Script generated by TTT

Title:

Date:

Seidl: Virtual Machines (28.04.2014)

Mon Apr 28 10:17:36 CEST 2014

9 Functions

The definition of a function consists of:
e aname by which it can be called;

e aspecification of the formal parameters;

Duration: 87:57 min ¢ apossible result type;
e ablock of statements.
Pages: 48 In C, we have:
coder fp = loadc_f = startaddress of the code for f
Function names must be maintained within the address environment!
68
Example
int fac (int x) { m‘fmt f’ {
intn;
oy <))
if (x < 0) retum 1; n = fac(2) + fac(1); We conclude:
else return x * fac(x — 1); . I
printf (“%d"”, n);

}

At every point of execution, several instances (calls) of the same function may be

active, i.e., have been started, but not yet completed.

The recursion tree of the example:

T
a fac fac p:;'inff
| |

—3} fac fac

|
- fac

69

The formal parameters and local variables of the different calls of the same
function (the instances) must be cept separate.

Idea

Allocate a dedicated memory block for each call of a function.

In sequential programming languages, these memory blocks may be maintained

on a stack. Therefore, they are also called stack frames.

70

9.1 Memory Organization for Functions

lokale Variablen

FP —— PCold

Caveat
e The local variables receive relative addresses +1,+2,....

o The formal parameters are placed below the organizational cells and

therefore have negative addresses relative to F”)

o This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

¢ The memory block of parameters is recycled for storing the return value of
the function :-))

FPold organisatorische Simplificati The ot lue fits into a sinel 1
0 Zellen Simplification e return value fits into a single memory cell.
EPold

formale Parameter /

Funktionswert
FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.

71 72
Caveat

9.1 Memory Organization for Functions

lokale Variablen

FP ——»= PCold

organisatorische
FPold Zellen
EPold
-'g formale Parameter /
Funktionswert

FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.

The local variables receive relative addresses +1, +2,....

e The formal parameters are placed below the organizational cells and
therefore have negative addresses relative to FP =)

e This organization is particularly well suited for function calls with variable

number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of
the function :-))

Simplification The retumn value fits into a single memory cell.

9.1 Memory Organization for Functions

lokale Variablen

FP —— PCold

Caveat
e The local variables receive relative addresses +1,+2,....

o The formal parameters are placed below the organizational cells and

therefore have negative addresses relative to F”)

o This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

¢ The memory block of parameters is recycled for storing the return value of
the function :-))

FPold organisatorische Simplificati The ot lue fits into a sinel 1
0 Zellen Simplification e return value fits into a single memory cell.
EPold

formale Parameter /

Funktionswert
FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.

71 72
Caveat

9.1 Memory Organization for Functions

lokale Variablen

FP ——»= PCold
FPold
EPold

organisatorische

Zellen

formale Parameter /
Funktionswert

FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.

The local variables receive relative addresses +1, +2,....

e The formal parameters are placed below the organizational cells and
therefore have negative addresses relative to FP =)

e This organization is particularly well suited for function calls with variable

number of arguments as, e.g., for printf.

e The memory block of parameters is recycled for storing the return value of
the function :-))

Simplification The retumn value fits into a single memory cell.

Caveat

e The local variables receive relative addresses +1, +2,....

The formal parameters are placed below the organizational cells and 9.2 Determining Address Environments

therefore have negative addresses relative to FP =)

¢ This organization is particularly well suited for function calls with variable We distinguish two kinds of variables:

number of arguments as, e.g., for printf. 1. global/extern that are defined outside of functions;

e The memory block of parameters is recycled for storing the return value of 2. local/intern/automatic (inkluding formal parameters) which are defined
the function :-)) inside functions.
Simplificaiton: The return value fits into a single cell.

The address environment p maps names onto pairs (fag,a G L} xZ
lasks of a Translator for Functions: R pmap P (tag,a) € {G, L}
Caveat
* Generate code for the body of the function!
e In general, there are further refined grades of visibility of variables.
e Generate code for calls!
o Different parts of a program may be translated relative to different address

environments!

Address Environments Occurring in the Program:

Example @ Qutside of the Function Definitions:
Po: i = (G1)
[0] infi] I = (G2)
struct list { ith — (G, _ith)
int info; main () { main (G, _main)
struct list next; int k;
] el "0_.’U " AT
bxl; scanf ("od”, &il; Inside of ith:
scanlist (&I);
int ith (struct list * x, i{ printf ("\n\t%d\n", ith (i) pLe S (L, —4)
if (i < 1) retumn x —info; | o (L)
. . = (G2)
else return ith (x —next, i — 1);
| ith — (G,_ith)
main =~ (G, _main)

Example

Address Environments Occurring in the Program:

IEI QOutside of the Function Definitions:

Po: i s (G, 1)
@ inti; [— (G,2)
struct list | ith (G, _ith)
int info; main () { main — (G, _main)
struct list * next; int k; (- :
e 1; anf ("%d", &i)
bl scanf (" i Inside of ith:
scanlist (&I);)
int ith (struct list * x, int) { printf ("\n'\t% d\.f i) i i (L)
if (i < 1) return x —info; | o= (B3)
X . I — (G,2)
else return ith (x —next, i — 1);
\ ith + (G,_ith)
main (G, _main)
75 76
Address Environments Occurring in the Program:
Example @ Qutside of the Function Definitions:
Po: i = (G1)
@ inti; I - (G.2)
struct list { ith — (G, _ith)
int info; main () { main (G, _main)
struct list next; int k;
1 - 0/ n
bxl; scanf ("od”, &il; Inside of ith:
scanlist (&I);
intith (struct list * x, int i) { printf ("\n\t%d\n", ith (Li)); pLe 3’ S
if (i < 1) retumn x —info; | o (L)
. . I - (G2
else return ith (x —next, i — 1);
} ith +— (G,_ith)

Example -

@ inti;

struct list |
int info; main () {
struct list = next; int k;
}#1; scanf ("%d", &i);
C_ scanlist (&I);
intith (struct list * x, int) { printf ("\n\t%d\n", ith (1,7));
if (i < 1) return x —info; '

else return ith (x —next, i — 1);

Address Environments Occurring in the Program:

IEI QOutside of the Function Definitions:

Po: i = (G1
I = (G2)
ith (G, ith) (&—
main (G, _main)
Inside of ith:
pr: i (L, —3
x = (L _Q'
I = (G2
ith — (G,_ith)
—main Y (G —main)
76

Caveat
e The actual parameters are evaluated from right to left !!
o The first parameter resides directly below the organizational cells :-)
e Foraprototype 1 f(71 x1,..., 7 xx) we define:

x1— (L, -2 —|7]) xi— (L, -2 —|n|—...—|5|)

=
~

Address Environments Occurring in the Program:

@ Outside of the Function Definitions:

Po - i (G, 1)
I = (G2
ith — (G,_ith)
main (G, _main)
Inside of ith:
p1: A B m
S
— (G,2)
ith — (G,_ith)
main =~ (G, _main)

Caveat
e The actual parameters are evaluated from right to left !!
o The first parameter resides directly below the organizational cells :-)
e Foraprototype 7 f(7y x1,...,T ;) we define:

x1— (L, -2 —|7]) xi—= (L -2—|n|—...— |5l

]
~1

Address Environments Occurring in the Program:

IEI QOutside of the Function Definitions:

Po: i — (G, 1)
I - (G2
ith (G, _ith)
main (G, _main)
Inside of ith:
pr: i (L, —4)
X = (L,-3)
I = (G,2)
ith (G, _ith)
T (o —main)

Caveat
e The actual parameters are evaluated from right to left !!
o The first parameter resides directly below the organizational cells :-)
e Foraprototype 1 f(71 x1,..., 7 xx) we define:

x1— (L, -2 —|7]) xi— (L, -2 —|n|—...—|5|)

=
~

Caveat
¢ The actual parameters are evaluated from right to left !!
e The first parameter resides directly below the organizational cells

e Foraprototype 7 f(T1 x1,..., ™ %) we define:

(L2 m)) e (L2 || =N gaw)

Inside of main:

[i (G, 1)
I - (G2
k- (L1
ith — (G,_ith)
main (G, _main)

=)

9.3 Calling/Entering and Exiting/Leaving Functions

Assume that f is the current function, i.e., the caller, and f calls the function g
i.e., the callee.

[=% 9

Actions when entering g:

1. Evaluating the actual parameters
2. Saving of FP, EP } mark
The code for the call must be distributed between the caller and the callee.
3. Determining the start address of ¢ ¢ of
The distribution can only be such that the code depending on information of the . - are part of f
i) 4. Setting of the new FP
caller must be generated for the caller and likewise for the callee.
5. Saving PC and call
Jump to the beginning of g
Caveat 6. Setting of new EP } enter
)) are part of g
The space requirements of the actual paramters is only known to the caller ... 7. Allocating of local variables } alloc
79 80
Actions when terminating the call: Actions when entering g:
1. Evaluating the actual parameters
2. Saving of FP, EP } mark
3. Determining the start address of g ¢
1. Storing of the retun value . . are part of f
4. Setting of the new FP
Restoring of the registers FI’, E, SP _ . -
return 5. Saving PC and call
Jumping back into the code of f, i.e., o
Jump to the beginning of g
Restauration of the PC)
. 6. Setting of new EP } enter
4. Popping the stack } slide)) are part of ¢
7. Allocating of local variables } alloc

81

80

Actions when terminating the call:

1. Storing of the return value
Restoring of the registers FI”, EPg#5P
A i i return
Jumping back into the code of f, i.e.,
Restauration of the PC

slide

[——

4. Popping the stack

81

Accordingly, we obtain for a call to a function with at least one parameter and

one return value:

codep gley,...,eq) p = codege,p

codeg ey p
mark
codegr g p
call

slide (m — 1)

where m is the size of the actual parameters.

82

Accordingly, we obtain for a call to a function with at least one parameter and
one return value:

codeg gley,...,eq) p = codege,p

coder ey p
mark
coder g p
call

slide (m — 1)

where m is the size of the actual parameters.

82

Remark

¢ Of every expression which is passed as a parameter, we determine the

R-value — call-by-value passing of parameters.

* The function g may as well be denoted by an expression, dessen R-Wert die

Anfangs-Adresse der aufzurufenden Funktion liefert ...

%&&‘Xxg <9

e Similar to declared arrays, function names are interpreted as constant
pointes onto function code. Thus, the R-value of this pointer is the start

address of the function. Accordingly, we obtain for a call to a function with at least one parameter and

e Caveat! Foravariable int(*)()g; thetwocalls one return value:
(=)0 und g()
are equivalent! By means of normalization, the dereferencing of function codeg 8(6’1,ey)p = codege,p

pointers can be considered as redundant -

¢ During passing of parameters, these are copied. codeg ey p
Consequently, mark
codegr g p
codeg f p = loadc (pf) f name of a function call
codeg () p = codegep e function pointer slide (m — 1)
codeg e p = code. ep
move k ¢ a structure of size k where m is the size of the actual parameters.
where
84 82

e Similar to declared arrays, function names are interpreted as constant
pointes onto function code. Thus, the R-value of this pointer is the start
address of the function.

e Caveat! Foravariable int(x)()g; thetwocalls

(+2)() und 50

are equivalent! By means of normalization, the dereferencing of function
pointers can be considered as redundant :-)

Actions when terminating the call:

1. Storing of the return value e During passing of parameters, these are copied.

Restoring of the registers FI’, E, SP

return Consequently,
Jumping back into the code of f, i.e.,
Restauration of the PC codey f p = loadc (pf) f name of a function
4. Popping the stack slide codep (*¢) p = codegep ¢ function pointer
codeg e p = code_ep
move k ¢ a structure of size k
where

81 84

move

(FINEREREN

for (i =k-1;1>0; i--)
S[SP+i] = +i];
SP =SP+k-1;

85

The instruction mark

e]
EP

saves the registers FI” and EP onto the stack.

mark

S[SP+1] = EP;
S[SP+2] = FP;
SP=5P +2;

86

The instruction

new values.

call saves the return address and sets FI’ and PC onto the

tmp = S[SP];
S[SP] = PC;
FP = SP;

PC = tmp;

The instruction slide

copies the return values into the correct memory cell:

slide m

tmp = S[SP];
SP = SP-m;
S[SP] = tmp;

88

The instruction call saves the return address and sets FI” and PC onto the

new values.

FP ——=
call
PC PC

tmp = S[SP];
S[SP] = PC; Q

(@]

i

FP = SP;
PC = tmp;
87

Remark

o Of every expression which is passed as a parameter, we determine the

R-value == call-by-value passing of parameters.

e The function g may as well be denoted by an expression, dessen R-Wert die
Anfangs-Adresse der aufzurufenden Funktion liefert ...

The instruction enterq sets the EP to the new value. If not enough space is
available, program execution terminates.

EP ——=

q
enter q
EP =5SP + q;
if (EP > NP)

Error (“Stack Overflow”);

90

The instruction alloc k allocates memory for locals on the stack.

k
alloc k

SP=5SP +k;

91

The instruction return pops the current stack frame. This means it restores

the registers PC, EI and FP and returns the return value on top of the stack.

pC pPC
FP p FP
EP return EP
L& |
| v |

PC = S[FP]; EP = S[FP-2];
if (EP = NP) Error (“Stack Overflow”);
SP = FP-3; FP = S[5P+2];

92

