

Y
c
)

% reference to X

238

Representing t=f(g(X,Y),aZ)

(342 99

i

-

% reference to X

238

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:

codesap = putatoma codea f(f1, ..., t)p = codeatip
codey Xp = putvar (pX) .

code, Xp = putref (p X) codejt,p
codey _p = putanon putstruct f/n

For a distinction, we mark occurrences of already initialized variables through
over-lining (e.g. X).

Note: Arguments are always initialized!

Then we define:

codeaap = putatoma codea f(t, ..., ta)p = codestip
codeqs Xp = putvar(pX) e

codes Xp = putref (p X) codeqt,p
codey _p = putanon putstruct f/n

For f(g(X,Y),a,Z)and p = {X > 1,Y > 2, Z > 3} this results in the sequence:

239

putref 1 putatom a
putvar 2 putvar 3
putstruct g/2 putstruct f/3

240

The instruction putatom a constructs an atom in the heap:

(Al a]

putatom a

SP++; S[SP] =

21

Theinstruction putvari introduces a new unbound variable and
additionally initializes the corresponding cell in the stack frame:

putvari —

FP ——= FP ——=

SP=5SP+1;
S[SP] = new (R, HP);
S[FP + 1] = S[SP];

24

The instruction putanon introduces a new unbound variable but does not
store a reference to it in the stack frame:

putanon Y

lﬂl) 4@ I‘l) T

SP=5P+1;
S[SP] = new (R, HP);

243

The instruction putrefi pushes the value of the variable onto the stack:
putref i

B -@

FP — = FP —>

SP =5P

S[SP] @ [FP + iJ;

24

The instruction putrefi pushes the value of the variable onto the stack:

utref i RN
[Eﬂo = 2 .@

FP —=

SP=SP+1;
S[SP] = deref S[FP + iJ;

The auxiliary function deref contracts chains of references:

ref deref (ref v) {
if (H[v]==(R,w) && v'!'=w) return deref (w);

else return v;

245

The instruction putstruct f/n builds a constructor application in the heap:

n putstruct f/n

v=new (S, f, n);
SP=SP-n+1;
for (i=1; i<=n; i++)

Hlv +1] =5[SP +i-1];
S[SP] = v;

246

Remarks:

o The instruction putref i does not just push the reference from S[FP’ + i] onto

the stack, but also dereferences it as much as possible

maximal contraction of reference chains.

e In constructed terms, references always point to smaller heap addresses.

Also otherwise, this will be often the case. Sadly enough, it cannot be

guaranteed in general -

247

30 The Translation of Literals (Goals)

Idea:
o Literals are treated as procedure calls.
o We first allocate a stack frame.
e Then we construct the actual parameters (in the heap)
e ... and store references to these into the stack frame.

e Finally, we jump to the code for the procedure/predicate.

248

codeg p(hy, ...,) p = mark B

codey t p

codey ty p

// allocates the stack frame

codeg p(h,.... k) p = mark B // allocates the stack frame

codey b p

codey by p

call p/k // calls the procedure p/k call p/k // calls the procedure p/k
B: B:

Example: pla, X, ¢(X,Y)) with p=1{X—1,Y— 2}

We obtain:
mark B putref 1 callp/3
putatom a putvar 2 B:
putvar 1 putstruct g /2

249 250
Stack Frame of the WiM:

SP ——==

FP ———={ posCont. | 0

FPold |-1
Taanny -2
TREEEY -3
ShEEny 4
SIEERE -5

251

[local stack

local variables

6 org. cells

Remarks:

* The positive continuation address records where to continue after successful
treatment of the goal.

* Additional organizational cells are needed for the implementation of
backtracking

will be discussed at the translation of predicates.

252

The instruction mark B allocates a new stack frame:

Theinstruction call p/n calls the n-ary predicate p :

| B |
— callp/n
mark B] I
L FP —=
FP —= FP —= | PC[] | PClpln]
FP =SP - n;
SP=SP +6; PC=p/n;
S[SP] = B; S[SP-1] = FP;
253 254
Let us translate the unification X =1¢.
31 Unification
Idea 1:
Convention: e Push a reference to (the binding of) X onto the stack;
e Construct the term t in the heap;
e By X, we denote an occurrence of X; . L . e s
’ ¢ Invent a new instruction implementing the unification :-)

it will be translated differently depending on whether the variable is
initialized or not.

e We introduce the macro put X p

putX p = putvar (pX)
put _p = putanon
putXp = putref (pX)

255

256

Let us translate the unification X =t .

Idea 1:
e Push a reference to (the binding of) X onto the stack;
e Construct the term f in the heap;

e Invent a new instruction implementing the unification :-)

codec (X=t)p = putXp
codea t p
unify
257

Example:

Consider the equation:
U= f(g(X,Y),a2)

Then we obtain for an address environment

p={X— 1Y~ 2,72 3,U—4}

putref 4 putref 1 putatom a unify
putvar 2 putvar 3
putstruct g/2 putstruct £/3

258

The instruction unify calls the run-time function wnify()
topmost two references:

unify

unify (S[SP-1], S[SP]);
SP = SP-2;

259

for the

[he Function unify()

e ... takes two heap addresses.

For each call, we guarantee that these ar¢ maximally de-referenced.

e ... checks whether the two addresses are already identical.

If so, does nothing :-)

e ... binds younger variables (larger addresses) to older variables (smaller
addresses);

e ... when binding a variable to a term, checks whether the variable occurs
inside the term > occur-check;

e ... tecords newly created bindings;

o ... may fail. Then backtracking is initiated.

260

The instruction unify calls the run-time function uwnify() for the

topmost two references:

@ unify

uhify (S[SP-1], SSP]);
SP = SP-2;

259

The Function unify()

o ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

o ... checks whether the two addresses are already identical.

If so, does nothing :-)

e ... binds younger variables (larger addresses) to older variables (smaller

addresses);

e ... when binding a variable to a term, checks whether the variable occurs

inside the term > occur-check;
e ... records newly created bindings;

e ... may fail. Then backtracking is initiated.

260

bool unify (ref u, ref v) {
if (u == v) return true;

if (H[u] = (R,.)) {
if (H[v] == (R,_)) {

if (wv) {

H[u] = (R,v); trail (u); return true;
} else {

Hlv] = (R,uw); trail (v); return true;
¥

} elseif (check (u,v)) {

H[u] = (R,v); trail (u); return true;
} else {

backtrack(); return false;

261

if ((H[v] == (R,_)) {
if (check (v,u)) {
Hlv] = (R,u); trail (v); return true;
} else {

backtrack(); return false;

}
if (H[ul==(A,a) && H[v]==(A,a))
return true;
if (H[ul==(S, f/n) &k H[v]==(S, £/n)) { \\
for (int i=1; i<=n; i++)
if('unify (deref (H[u+il), deref (H[v+il])) return false;
return true;
}

backtrack(); return false;

262

265

266

-} L
[A] a [A
—_ S|f/2 s |2
2R)]
H Ty e I 8 By e W ™
K[~] R FR]
—> s s|[tr
263 264
Hele {1
IA a IA
S [f2 S [f2
2)
LN 2 I
=R| |>=[R] |- =R | R[]
s S 12

e The run-time function trail() records the a potential new binding.

—’—| R | | e The run-time function backtrack() initiates backiracking.
\ J
Al a e The auxiliary function check() performs the occur-check: it tests
S | 2 whether a variable (the first argument) occurs inside a term (the second
J— argument).
e Often, this check is skipped, i.e.
T ' e
-]
R R[] |
s |2

bool check (ref u, ref v) { return true;}

267 268

