Script generated by TTT

Fakultat fur Informatik rah
Technische Universitat Minchen !

A i
. [i
Title: Matthes: Soft-Arch (31.01.2012) _ : m
Software Architectures
Date: Tue Jan 31 18:11:58 CET 2012 i g
6. Architecture for Systems SEOF = 7=
Duration: 72:59 min of Systems
Pages: 60
Prof. Florian Matthes, Sascha Roth
Software engineering for business information systems (sehis)
wwwmatthes.in.tum.de
6 — Architectures for Systems of Systems sebis Recommended Reading: [Al04] sebis

= “Conventional” Middleware for Distributed Information Systems [AIO5]
* RPC and Related Middleware
+ Object Brokers
* Message-Oriented Middleware
+ EAI Middleware: Message Brokers
= Web Services
= Service-Oriented Architecture
REST [Fi00]

Saltware Ardhitectures: 6. Systems of Systems Dsehis 2

SEARCH INSIDE!™ Alonso and his co-authors deliberately take a step back.

W Based on their academic and industrial experience with
middleware and enterprise application integration systems,
they describe the fundamental concepts behind the notion of
Web services and present them as the natural evolution of
conventional middleware, necessary to meet the challenges
of the Web and of B2B application integration.

From this perspective, it becomes clear why Web services
are needed and how this technology addresses such needs.

Web Services

Alonso, G.; Casati, F.; Kuno, H.; Machiraju, V.: Web Services
— Concepts, Architectures and Applications. Springer. 2004

Rather than providing a reference guide or a manual on how
to write a Web service, the authors discuss challenges and
solutions that will remain relevant regardless of how
emerging standards and technologies evolve.

Software Architectures: 6. Systems of Systems Osehis 3

Communication in an Information System sebis Synchronous or Blocking Calls sebis

= The dominating characteristic of any software interaction is whether it is = |n synchronous interaction, a thread of execution calling another thread must
synchronous or asynchronous. wait until the response comes back before it can proceed.
= Formally: blocking vs. non blocking = This leads to simpler design which are easier to understand.
= Synchrony has nothing to do with concurrency and parallelism. » The state of the calling thread will not change before the response comes
back.

» There is a strong correlation between the code that makes the call and the
code that deals with the response.

= Can be a significant waste of time and resources if the call takes time to

complete
oV
i execution thread | i
i : ioked i
' i execution thread
| Cromest o i
£ ! :
£f1 [— '
Soltware Architectures: 6. Systems of Systems Teehis 4 Software Architectures: 6. Systems of Systems © sabis
. aee . a8
Asynchronous or Non Blocking Calls sebis Middleware sebis
= Simple example: e-mail = Middleware offers programming abstractions that hide some of the complexity
= Amessage is sent and, some time later, the program checks whether an of building a distributed application.
answer has arrived. » The middleware takes care of some aspects.
= This allows the calling program to perform tasks in the meanwhile and * The programmer has access to functionality that otherwise would have to
eliminates the need for any coordination between both ends of the interaction. be implemented from scratch.

= There is a complex software infrastructure that implements those abstractions.
» Tends to have a large footprint

» Extensions and enhancements of the original programming abstraction
make the infrastructure more complex.

L

T[T}
L

fim'l

Saltware Ardhitectures: 6. Systems of Systems Tsehis 6 Software Architectures: 6. Systems of Systems © sebis

RPC and Related Middleware sebis

= Remote Procedure Call (RPC) is the foundation underlying the vast majority of
middleware platforms available today.

= Observation: procedure calls are a well-understood mechanism for transfer of
control and data within a program running on a single computer.

= RPCs extend that mechanism to provide transfer of control and data across a
communication network [BN84].

= RPC established the notion of client (the program that calls a remote
procedure) and server (the program that implements the remote procedure
being invoked).

Saltware Ardhitectures: 6. Systems of Systems Tsehis 8

How RPC Works (1) sebis

1. Define the interface for the procedure using an interface definition language (IDL).

= Provides an abstract representation of the procedure in terms of what parameters it
takes as input and what parameters it returns as a response.

2. Compile the IDL description, which produces:
* Client stubs

* When the client calls a remote procedure, the call that is actually executed is a
local call to the procedure provided by the stub.

« Locates the server (binding), formats the data (marshaling and serialization),
communicates with the server, gets a response and forwards that as the return
parameter.

« |s a placeholder or proxy for the actual procedure implementation at the server.
« Will be compiled and linked with the client code.

= Server stubs
* Will be compiled and linked with the server code.

« Receives requests, deserializes and unmarshals the call, invokes the actual
procedure implementation on the server and sends the result back to the client.

= Code templates and references

Software Architectures: 6. Systems of Systems © sebis

a

How RPC Works (2) sebis

Saltware Ardhitectures: 6. Systems of Systems @sehis 10

S

—

How RPC Works (3) seb

client server
client process sel process
procedure call procedunzl-—

dispatcher

{select

server stub 1 shb)
communication deserialize communication

medule receive module

Software Architectures: 6. Systems of Systems ©sebis 11

Binding in RPC sebis

= |n order for a client to make an RPC, it must first locate and bind to the server
hosting the remote procedure.

= Binding is the process whereby the client creates a local association for (i.e. a
handle) a given server in order to invoke a remote procedure.

= Binding can be either static or dynamic.

= In static binding, the client stub is hardcoded to already contain the handle of
the server where the procedure resides (e.g., IP address and port number,
Ethernet address, X500 address, ...).

= Advantages of static binding: efficient and simple, no additional infrastructure is
needed.

= Disadvantages: the client and the server become tightly coupled; if the server
changes location the client has to recompiled with a new stub.

+ Itis not possible to use redundant servers to increase performance; load
balancing must take place at the time the clients are distributed and

How RPC Works (3) sebis

developed.
Soltware Architectures: 6. Systems of Systems ©eebis 12 Software Architectures: 6. Systems of Systems O sebis 11
Binding in RPC sebis Dynamic Binding (1) sebis

= In order for a client to make an RPC, it must first locate and bind to the server
hosting the remote procedure.

= Binding is the process whereby the client creates a local association for (i.e. a
handle) a given server in order to invoke a remote procedure.

= Binding can be either static or dynamic.
_ ‘--..__F————-

= |n static binding, the client stub is hardcoded to already contain the handle of
the server where the procedure resides (e.g., IP address and port number,
Ethernet address, X500 address, ...). -
= Advantages of static binding: efficient and simple, no additional infrastructure is
needed.
= Disadvantages: the client and the server become tightly coupled; if the server
changes location the client has to recompiled with a new stub.
« |tis not possible to use redundant servers to increase performance; load
balancing must take place at the time the clients are distributed and
developed.

Saltware Ardhitectures: 6. Systems of Systems @ sehis 12

= Enables the client to use a specialized service to localize appropriate servers.
= Adds a layer of indirection to gain flexibility at the cost of performance.

= The name and directory server is responsible for resalving server addresses
based on the signatures of the procedures being invoked.

= Enables dynamic load balancing.

= |f the server changes location only the entry in the name and directory server
has to be changed = Decoupling of client and server

Software Architectures: 6. Systems of Systems ©sebis 13

Dynamic Binding (2) sebis

RPC and Heterogeneity sebis

= The stubs can be used to hide not only the distribution but also the
heterogeneity.

client server
client process server process = Anaive approach would use a different client and server stub set for every
| : possible combination of platforms and languages -> 2*n*m stubs for n client and
procedure cal procedure <— m server platforms.
clienf s di?f:ffn"" = More efficient: some form of intermediate representation so that client and
bind ;‘"‘—","“‘b 1 stub server stubs only have to know how to translate to and from this intermediate
marshal e i representation (n+m stubs
\ serialize unmarshal —} —— P ()
\2. find communication deserialize communication = The IDL
module ; 7. rec ’M"" » is used to define the mapping from concrete programming languages to the
— T intermediate representation used in that particular RPC system,
3-%_“2"_“""' ; » serves for defining the intermediate representation for data exchanges
implementing 6. invoke procedure 1. reqister :] p g
the procedure 4, address of se server and between clients and servers,
IR Sener procedure + defines how parameters should be represented and organized before being
name and directory service (binder) sent across the network.
Soltware Architectures: 6. Systems of Systems Tsebis 14 Software Architectures: 6. Systems of Systems O sebis 15
. The Eight Fallacies of Distributed Computing .
RPC Design Decisions sebis [De97] sebis

Should RPC be transparent to the programmer?
= Pro: simplicity, programmers do not deal with distribution directly
= Contra: including a remote call changes the nature of the program deeply

« Forcing programmers to use special constructions for RPC is a way if
making aware of a remote call and the implications (performance, reliability)

Most modern RPC systems use a transparent approach.

Saltware Ardhitectures: 6. Systems of Systems @sehis 16

Essentially everyone, when they first build a distributed application, makes the
following eight assumptions:

1. The network is reliable
Latency is zero

Bandwidth is infinite

The network is secure
Topology doesn't change
There is one administrator
Transport cost is zero

The network is homogeneous

© N0 ®N

All prove to be false in the long run and all cause big trouble and painful learning
experiences.

Software Architectures: 6. Systems of Systems ©sebis 17

sebit

= “Conventional” Middleware for Distributed Information Systems [AlO5]
* RPC and Related Middleware
+ Object Brokers
* Message-Oriented Middleware
+ EAI Middleware: Message Brokers
= Web Services
= Service-Oriented Architecture

Object Brokers sebis

= Object broker extends the RPC paradigm to the object-oriented world; they
provide services that simplify the development of distributed object-oriented
applications.

= Difference to simple RPC: clients invoke a method of an object

» Because of inheritance and polymorphism the function performed by the
server object actually depends on the class to which the server object
belongs.

) » The middleware has to bind clients with specific objects running on a server
= REST [Fi00] and manage the interactions between two objects.
e Client ___ Server o Cllent §anfer
| ||
| | | [l ey fﬁv—m
IE’ foo| | I Object |Object
’ | {< Fao mu
L & | | ‘Exccm foo) L& \q
|| RPC Mechanism | OW",,S‘EM/
= With time, object brokers added features that went beyond basic
interoperability, for example including location transparency, object lifecycle
management, and persistence.
Soltware Architectures: 6. Systems of Systems ©sebis 18 Software Architectures: 6. Systems of Systems ©sebis 10
aee — a8
CORBA sebis Message-based Interoperability (2) sebis
= The best known example of object broker is the abstraction described in the
Common Object Request Broker Architecture (CORBA) specification, which
was developed in the early 1990s by the Object Management Group (OMG).
* Itoffers a standardized specification of an object broker rather than a Message : quoteRequest { Message: quate {
concrete implementation. Qmmafmumh-r 325 QuoteReferenceNumber: 325
. - ' ExpectedbeliveryDate: Mar 12, 2003
= CORBA is agnostic with respect to both the programming language used to Item: png (Ball-polm pen, blue) Price:1200%
develop object-oriented applications and also the operating systems on which Quantity: 1200 : }

the applications run.

Client

Saltware Ardhitectures: 6. Systems of Systems @sehis 20

RequestedDeliveryDate: Mar 16,2003
DeliveryAddress: Palo Alto, CA
}

[clianf application] [quﬂmfim tmll client application

_—
Message-Oriented Middleware (MOM) Message-Oriented Middleware (MOM)

——

Software Architectures: 6. Systems of Systems ©sehis 25

Message Queues sebis Shared Queues sebis

= One of the most important abstractions based on MOM is that of message = Shared Queues can be used to distribute load among multiple applications that
queuing. provide the same service.

= In amessage queuing model, messages sent by MOM clients are placed into a = The MOM system controls access to the queue, ensuring that a message is
queue, typically identified by a name, and possibly bound to a specific intended delivered to only one application.
recipient.

= Whenever the recipient is ready to process a new message, it invokes the
suitable MOM function to retrieve the first message in the queue.

client application] Eomficn foﬂ

quotation
tool 1

quotation
tool n

1 ¥
stond s
| — .
queve shared queve
.3 ___I ___________________________ T \M_essage-OrienTed _________________ I___
; MOM Core | Middleware (MOM) ! MOMCore !
Soltware Architectures: 6. Systems of Systems ©sebis 27 Software Architectures: 6. Systems of Systems O sebis 28
. aee . . . a8
Benefits of Message Queues sebis Interacting with a Message Queuing System sebis
= |t gives recipients control of when to process messages. = Queuing systems provide an API that can be invoked to send messages or to
* Recipients do not have to be continuously listening for messages and process wait for and receive messages.
them right away, but can instead retrieve a new message only when they can or = Sending a message is typically a non blocking operation.
need to process it. = Receiving a message is instead often a blocking operation, where the receiver
= Queuing is more robust to failures with respect to RPC or object brokers, as listens for messages and processes them as they arrive, typically by activating
recipients do not need to be up and running when the message is sent. a new dedicated thread, while the main thread goes back to listen for the next

= |f an application is down or unable to receive messages, these will be stored in message.
the application’s queue (maintained by the MOM). = Non blocking alternative: provide a callback function that is invoked each time a

* Queued messages may have an associated expiration date or interval. message arrives.

= Queues can be shared among multiple applications.

Saltware Ardhitectures: 6. Systems of Systems @sehis 20 Software Architectures: 6. Systems of Systems ©sebis 30

Java Message Service sebis

= Java industry-standard API: Java Message Service (JMS)
= In JMS, a message is characterized by

+ aheader, which includes metadata such as the message type, expiration
date, and priority, ...

« a body, which includes the actual application-specific information that
needs to be exchanged.

= Addressing is performed through queues:

» senders (receivers) first bind to a queue, i.e., identify the queue to (from)
which they want to send messages (receive messages from), based on the
queue name,

« then they can start sending (retrieving) messages to (from) the queue.
= JMS is simply an API and not a platform.

= JMS can be implemented as a stand-alone system or as a module within an
application server.

Saltware Ardhitectures: 6. Systems of Systems

From Middleware to Application Integration sebis

= The use of middleware led to a further proliferation of services.

= |ntegration is now not only the integration of resource managers or servers, but
also the integration of services.

= While for servers there has been a significant effort to standardize the interfaces
of particular types of servers (e.g., databases), the same cannot be said of
generic services.

= There was almost no infrastructure available that could help to integrate
services provided by different middlewares.

= Middleware was originally intended as a way to integrate servers that reside in
the resource management layer.

= - Enterprise Application Integration (EAI) appeared in response to this.

= EAlincludes as building blocks the application logic layers of different
middleware systems.

@ sebis 31 Software Architectures: 6. Systems of Systems Tsebis 33
Example of Application Integration sebis EAIl Middleware: Message Brokers (1) sebis
= Traditional RPC-based and MOM systems create point-to-point links between
applications = they are rather static and inflexible with regard to the selection of
ik gueues to which messages are delivered.
sq:plicr w\d
custmr mgm pnassing

= Different operating systems,
= Different interfaces (transactional/non-transactional, standard IDL/proprietary,

)

= Different data formats,
= Different security requirements (authentication), and
= Different middlewares

Saltware Ardhitectures: 6. Systems of Systems @ sehis 34

message-oriented middleware
—_—_—

= Message brokers act as a broker among system entities, thereby creating a
(logical or physical) “hub and spoke” communication infrastructure for
integrating applications.

Software Architectures: 6. Systems of Systems ©sebis 35

EAI Middleware: Message Brokers (2) sebis Extending Basic MOM sebis
= Message brokers factor the message routing logic out of the senders and place
it into the middleware.
in basic MOM it is the = There is now a single place where we need to make changes when the routing
sender who specifies - e
the identity of the logic for messages needs to be madified.
receivers . -
= Routing logic
- + can be based on the sender’s identity, on the message type, or on the
L sender j Lmﬂm message content,
T J + is typically defined in a rule-based language.
| with message brokers, = Message brokers decouple senders and receivers.
““’“;W = Since message brokers require the communication to go through a middle
at . . - . . .
T message broker layer, even more application-specific functionality can be implemented there,
level or af the queve i
- _______-___,________________JL‘___/1 Jevel e.g., content transformation rules.
i ___ message broker core H)
message broker
Soltware Architectures: 6. Systems of Systems ©sebis 36 Software Architectures: 6. Systems of Systems ©sebis 37
The Publish/Subscribe Interaction Model sebis EAIl with a Message Broker sebis

= Applications simply publish the message to the middleware system >
publishers

= If an application is interested in receiving messages of a given type, then it must
subscribe with the publish/subscribe middleware.

= Whenever a publisher sends a message of a given type, the middleware
retrieves the list of all applications that subscribed to messages of that type, and
delivers a copy of the message to each of them.

(" inventory :) month-end !

ERP dispatcher shipping |, losi |
| E‘;:'bs“‘ﬂ:rm*) (subscriber) (publisher) (subscriber) Ju @E;E‘gﬂ)
T new PO TMWPC? lnewPO ”,,,,,po l ?mPO

5 message broker

Saltware Ardhitectures: 6. Systems of Systems @sehis 38

= Adapters map heterogeneous data formats, interfaces, and protocols into a
common model and format.
= Adifferent adapter is needed for each type of application that needs to be

integrated.
(contains the composition logic)
message broker]
rtQuotatiol database SmartForecastil il XYZ
ter [adapter] adapter nﬂ n::;v adapter
! ! ! ! !
8 O 8 a8
SmartQuotation uppll)llz::is‘m SmartForecasting XYZ

Software Architectures: 6. Systems of Systems ©sebis 3

Limitations of Conventional Middleware in B2B

sebis Integration (1) sebis

= “Conventional” Middleware for Distributed Information Systems [AlO5] = |n cross-organizational interactions there is no obvious place where to put the

» RPC and Related Middleware middleware.

« Object Brokers = The basic idea for conventional middleware was for it to reside between the

« Message-Oriented Middleware applications to be integrated and to mediate their interactions.

- EAI Middleware: Message Brokers " I‘I’he aﬁplicatigrls were diftrilllauéegj, but_thel middleware was centralized (at least
« Web Services ogically), and it was controlled by a single company.
= Service-Oriented Architecture
= REST [Fi00]
Soltware Architectures: 6. Systems of Systems ©sebis 40 Software Architectures: 6. Systems of Systems O sebis 43
Roles and Actions in an SOA (1) sebis Roles and Actions in an SOA (2) sebis

= Aservice oriented architecture has three involved roles: service consumer,
service provider, and service registry.
= The service cansumer
« is an application, a software module or another service that requires a
service,

« initiates the enquiry of the service in the registry, binds to the service over a
transport, and executes the service function.

= The service provider

+ is a network-addressable entity that accepts and executes requests from
service consumers,

» publishes its services and interface contract to the service registry so that
the service consumer can discover and access the service.

= A service registry
+ is the enabler for service discovery,

« contains a repositary of available services and allows for the lookup of
service provider interfaces to interested service consumers.

Saltware Ardhitectures: 6. Systems of Systems T sehis 64

Service Service
Ragigtry Description

[]
—>

Service
Consumer

Service

Provider Service
Sm— Description

Bind and Execute

[Pa03]

Software Architectures: 6. Systems of Systems ©sebis 65

Principles of a Service-Oriented Architecture

[Er05] sebis

Loose Coupling: Services are using each others functionality while still
remaining independent.

Service Contract: A service in a SOA is described in a document which
contains all information necessary for using it.

Discoverability of services at design time enables their reuse.

Abstraction and autonomy: A service hides implementation details and will be
accessed only through its interface.

Reusability: Services can be consumed by more than one consumers.
Composability: A coarse grained service may orchestrate several service,
which are of a finer granularity.

Stateless services should minimize the amount of state information they
manage, as well as the duration for which they remain stateful.

Saltware Ardhitectures: 6. Systems of Systems T sehis 66

Services

sebis

= A service provides some functionality over a standardized interface, which

encapsulated the actual implementation.
= As with SOA, there are many different definitions of a service.

= A service can be divided into these parts [KBS04]:
» Service description,
» Service interface,
* Business logic,
» Implementation, and
+ Data.

Software Architectures: 6. Systems of Systems

©sebis 67

SOA Governance sebis

Governance plays an important role in adopting and managing an SOA.
SOA governance is important at three different levels [Kel07]:
« At the strategic level the management of a company defines which role
SOA should play.
« At the operational level decisions, which may cross departments, but do
not have influence on the whole organization are made:
— Who is the owner of a service?
— Who pays for implementation and maintenance of a service?

— Which non-functional requirements have to be fulfilled by a service, e.g.,
availability, performance?

« At the technical level tools help to ensure technical integrity.

Saltware Ardhitectures: 6. Systems of Systems @ sehis 68

Alignment of Business and IT

Processes

Services

Applications > =)

7 osaso e
Linux

Technology

T

sebis

This is just a teaser: More information = SEBA Master & Sirategisches IT-Management

Software Architectures: 6. Systems of Systems

D sebis 69

sebis Representational State Transfer sebis
= “Conventional” Middleware for Distributed Information Systems [AlO5] = Representational State Transfer (REST) is a software architectural style for
« RPC and Related Middleware distributed hypermedia systems like the world wide web.
« Object Brokers = The term has been coined by Roy Fielding in his doctoral dissertation [Fie00]
+ Message-Oriented Middleware * REST provides a set of architectural constraints that, when applied as a whole,
+ EAI Middleware: Message Brokers emphasizes
= Web Services + scalability of component interactions,
= Service-Oriented Architecture * generality of interfaces,
« REST [Fi00] » independent deployment of components, and
+ intermediary components to reduce interaction latency, enforce security,
and encapsulate legacy systems.
= The REST architectural style has been used to guide the design and
development of the architecture for the modern Web.
= The abstract discussion about architectural styles enables judgments over
whether particular practices are consistent with the architecture of the Web.
Soltware Architectures: 6. Systems of Systems ©sebis 70 Software Architectures: 6. Systems of Systems ©sebis 71
aee . a8
The Null Style sebis Client-Server sebis

= |s simply an empty set of constraints

= Describes a system in which there are no distinguished boundaries between
components

= |s the starting point for the description of REST

= Examples: Mainframe application, Desktop application, “Closed” Distributed
System (e.g. World of Warcraft)

Saltware Ardhitectures: 6. Systems of Systems @sehis 72

Server

K%

= Separates the user interface concerns from the data storage concerns.
= Improves the portability of the user interface across multiple platforms.
= Improves scalability by simplifying the server components.

= Allows the components to evolve independently.

Client

Software Architectures: 6. Systems of Systems ©sehis 73

Stateless _/ sebis

Server

000
R

Client

= Communication must be stateless in nature: each request from client to server
must contain all of the information necessary to understand the request.

= Visibility is improved because a monitoring system does not have to look
beyond a single request datum in order to determine the full nature of the
request.

= Reliability is improved because it eases the task of recovering from partial
failures.

= Scalability is improved because not having to store state between requests
allows the server component to quickly free resources, and further simplifies
implementation because the server doesn't have to manage resource usage
across requests.

= Disadvantage: it may decrease network performance by increasing the
repetitive data sent in a series of requests, since that data cannot be left on the
server in a shared context.

Saltware Ardhitectures: 6. Systems of Systems @sehis 74

Cacheable sebis

Server

000
00

Client

Client+Cache

= Require that the data within a response to a request be implicitly or explicitly
labeled as cacheable or non-cacheable.

= Improves efficiency, scalability, and user-perceived performance by reducing
the average latency of a series of interactions.

= Trade-off: a cache can decrease reliability if stale data within the cache differs
significantly from the data that would have been obtained had the request
been sent directly to the server.

Software Architectures: 6. Systems of Systems ©sebis 75

Uniform Interfaces sebis

Client Connectar: ()) Client+Cache: (¢) Server Connector: () ServersCache: (%)

= This is the central feature that distinguishes the REST architectural style from
other network-based styles.

= Emphasis on a uniform interface between components:
« Uniform identification scheme,
+ Uniform representation of information exchanged.
= |Implementations are decoupled from the services they provide.

= Trade-off: information is transferred in a standardized form rather than one
which is specific to an application’s needs.

Saltware Ardhitectures: 6. Systems of Systems @ sehis 76

T

Uniform ldentification Scheme sebis

= URI: Uniform Resource Identifier (general term)
» There are two mechanisms: naming and location

= URN: Uniform Resource Name
+ ldentification of objects by name for the purpose of persistent labeling
—Eg 18BN

= URL: Uniform Resource Locator e — URI

» |dentification via the primary access mechanism
AN

» Anexample ofan URI: (flocator’) — {name’)

scheme authority path query fragment
http :// example.org /mysite/page ? name=cat # whiskers

= A URI points to a hierarchical space reading from left to right; each block that
follows is a branch from the previous block.

Software Architectures: 6. Systems of Systems ©sehis 78

Uniform Identification Scheme

= URI: Uniform Resource Identifier (general term)
« There are two mechanisms: naming and location
* URN: Uniform Resource Name

sebis

+ I|dentification of objects by name for the purpose of persistent labeling

+ E.g., ISBN
= URL: Uniform Resource Locator
« |dentification via the primary access mechanism

= An example of an URI:

AN

(“locator”) (“name”)

scheme authority path query fragment
http i// example.org /mysite/page ? name=cat # whiskers
— e . B e

= A URI paoints to a hierarchical space reading from left to right;

follows is a branch from the previous block.

Saltware Ardhitectures: 6. Systems of Systems

each block that

©sebis 78

The URI Dissected

= Scheme - Defines how the URI should be interpreted.
= Authority — Has the structure userinfo@ host:port

sebis

= Path — Looks like the path on a file system and is often used in a hierarchical

fashion to address files on a system.

+ Example: http://del.iciou.us/danja/owl refers to all items tagged by danja

with owl.

= Query — The spec describes the query part as being a non-hierarchical part of

the URI.
= Fragment — |s used to identify a secondary resource.

= URIs are not being used uniformly on the Web, but: when a URI has been used
to identify a resource, it should continue to be used to identify the same

resource.

= See: “Cool URIs don't change” from Tim Berners Lee.

[http:/Amww.w3.org/Provider/Style/URI]

Software Architectures: 6. Systems of Systems

D sebis 79

Process View of a REST-Based Architecture

Gatewny Origin Servers

Proxy

- N e \ ?
((>—(s'\, O @f)——:'(h”)—r:%ﬁ'?

wp S N/ by~ & @

: ' L 000

: w00

R

Clieat Comnector: () Chent=Cache (3) Serves Connecror: (() Server-Cacae: ((5

sebis

= Request (a) has been sent to a local proxy, which in turn accesses a caching gateway

found by DNS lookup, which forwards the request on to be satisfied

by an origin server

whose internal resources are defined by an encapsulated object request broker

architecture.

= Request (b) is sent directly to an origin server, which is able to satisfy the request from

its own cache.

= Request (c) is sent to a proxy that is capable of directly accessing WAIS, an information
service that is separate from the Web architecture, and translating the WAIS response

into a format recognized by the generic connector interface.

= Each component is only aware of the interaction with their own client or server

connectors; the overall process topology is an artifact of our view.

Saltware Ardhitectures: 6. Systems of Systems

©sebis 82

REST Triangle

T

sebis

= The main problem domains identified in REST are the nouns, the verbs, and

the content-type spaces.

= The things that exist, the things you can do to them, and the information you

can transfer as part of any particular operation.

Nouns
(Unconstrained)
eg http:/iwikipedia org/

———

Verbs Content Types

(Constrained) ", [Constrained)
eg GET eg HTML

= REST requires a standardized set of state transfer operations.

Software Architectures: 6. Systems of Systems

Dsebis B3

REST Methods sebis

= Minimum methods: GET, PUT, POST, DELETE l
= GET isthe HTTP equivalent of COPY

» Transfers a representation from resource to client.
= PUT is the HTTP equivalent of PASTE OVER

+ Transfers state from a client to a resource.

« GET and PUT are fine for transferring state of existing resources.
= POST is the PASTE AFTER verb

+ Don't overwrite what you currently have: Add to it

« Create a resource.

+ Add to a resource.
= DELETE isthe HTTP equivalent of CUT

* Requests the resource state being destroyed.

Saltware Ardhitectures: 6. Systems of Systems @sehis 84

REST versus RPC

getUser ()
adduUser ()
removeUser()
updateUser()
getLocation()
addLocation()
removeLocation()
updateLocation()
listUsers()
listLocations()
findLocation()
finduser()

sebis

user)

each location)

http://example.
http://example.

http://example.
http://example.
http://example.

http://example.

com/users/
com/users/{user} (one for each

com/findUserForm
com/locations/
com/locations/{location} (one for

com/findLocationForm

userResource =

new Resource("http://example.com/users/001")
userResource.get()

exampleAppObject = —

—
new ExampleApp[;;éi:’mn%
exampleAppObject. ser()

fact, using HTTP to tunnel function calls.

Software Architectures: 6. Systems of Systems

= There are many examples of interfaces that label themselves 'REST", but are, in

D sebis BS

REST Methods sebis

= Minimum methods: GET, PUT, POST, DELETE L
= GET isthe HTTP equivalent of COPY

« Transfers a representation from resource to client.
= PUT is the HTTP equivalent of PASTE OVER

+ Transfers state from a client to a resource.

+ GET and PUT are fine for transferring state of existing respurces.
* POST is the PASTE AFTER verb

« Don't overwrite what you currently have: Add to it

« Create a resource.

« Add to a resource.
= DELETE isthe HTTP equivalent of CUT

» Requests the resource state being destroyed.

Saltware Ardhitectures: 6. Systems of Systems @sehis 84

REST versus RPC

getUser ()
addUser ()
removeUser()
updateUser()
getLocation()
addLocation()
removeLocation()
updateLocation()
listuUsers()
listLocations()
findLocation()
finduser()

T

sebis

http:.//example.com/users/
http://example.com {usert (one for each

user)

http://example.
http://example.
http://example.

each location)

http://example.

com/findUserForm [
com/locations/
com/locations/{location} (one for

com/findLocationForm

userResource =

new Resource("http://example. cumfusers/gﬂﬂ]

userResource.get()

exampleAppObject =
new ExampleApp("example.com:1234")
exampleAppObject.getUser()

fact, using HTTP to tunnel function calls.

Software Architectures: 6. Systems of Systems

= There are many examples of interfaces that label themselves 'REST', but are, in

D sebis BS

End of presentation. Click to exit.

