Script generated by TTT

Title: Seidl: Virtual Machines (14.04.2014)
Date: Mon Apr 14 10:15:24 CEST 2014
Duration: 63:18 min

Pages: 43

M S a4e,
WQ 4 p \0 O— Helmut Seidl

~—Virtual Machines

76 o N4 e

Summer 2014

M o 7] ? 70
W@’rmu/é‘ of Interpretatlon

Program + Input Interpreter Output
prm@a@on‘})@he program text > no/short

A
Program parts are repeatedly analyzed during execution +

t access to program variables
T ex i eed

We define:
codep (61 +e2) p = codepeyp
codeg ex p
add
... analogously for the other binary operators
coder (—e) p = coderep
neg
... analogously for the other unary operators
coder g p = loadecq
coder x p = loadc (px)

23

codegx p = codeLxp
load

The instruction load loads the contents of the cell, whose address is on top of
the stack.

[
- load]

S[SP] = S[S[SP]];

codeg (x=¢)p = coderep
coder x p

store

store writes the contents of the second topmost stack cell into the cell, whose
address in on top of the stack, and leaves the written value on top of the stack.

Note: this differs from the code generated by gec 7?7

store]

S[S[SP]] = S[SP-1];

SP-;
24 25

Simplification: -

code s p = coder e p Cy: code ssg p B: jump Co
check 0k B | jump D |

We only regard switch-statements of the following form: TP)

jump Cy
s = switch (¢) { C;: codessy p D:

case (: ssp break;

case 1: ss; break;

casek—1: ss,_y break;

default: ss;

s is then translated into the instruction sequence:

40

o The Macro check 0k B checks, whether the R-value of ¢ is in the interval
[0, k], and executes an indexed jump into the table B

¢ The jump table contains direct jumps to the respective alternatives.

o At the end of each alternative is an unconditional jump out of the

switch-statement.

41

check 0k B =

loadc k

loadc 0

8¢9
jumpz A

le

jumpz A

¢ The R-value of ¢ is still needed for indexing after the comparison. It is

therefore copied before the comparison.
e This is done by the instruction dup.

e The R-value of ¢ is replaced by k before the indexed jump is executed if it is

less than 0 or greater than k.

42

6

009

* The jump table could be placed directly after the code for the Macro check.
This would save a few unconditional jumps. However, it may require to

search the switch-statement twice.

o If the table starts with u instead of (), we have to decrease the R-value of e by
u before using it as an index. ~

» Ifall potential values of ¢ are definitely in the interval lw € macro
check is not needed. —

2 A& - TN
ca g 100

94

5 Storage Allocation for Variables VA, 4“5

CJ‘Odl: -
Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address

Assumptions:

e variables of basic types, e.g. int, ... occupy one storage cell.

e variables are allocated in the store in the order, in which they are declared,
starting at addres@

——

Consequently, we obtain for the declaration d ﬁ;& v b X
———

type) the address environment p such that

pxi=1, i=1,...,k
-—

45

5.1 Arrays

Example: in@a;
e’

Thearray a consists of 11 components and therefore needs 11 cells.

pa is the address of the component . b—

a[10]

al0]

lind 1 =77

We need a function sizeof (notatim@ computing the space requirement of a
type: —

1 if { basic

t = e
@@ =70

Accordingly, we obtain for the declaration d =t; xy; ... t xy;

*—____

Task:
Extend code; and codey, to expressions with accesses to array components.

Be tle] a; the declaration of an array a.

To determine the start address of a component a[i] , we compute
pa+ |t * (R-value of i).

In consequence:

coder alel p = loadc (pa)
pxp = 1 coder e p
oxi = o fori> 1 loadc |t
e mul
Since | - | can be computed at compile time, also p can be computed at compile add
time.
. or more general:
47 48
qL
codc@z] p =
5.2 Structures ﬁ,_-
In Modula and Pascal, structures are called Records.
. -—
Simplification:
Remark:

e InC, an array is a pointer. A declared array a is a pointer-constant, whose
R-value is the start address of the array.

e Formally, we define for an array e: < coder e p = code e p

-—

e InC, the following are equi

Normalization: = Array names d expressionsevaluating to arrays occur in

front of index brackets, index expressions inside the index brackets.

49

Names of structure components are not used elsewhere.
Alternatively, one could manage a separate environmen
structure type st.

-—j—; ’Pd@ AN . & t,
Be structi int a; int b; K%-? part of a declaration list.
e x has as relative addressfthe address of the first cell allocated for the
structure.

¢ The components have addresses relative to the start address of the structure.
In the example, these are a — 0, b — 1.

e

50

Let t = struct {H ¢y; ...t ck; }. We have

K
:Zfi

i=1

:@ and

= pci1+ |t fori>1

=
o
I

We thus obtain:

—_—

load

oa c(pc)q‘—
add .

5.2 Structures
In Modula and Pascal, structures are called Records.
Simplification:

Names of structure compgnents are not used elsewhere.

Alternatively, one could manage a separate environment @nr each
structure type st.

Be struct | int a; int b; } X; part of a declaration list.

* x has as relative address the address of the first cell allocated for the

structure.

e The components have addresses relative to the start address of the structure.

In the example, these are a — 0, b — 1.

50

S

Example:

Be struct|inta;intb; } x; such that M .
intr) 3 0 (D

This yields:

coder. (p = loadc 13 =———

- loadc 1

G

(oo et

6 Pointer and Dynamic Storage Man

Pointer allow the access to anonymous, dynamically generated objects, whose
life ime is not subject to the LIFO-principle.

We need another potentially unbounded storage area H — the Heap.

L -

A =

R R

NP = New Pointer; points to the lowest occupied heap cell.
EP

I

Extreme Pointer; points to the uppermost cell, to which SP can point

(during execution of the actual function).

Idea:
e Stack and Heap grow toward each other in S, but must not collide. (Stack
Overflow).
¢ A collision may be caused by an increment of SP or a decrement of NP.
e LI’ saves us the check for collision at the stack operations.

o The checks at heap allocations are still necessary.

What can we do with pointers (pointer values)? ""%@C@

o dereference a pointer, access the value in a storage cell pointed to by a

pointer.
There a two ways to set a pointer:

(1) Acall malloc(e) reserves a heap area of the size of the value of ¢ and

returns a pointer to this area:

coder malloc (e) p = coderep (

P ——

(2) The application of the address operator & to a variable returns a pointer
to this variable, i.e. its address (= L-value). Therefore:

codey, (f&e) p = code, e p
T —

NP —»E NP]

new

u@ S[SP@
= LL;

else {

= NP - S[SP];
[S[SP] =NP; l
}

e NLJLL is a special pointer constant, identified with the integer constant 0.
——

e In the case of a collision of stack and heap the NULL-pointer is returned.

Dereferencing of Pointers:

The application of the operator * to the expression e returns the contents of

the storage cell, whose address is the R-value of e:
coder (xe) p= coder e p

Examplc: Given the declarations

-

struct { int a[7]; struct f =b; };
int i, j;

and the expression ((pt — b) — a)[i + 1]
-—_’_-__.‘_

Because of e—a= holds:
cndq! e): a)p = cndej@p

loadc (pa) 6

add -

pt

b:
-
.
a:
b:
.
-
= 3

>
5 -1

Be p={i—= 1,p— 2,pt = 3,a — 0,b — 7}. Then:

coder ((pt — b) — a2

h——

= codeg ((pt— b p = coder ((pt = b) —a)p

e e e et .

codep i+ 1) p loada 1 w——x
lnadi‘i ; i loadc 1 -
mul ~ add J
add loadc 1 L/d q ‘7/{

mul

add

For arrays, their R-value equals their L-value. Therefore:

codep ((pt — b) —a) p

—

codeg (pt — b) p
loadc 0
add

In total, we obtain the instruction sequence:

loada 3
loadc 7
add

loada 1

loadc 0 loadc 1

add

60

loada 3
loadc 7
add
load
loadc 0
add

loadc 1

7 Conclusion

We tabulate the cases of the translation of expressions:

codey (e1]e2]) p codep 1 p
codeg ez p
loadc |t
mul

add if ey has type tx or f[]

codey (e.a) p coder e p
loadc (pa)

add

61

7 Conclusion

coder (xe) p = codeg ep
We tabulate the cases of the translation of expressions:
coder x p = loadc (px)
coderf (ede = codege
coder(()e codererp cndq‘-_{@m% codep e p
coder ez p
loadc |t (-:——-. :-\‘-;——-.,
codeg e p = code_ep if ¢ is an array
mul /
add if 1 has type f+ or t
r—l——t—.y_P'_&H__ codeg (e;0ex) p = codegey p ——
coder ey p
code, (e.a) p = code_ep . . _—
- - op op instruction for operator ‘O
loadc (pa)
add
61 62
/!
Example: int _a[10], (xb)[10]; with p = {a— 7,b— 17}.
For the statement: we obtain:
coder g p = loadcq g constant
coder (e1=e2)p = coderezp codey, (xa) p = codegap = codap
coder ey p code (*aié) p = Sadc 5
store [— - loadc 7
store s——.
codeg e p = code_ep @
load otherwise
As an exercise translate:
s1=b=(&a)+2; and s2=x(b+3)[0] =5;
--_'-—-_-—---\"—
63 64

8 Freeing Occupied Storage

code (s182) p = loadc7 loadc 5
loadc 2 loadc 17
] . Problems:
loadc 10 // sizeof int[10] load
mul J/ scaling loade 3 ¢ The freed storage area is still referenced by other pointers (dangling
references).
add loadc 10 // size of int[10]
loade 17 mul / scaling o After several deallocations, the storage could look like this (fragmentation):
store add
pop / end of s, store | | | ‘ ‘ | | |
pop /f endof sz * * ’ %
|
frei
65 66
"‘\-__'> (\/\

Potential Solutions:

Trust the programmer. Manage freed storage in a particular data structure

(free list)

Do nothing, i.e.:

code free(e); p =

—_—

simple and (in general) efficient.

Use an automatic, potentially “conservative” G 'Q—Collcclio)n, which

occasionally collects certainly inaccessible heap space.

codeg e p

pPop

malloc or free my become expensive.

T

9 Functions

oot in £-)

The definition of a function consists of:
* aname by which it can be called;
e a specification of the formal paramct[‘?: ﬁ\
e a possible result type;

e a block of statements. \—//

InC, we have:

=

-

codeg fp = loadc_f = start address of the code for f

Function names must be maintained within the address environment!

68

Example
int fac (int x) | mz}lnt 10 {
intn;
if (x < 0) return 1; :
if (x < 0) retum 1; n = fac(2) + fac(1);
else return x * fac(x — 1); . oy e
printf (“%d”, n);

}

At every point of execution, several instances (calls) of the same function may be

active, i.e., have been started, but not yet completed.

The recursion tree of the example:

main
\\\\
fac fac printf
f;l c f;|m
fz|1 c
69

Example

int fac (int x) { main () |

if (x < 0)return 1;
else return x * fac(x — 1);

intn;
n = fac(2) + fac(1);
printf (“%d”, n);

}

At every point of execution, several instances (calls) of the same function may be

active, i.e., have been started, but not yet completed.

The recursion tree of the example:

main
\\\\
fac fac printf
fac fac
fz‘\c
69

We conclude:

The formal parameters and local variables of the different calls of the same

function (the instances) must be cept separate.
Idea

Allocate a dedicated memory block for each call of a function.

In sequential programming languages, these memory blocks may be maintained

on a stack. Therefore, they are also called stack frames.

70

A’v_
9 Functions q/ (

The definition of a function consists of:

* aname by which it can be called;

e a specification of the formal parameters;
e a possible result type;
» a block of statements.
InC, we have:
codeg fp = loadc_f = start address of the code for f

Function names must be maintained within the address environment!

68

9.1 Memory Organization for Functions

Caveat
e The local variables receive relative addresses +1,+2,....

o The formal parameters are placed below the organizational cells and

therefore have negative addresses relative to F”)

o This organization is particularly well suited for function calls with variable
number of arguments as, e.g., for printf.

lokale Variablen
¢ The memory block of parameters is recycled for storing the return valug of
FP — w| PCold the function :-))
organisatorische . e - .
FPold Zellen Simplification The return value fits into a single memory cell.
EPold =)
formale Parameter /
Funktionswert
FP = Frame Pointer; points to the last organizational cell and is used for
addressing the formal parameters and local variables.
71 72
Example

9.2 Determining Address Environments

We distinguish two kinds of variables:
1. global/extern that are defined outside of functions;

2. local/intern/automatic (inkluding formal parameters) which are defined
inside functions.

The address environment p maps names onto pairs (fag,a) € {G,L} x Z
Caveat
¢ In general, there are further refined grades of visibility of variables.

» Different parts of a program may be translated relative to different address
environments!

IEI inti;

struct list {
int info; main () {
struct list * next; int k;
A scanf ("%d", &i);
scanlist (&I);
int ith (struct list * x, int i) { printf ("\n\t%d\n", ith (1,i));
if (i < 1) return x —info; |

else return ith (x —next, i — 1);

