Demo... sebis

Script generated by TTT 4
Customer [Rental e am— Movie

statement() : String! daysRented : int title : String
priceCode : int

Title: Matthes: Soft-Arch (17.01.2012)

Date: Tue Jan 17 18:15:49 CET 2012

Duration: 57°51 mi = The program is told which movies a customer rented and for how long.
uration: : min = There are three kinds of movies:@‘, hildrenys, @
* The statement method of Customer calculates and prinfs a statement of a
Pages: 35 customer's charges at a video store.

* |n addition to calculating charges, the statement also computes frequent renter
points, which vary depending on whether the film is a new release.

Software Architecturas: 5. Evolution @ sebis

The Initial statement() Method (2) sebis

The Initial statement() Method (1) seb

public String statement() {
double totalAmount = 0;
int frequentRenterPoints = 0; // add frequent renter points
String result = "Rental Record for " + getName () + "\n"; frequentRenterPoints++;

for (Rental each : rentals) (
double thisAmount = 0;
//determine amounts for each line
switch (each.getMovie() .getPriceCode ()) {
case Movie.REGULAR:
thisAmount += 2;

if (each.getDaysRented() > 2) {
thisAmount += (each.getDaysRented() -_2) *@
} Lo
break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented () * 3;
break;
case Movie.CHILDREN:

thisAmount += 1.5;
if (each,gemaysnenced(}@ {
thisAmount += (each.getDaysRented() - 3) { 1.3;
}
break;

Software Architectures: 5. Evolution

D sebis

// add bonus for a two day new release rental

if {(each.getMovie().getPriceCode() == Movie.NEW RELEASE) && each.getDaysRented() > 1) {
frequentRenterPoints++;

}

// show figures for this rental

result += "\t" + each.getMovie().getTitle() + "\t" + String.valueOf (thisAmount) + "\n";

totalAmount += thisAmount;

}
// add footer lines
result += "Amount owed is " + String.valueOf (totalAmount) + "\n";

result.t= "You earned " + String.valueOf (frequentRenterPoints) + " frequent renter points";
eturn resul
}

Software Architectures: 5. Evolution @ sebis

Basic Rules for Refactoring sebis

There are two changes to be made on the example:
= The statement should be formatted in HMTL
= The way the movies are classified should be changed.

(1) When you find you have to add a feature to a program, and the program’s code
is not structured in a convenient way to add the feature, firstfgiax_mthe
program to make it easy to add the feature, then add the fpamcp

(2 Before you start refactoring, check that you have a Bolid suite of Iesis These
tests must be self-checking.

(3 Refactoring changes the programs in small steps. If you make a mistake, it is
easy to find the bug.

ﬁ Any fool can write code that a computer can understand. Good programmers l

write code that humans can understand.

Softwara Architectures: 5. Evolution @ sebis 10

The Two Hats sebis

Using refactoring to develop software leads to a division o f me into two distinct

activities: adding function and gefactoring.

= When you add function, you shouldn’t be changing existing code. You add tests
and get the tests to work.

{- When you refactor, yau make a point of not adding function., you only
restructure the code.onu dont add any {est?r.
"‘-—._____________

As you develop software, you probably find yourself swapping hats frequently.

Software Architectures: 5. Evolution D sebis 13

Defining Refactoring sebis

Refactoring :

A change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior.

Refactor (verb):

To restructure software by applying a series of refactorings without changing its
observable behavior.

Software Architecturas: 5. Evolution @ sebis

Why Should You Refactor?

Refactoring Improves the Design of Software sebis

E\Iithout refactoring, the design of software will decay: as people change code, the
ode loses its structure.
Loss of the structure of code has a cumulative effect:

= The harder it is to see the design in the code, the harder it is to preserve it, and
the more rapidly it decays

An important aspect of improving design is to_eliminate duplicat
* Reducing the amount of code does make a big difference in modification of the
code. The more code there is, the harder it is to modify correctly. There's more
code to understand.

Software Architectures: 5. Evolution @ sebis

14

Why Should You Refactor?
Refactoring Makes Software Easier to Understand sebis

i
E If the code isn’t clear, it's an'gdorthat needs to be removed by refactoring, not
by deodorizing the code with a comment.

= Refactoring makes code less#@nnoying.
—

« I Refactor only what you truly understand! /

Softwara Architectures: 5. Evolution @ sabis 15

When Should You Refactor? sebis

The rule of three
= {[he first time you do something, you just do it.

= The second time you do something similar, you wince at the duplication, but you
do the duplicate thing anyway.

= The third time you do something similar,([rou refactor.z

Refactor when you add function
Refactor when you need to fix a bug
Refactor as you do a code review

Software Architectures: 5. Evolution D sebis 18

Why Should You eta_cj.ar_?__ez
Refactoring Helps/You Program Fast sebis

Refactoring helps you develop more code more quickly.

Without a good design, you can progress quickly for a while, but soon the poor
design starts to slow you down.

* You spend time finding and fixing bugs instead of adding new function.

= Changes take longer as you try to understand the system and find the
duplicated code.

» New features need more coding as you patch over a patch that patches a patch
on the original code base.

Good design is essential for rapid software development.

Software Architecturas: 5. Evolution @sebis 17

Indirection and Refactoring sebis

J_I\flost refactoring introduces more indirection into a program.

Drawback of indirection:

= More things to_nanage

= Can make a program harder to read as an object delegates to an object
delegating to an object

But, indirection can pay for itsglf:

Software Architectures: 5. Evolution @sebis 19

[Problems with Refactorin97 sebis

[Databases

= Most business applications are tightly coupled to the database schema that
supports them

= Data migration can be a long and fraught task l

Changing interfaces
= There is a problem if the interface is being_used by code that you cannot find
and change (this happens in the case 0; mt@gﬂgt_gr__ faces)
= Once you publish an interface, you can no longer safely change it and just edit
the callers = what do you do about refactorings that change published
interfaces?
=/ Don't publish interfaces prematurely. Modify your code ownership policies to

L allow people to change other people’s code in order to support an interface
change.

—

When shouldn’t you refactor?

= When you should rewri scratch instead
« The code doesot work correctly and cannot e stabilized

= When you arefclose to a deg

ST ==

Softwara Architectures: 5. Evolution @ sabis 20

Code Smells sebis

The most common design problems result from code that
Is duplicated

~# Is unclear
~m |s complicated

Many programmers find this list to be too vague; WW\{J@L A
duplication in code that isn't outwardly the same, they aren re how to tell when
code is clearly communicating its intent, and they don’t know how to distinguish
simple code from complicated code.

~Bad smells” provide additional guidance for identifying design problems.

Code smells target problems that occur everywhere: in methods, ¢lasses..
hierarchies, packages (namespaces, modules), and entire systems.

The names of the smells provide a rich and colorful vocabulary with which
“programmers may rapidly communicate about design problems.

Code smells are no precise criteria for when a refactoring is overdue; no set of
metrics rivals informed human intuition.

Software Architectures: 5. Evolution D sebis 23

LRefactoring and Performance] sebis

To make the software easier to understand, you often make changes that will cause
the program to run more slowly.

Refactoring certainly will make software go more slowly, but it also makes the
software more amenable to performance tuning.

The secret to fast software, is to write tunable software first and then to tune it for
sufficient speed.

Observation: most programs waste most of their time in a small fraction of the code.
Build your program in a well-factored manner without paying attention to
performance until you begin a performance optimization stage, usually fairly late in
development.

Software Architecturas: 5. Evolution @sebis 21

A Catalog of Code Smells sebis

Duplicated Code
= The same structure in more than one place

= The simplest duplicated code problem is when you have the same expression in
two methods of the same class

~ZLong Method
Large Class
Long Parameter List
Divergent Change

= A single functional change requires multiple changes at not obviously related
code locations

Software Architectures: 5. Evolution @sebis 24

[_Iformat of the Refactorings

Softwara Architectures: 5. Evolution @ sabis 26

Format of the Refactorings

sebis

Each refiitoring has five parts, as follows:

The is important to building a vocabulary of refactorings.

The name is followed by a short of the situation in which you need
the refactoring and a summary of what the refactoring does.

The motivation describes the refactoring should be done and describes
circumstances in which it shouldn’t be done

The mechanics are a concise, step-by-step description of how to carry out the
refactoring

The examples show a very simple use of the refactoring to illustrate how it
works

sebis

Each refactoring has five parts, as follows:

Software Architectures: 5. Evolution

The name is important to building a vocabulary of refactorings.
The name is followed by a short summary of the situation in which you need
the refactoring and a summary of what the refactoring does.

The motivation describes why the refactoring should be done and describes
circumstances in which it shouldn’t be done

The mechanics are a concise, step-by-step description of how to carry out the
refactoring

The examples show a very simple use of the refactoring to illustrate how it
works

©sebis 26

sebis

= How to Change the Architecture of a System?
= Refactoring

+ A First Example

+ Principles in Refactoring

+ Bad Smells in Code

+ A Catalog of Refactorings

= Composing Methods
— Moving Features Between Objects

Dealing with Generalization

Software Architecturas: 5. Evolution

/: Extract Method (1—)]

You have a code fragment that can be grouped together.

sebis

Turn the fragment into a method whose name explains the purpose of the method.

void printOwing(double amount) {

printBanner() ;
nt detal
System.oUETP¥intln("name: " + _name);
- intln("amount: " + amount)

void printOwing(double amount) {
printBanner () ;
printDetails (amount) ;

}

'void printDetails (double amoun{.
System.out.println("name: " +{n

System.out.println("amount: "

}

+ amount) ;

Motivation
= |s one of the most common refactorings
= | eads to short, well-named methods
+ Increases the chance that other methods can use a method
» Allows the higher-level methods to read more like a series of comments
o Qverriding'is easier when the methods are finely grained

= The key is the semantic distance between the method name and the method body

Software Architectures: 5. Evolution

@sebis 28

Extract Method (2) sebis

Meechanics
= Create a new method, and name it after the intention of the method (name it by
what it does, not by how it does it)

- If the code you want to extract is very simple, you should extract it if the
name of the new method will reveal the intention of the code in a better
way. If you can’t come up with a more meaningful name, don’t extract the
code.

= Copy the extracted code from the source method into the new target method:
= References that are local in scope to the source method will become
Parameters of the target method

Replace Temp With Query (2) sebi
Mechanics

= Look for a temporary variable that is assigneé to once)

= Declare thetemp as final

= Compile

= Extract the right-hand side of the assignment into a method

+ Initially mark the method as priyate. You may find more use for it later, but
you can easily relax the protection later

« Ensure the extracted method is free of side effects, that is, it does not
modify any object
= Compile and test
= [nline temp on the temp

Software Architectures: 5. Evolution D sebis 3

eplace Temp With Query (1) sebis

P

LYou are using a temporary variable to hold the result of an expression.

Extract the expression into a method. Replace all references to the temp with the
new method. The new method can then be used in other methods.

J double‘!nEe_pxi/Je = _quantity *
. °

if (basePrice > 1000) {

if (hasgPrical) > 1000) {
return basePrice() * 0.95;

} else {

return basePrice * 0.95; return basePrice() * 0.98;

} else { }
return basePrice * 0.98;
} .
™
double basePrice() {

Z return _quantity * _itemPrice;

——— —

Motivation
* The problem with temps is that they are temporary and local.

* By replacing the temp with a query method, any method in the class can get at
the information

* Replace Temp With Query if often a vital step before Extract Method
——

Software Architecturas: 5. Evolution @ sebis

Replace Temp With Query (1) sebis

You are using a temporary variable to hold the result of an expression.

Extract the expression into a method. Replace all references to the temp with the
new method. The new method can then be used in other methods.

double basePrice = _quantity * if (basePrice() > 1000) {
_itemPrice; - return basePrice() * 0.95;
if (basePrice > 1000) {) else {
return basePrice * 0.95; * return basePrice() * 0.98;
} else { }
return basePrice * 0.98;
) . \w#

double basePrice{) {
return _quantity * _itemPrice;

}

Motivation
= The problem with temps is that they are temporary and local.

* By replacing the temp with a query method, any method in the class can get at
the information

= Replace Temp With Query if often a vital step before Extract Method

Software Architectures: 5. Evolution @sebis 30

Replace Temp With Query (2) sebis

Mechanics
= ook for a temporary variable that is assigned to once
= Declare the temp as final
= Compile
= Extract the right-hand side of the assignment into a method

« Initially mark the method as private. You may find more use for it later, but
you can easily relax the protection later
< Ensure the extracted method is free of side effects, that is, it does not ;\
modify any object
= Compile and test
=_Inline temp on the temp

Softwara Architectures: 5. Evolution @ sebis 31

Replace Temp With Query

Mechanics
= Look for atemporary"mt at is assigned to once

you-can easily relax the protec
« Ensure the extracted method is free o
modify any object
= Compile and test
= [Inline temp on the temp

Software Architectures: 5. Evolution D sebis 31

Move Method (1) sebis

>A method is, or will be, using or used by more features of another class than the

class on which it is defined.
Create a new method with a similar body in the class it uses more. Either turn the
old method into a simple delegation, or remove it altogether.

Class1 Class2
aethodly
—_—
Class1 Class2
T 5 aMethod()

Motivation

* Move methods, when classes have too much behavior or when classes are
collaborating too much and are too highly coupled.

= Moving methods can make the classes simpler and they end up being a more
crisp implementation of a set of responsibilities

Software Architecturas: 5. Evolution @sebis 33

The Initial statement() Method (1) sebis

public String statement() {
double totalhmount = 0;
int frequentRenterPoints = 0;
String result = "Rental Record for " + getName () + "\n";
for (Rental each : rentals) {
double thisAmount = 0;
//determine amounts for each line
switch (each.getMovie() .getPriceCode()) {
case Movie .REGULAR:
thisAmount += 2;
if (each.getDaysRented() > 2) {
thisAmount += (each.getDaysRented() - 2) * 1.5;
}
break ;
case Movie.NEW RELEASET
thisAmount += each.getDaysRented{) * 3;
break;
case Movie .CHILDREN:
thisAmount += 1.5;
if (each.getDaysRented() > 3) {
thishmount += (each.getDaysRented() - 3) * 1.5;
}
break ;

Software Architectures: 5. Evolution @sebis B

Move Method (2) sebis

Mechanics
= Examine all features used by the source method that are defined on the source
class. Consider whether they also should be moved.

« If a feature is used only by the method you are about to move, you might as
well move it, too. If the feature is used by other methods, consider moving
them as well. Sometimes it is easier to move a clutch of methods than to

—. move them one at a time.

={ Check the sub- and superclasses of the source class for other declarations of
he method

= Declare the method in the target class

. Laopy the code from the source method to the target. Adjust the method to make
it work in its new home.

= Compile the target class

= Determine how to reference the correct target object from the source.
= Turn the sgurce method into a delegating method

= Compile and test

= Decide whether to remove the source method or retain it as a delegating
method

Softwara Architectures: 5. Evolution @ sebis 34

Move Method (2) sebis

Mechanics

= Examine all features used by the source method that are defined on the source
class. Consider whether they also should be moved.

« If afeature is used only by the method you are about to move, you might as
well move it, too. If the feature is used by other methods, consider moving
them as well. Sometimes it is easier to move a clutch of methods than to
move them one at a time.

= Check the sub- and superclasses of the source class for other declarations of
the method

= Declare the method in the target class

= Copy the code from the source method to the target. Adjust the method to make
it work in its new home.

= Compile the target class
= Determine how to reference the correct target object from the source.
= Turn the source method into a delegating method

= Compile and test

. cide whether to remove the source method or retain it as a delegating
metho

Software Architectures: 5. Evolution ©sebis 34

Move Method (1) sebis

A method is, or will be, using or used by more features of another class than the
class on which it is defined.

Create a new method with a similar body in the class it uses more. Either turn the
old method into a simple delegation, or remove it altogether.

Class1 Class2

q aMelh;F

Class1 Class2

%1 aMethod()

Motivation

* Move methods, when classes have too much behavior or when classes are
collaborating too much and are too highly coupled.

= Moving methods can make the classes simpler and they end up being a more
crisp implementation of a set of responsibilities

Software Architecturas: 5. Evolution @sebis 33

Pull Up Field (1) sebis

Two subclasses have the same field.
Move the field to the supe S.

Employee Employee
f (J name : String
i t
Salesnamme Engineer
Salestrarmr™ Engineer
nam % name : String\

Motivation

= |f subclasses are developed independently, or combined through refactoring,
you often find that they duplicate features. If they are used in a gimilar way, you
can generalize them.

= Pulling up a field reduces duplication of the data declaration and behavior.

Software Architectures: 5. Evolution @sebis 36

End of presentation. Click to exit.

Pull Up Field (2) sebis

Mechanics
= |nspect all uses of the candidate fields to ensure they are used in the same way
Anspect

= |f the fields do not have the same name, rename the fields so that they have the
name you want to use for the superclass field

= Compile and test
= Create a new field in the superclass

« If the fields are private, you will need to t the superclass field so that
the subclasses can refer to it

= Delete the subclass fields
= Compile and test

Softwara Architectures: 5. Evolution

/}\W?Ttﬁ’)_’ st b VP lemypans & AQM:T&Q-’ D81 b VP Lemgonr

PR

(Rc- Rs
T P’ = T r’d =
Adod Fogron. \ e Aclod Fegron, ~ —

(Gt ggen LD i r— D

@ ~-KunECy

e Gos e
TS T

