Script generated by TTT

Title: Matthes: Soft-Arch (17.01.2012)

Date: Tue Jan 17 19:15:19 CET 2012

Fakultét fiir Informatik :"|"‘I “'I H‘_m
Technische Universitat Minchen Ry

Software Architectures Hﬁ ‘

6. Architecture for Systems

Duration: 23:45 min of Systems
Pages: 9
Prof. Florian Matthes, Sascha Roth
Software engineering for business information systems (sehis)
wwwmatthes.in.tum.de
akultat fr Informatik p" {C ’-f W ™ . H4
‘ﬁechntlstche IUmverswtratMunchen é___.(/—-—-/kl—d'/ \,‘,/‘ M_HJ 6 — Architectures for %ystems of SyStemS Sebls

EAnEnemey 17 Aocin nenmng

Software Architectures

6. Architecture for Systems
of Systems

Prof. Florian Matthes, Sascha Roth
Software engineering for business j or@tion systems (sebis)

e lvm) oty

Soltware Architectures: Qutiine Dsebis

wwwmatthes.in.tum.de

. I’mmr Distributed Information Systems

» RPC and Related Middleware

+ Object Brokers

* Message-Oriented Middleware "ldf?
=y *+ EAl Meware: Message Brokers

= Service-Oriented Architecture

= RESI[Fi00]

Software Architectures: 6. Systems of Systems Osehis 2




Recommended Reading: [Al04] sebis

SEARCH INSIDE!™ Alonso and his co-authors deliberately take a step back.

o Based on their academic and industrial experience with
middleware and enterprise application integration systems,
they describe the fundamental concepts behind the notion of
Web services and present them as the natural evolution of
conventional middleware, necessary to meet the challenges
of the Web and of B2B application integration.

From this perspective, it becomes clear why Web services
are needed and how this technology addresses such needs.

Web Services

Alonso, G.; Casati, F.; Kuno, H.; Machiraju, V.: Web Sepvices
— Concepts, Architectures and Applications. Springe@

e

Rather than providing a reference guide or a manual on how
to write a Web service, the authors discuss challenges and
solutions that will remain relevant regardless of how
emerging standards and technologies evolve.

Saltware Ardhitectures: 6. Systems of Systems Dsehis 3

Communication in an Information System sebis

= The dominating characteristic of any software interaction is whether it is

synchronous or gsynchronous.

= Formally: blocking vs. non blacking
= Synchrony has nothing to do with concurrency and parallelism.

Software Architectures: 6. Systems of Systems Osebis 4

Synchronous or Blocking Calls sebis

= In synchronous interaction, a thread of execution calling another thread must
wait until the response comes back before it can proceed.

= This leads to simpler design which are easier to understand.
« The state of the calling thread will not change before the response comes
back.
+ There is a strong correlation betweep the code that makes the call and the
code that deals with the response.
{ = Can be a significant waste of time and r[
complete

sources if the call takes time to

i

blocking
period

Saltware Ardhitectures: 6. Systems of Systems Dsehis 5

T

Synchronous or Blocking Calls sebis

= |n synchronous interaction, a thread of execution calling another thread must
wait until the response comes back before it can proceed.

= This leads to simpler design which are easier to understand.
+ The state of the calling thread will not change before the response comes
back.
» There is a strong correlation between the code that makes the call and the
code that deals with the response.
= Can be a significant waste of time and resources if the call takes time to
complete

blocking
period

Software Architectures: 6. Systems of Systems © sebis




Asynchronous or Non Blocking Calls sebis

= Simple example: e-mail
= Amessage is sent and, some time later, the program checks whether an
answer has arrived.

= This allows the calling program to perform tasks in the meanwhile and
eliminates the need for any coordination between bhoth ends of the interaction.

WE&W | ettion thread
fewy {_ferch ]

Saltware Ardhitectures: 6. Systems of Systems Tsehis 6

Middleware sebis

= Middleware offers programming abstractions that hide some of the complexity
of building a distributed application.

* The middleware takes care of some aspects.

» The programmer has access to functionality that otherwise would have to
be implemented from scratch.

= There is a complex software infrastructure that implements those abstractions.
» Tends to have a large footprint

» Extensions and enhancements of the original programming abstraction
make the infrastructure more complex.

Software Architectures: 6. Systems of Systems © sebis

7




