Script generated by TTT

Title: Matthes: Soft-Arch (10.01.2012)
Date: Tue Jan 10 18:15:03 CET 2012
Duration: 62:52 min

Pages: 37

4

- Reuse of Software Architectures sebis

Design Patterns

Architectural Patterns

Erameworks

Reference Architectures]

Software Product Line Engineerin97

Software Architectures: 4. Reuse ©sebis 2

Recommended Reading: [Ga95] sebis

SEARCHINSIDEY™ T ook describes 23 patterns for managing object
Design Patterns

creation, composing objects into larger structures, and
coordinating control flow between objects.

ol

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design
Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995

Design Patterns is a modern classic in the literature of
object-oriented development, offering timeless and elegant
solutions to common problems in software design.

Sohware Architecures: 4. Reuse Csebis 3

What is a Pattern? sebis

[T

Current use comes from the work of the architect Christopher Alexander.
Alexander studied ways to improve the process of designing buildings and
urban areas.

"Each pattern describes a problem that occurs over and over again in our

efironment, and then describes the core offhe solution to that problem, in

@ a way that you can use this solution a miflion times over, without ever
ng it the same way twice.”

a

"Each pattern is a three-part rule, which expresses a relation between a certain
context, a problem and a solution.”

Hence, the common definition of a pattern: "A solution to a problem in a
context.”

Patterns can be applied to many different areas of human endeavor, including
software development.

ware Architectures: 4. Reuse ©sebis 4




sss

Recommended Reading: [PBLO5] sehis

S Software product line engineering has proven to be the

paradigm for developing a diversity of software products and
e software-intensive systems in shorter time, at lower cost, and
Software Product with higher quality. With more than 100 examples and about
Line Engineering 150 illustrations, the authors describe in detail the essential

foundations, principles and techniques of software product
line engineering.

The authors are professionals and researchers who
significantly influenced the software product line engineering
paradigm and successfully applied software product line
engineering principles in industry.

Pohl, K.; Bockle, G.; Linden, F.: Software Product Line
Engineering. Springer, 2005.

Th addresses students, professionals, lecturers
and researchers interested in software product line
engineering.

Sohware Architecures: 4. Reuse ©sehis 135

Recommended Reading: [PBL05] sebis

Software product line engineering has proven to be the
paradigm for developing a diversity of software products and
s software-intensive systems in shorter time, at lower cost, and
Software Product with higher quality. With more than 100 examples and about
Line Engineering 150 illustrations, the authors describe in detail the essential
foundations, principles and techniques of software product
line engineering.
The authors are professionals and researchers who
significantly influenced the software product line engineering
paradigm and successtully applied software product line
engineering principles in industry.

Pohl, K.; Bockle, G.; Linden, F.: Software Product Line
Engineering. Springer, 2005.

This textbook addresses students, professionals, lecturers
and researchers interested in software product line
engineering.

Software Architectures: 4. Reuse © sebis 135

(113

Terminology sebis

= "Software product family” and "software product line” are used almost
synonymously. - -

Traditionally: two kinds of products:

= Handcrafted for individual customers

= Mass production using production lines
Software domain: individual vs. standard software

A rising demand for individualized products lead to mass customization:

Mass customization is the large-scale production of goods tailored to individual
customer's needs. [Dav87]

Sohware Architecures: 4. Reuse ©sehis 136

(113

Platforms sebis

In order to achieve mass customization, companies started to introduce common
platforms for different types of products.

Example from car manufacturing:

= A platform provides a structure for major components determining the body
size, and the size and type of the engine and transmission.

= The parts comprising the platform were usually the most expensive subsystems
in terms of design and manufacturing preparation costs

= The use of the platform for different car types typically led to a reduction in the
production cost for a particular car type

Software Architectures: 4. Reuse © sebis 137




Motivation for Product Line Engineering (1) sebis

* Reduction of development costs

Accumulated
Costs

Single Systems rs
= = = = System Family

Break-Even
Paint -
X

Lower Costs
Up-Front ",
Investment - per System
approx. 3 Systems Number of
(Software Engineering) Different Systems

Sohware Architecures: 4. Reuse ©sebis 138

Motivation for Product Line Engineering (2) sebis

= Reductiontof time to marke
* Enhancement offqualit
= Coping with evolution

= Coping with complexity Time to Single Systems
= |mproving cost estimations Market = = = = System Family

. Time for Building
\\ Common Artefacts

\ Shorter Development
~ Cycles due to Reuse “

Number of
Different Systems

Software Architectures: 4. Reuse © sebis 139

Definition of Software Product Line Engineering sebis

(Softwar@product line engineering is a paradigm to develop software applications
(software-intensive systems and software products) using platforms and mass
customization.

. Developlng appllcatlons using platforms means to plan proactively for reuse.

pheatans for mass customization means employing the concept of
o model the commonalities and the differences in the
appllcauons ina systematlc way.

Vol k ~hosd

Sohware Architecures: 4. Reuse ©sebis 140

Software Platform sebis

In the software industry the term platform is often used to denote the underlying
computer system on which applications are developed and deployed, e.g. operation
systems, processor families, software runtime environments.

In the context of software product line engineering the term platform has to reflect

the creation of entire products from reusable parts.
~

Definition:
A software platform is a set of software subsystems and interfaces that form a

common structure from which a set of derivative products can be efficiently
developed and produced. [ML97]

Software Architectures: 4. Reuse © sebis 141




sss

Two Development Processes sebis

The software product line engineering paradigm separates two processes:

* Domain engineering: This process is responsible for establishing the reusable
platform and thus for defining the commonality and the variability of the product
line.

= Application engineering: This process is.es } or deriving product line
applications from the platform by reusing
product line variability.

* The two process must interact in a manner that is beneficial to both.

= A large part of application engineering consists of reusing the platform and
binding the variability as required for the different applications.

')ouw‘ ) Aﬂr' EB\X
r Al (Y
Ly 0 %,

'Y

Sohware Architecures: 4. Reuse \O ©sehis 143

—

[ -

Domain Engineering/ sebis

The key goals of the domain engineering process are to:

* Define the commonality and the variability of the software product line.

= Define the set of applications the software product line is planned for, i.e. define
the scope of the software product line.

= Define and construct reusable artifacts that accomplish the desired variability.

Software Architectures: 4. Reuse © sebis 144

The Software Product Line Engineering .
Framework ) sebis

Product S
Management
. Du‘mauT Domain Domain Domain
=2 Reguirements Design Realisation Testing
Engineering /

= -li(;muin Engjr{é}ing

Application
Requirements
Engineering

q I Iy

Application Application Application |/

Design | Realisation Testing

Sohware Architecures: 4. Reuse ©sehis 145

(113

Application Engineering sebis

The key goals of the application engineering process are to:

= Achieve an as high as possible reuse of the domain assets when defining and
developing a product Imﬁﬁg.

= Exploit the commonality and the variability of the software product line during
the development of a product line application.

vbwh_e_agﬂm_tion artifacts, i.e. application requirements, aicll_lggg.umd\
components, and tests, and relate them to the domain artifacts.

= Bind the variability according to the application neéds from requirements over
architecture, to components, and test cases.
Estimate the impacts of the differences between application and domain

| requirements on architecture, components and tests.

Software Architectures: 4. Reuse © sebis 146




Managed Variabilit sebis

Variability is defined during domain engineering, it is exploited during application
engineering.
Defining and exploiting variability is supported by the concept of managed
variability:

= Supporting variability concerned with defining variability.

* Managing variable artifacts.

= Supporting activities concerned with resolving variability.

= Collecting, storing and managindtracednformation necessary to fulfill these
tasks.

The moment of variability resolution in realization is called theybinding time

Sohware Architecures: 4. Reuse ©sebis 147

Variability Subject and Variability Object sebis

What does vary?

= A variability subject is a variable item of the real world or a variable property of
such an item.

Why does it vapy2

= Different diﬁeren,...
How does it vary?

= A variability object is a particular instance of a variability subject.

Example:

= "Color” is a variability subject of the real world. Examples of variability objects
are red, green, blue, ...

= "Payment method” is a variabilit@ and payment byﬂ_egjj..cafd, payment
Ry bill, payment by cash are examples of variability objects.

Software Architectures: 4. Reuse © sebis 149

Variability in Software Product Line Engineering sebis

In software product line engineering, variability subjects and the corresponding
variability objects are embedded into the context of a software product line.

Definition:
A variation point is a representation of a variability subject within domain artifacts

enriched by contextual information.

A variant is a representation of a variability object within domain artifacts.

Real Worid Model
Colour Colour of (Ca>
(variaity Subiect) 3 (Varition Poirt)

Yellow
(Variability Object) !

- o ]
Blue i RedCar Green Car
(Variability Objeet) H L M) (Variant)

Green H

(Variability Object) H

I

Red
(Variability Objeet)

7/

Sohware Architecures: 4. Reuse ©sebis 150

Internal and External\Variability sebis

—
External Variabi Internal Variability
/ ‘%. 4
F N
Variability Variability Customer

External variability is the variability of domain artifacts that is visible to customers.

= Example: The customers of a home automation system can choose between
different door lock identification mechanisms: keypad, magnetic card, and

fingerprintscanners.
= Causes: Btakeholder needs,flaws and standards
Internal variability is the variability of domain artifacts that is hidden from
customers.

= Example: The communication protocol of a home automation system network
offers two different modes.

= Causes: Refinement of external variability; technical reasons

Software Architectures: 4. Reuse © sebis 151




Internal and External Variability sebis

External Variability Internal Variability

The Variability Pyramid sebis

= A

! N
‘ﬂ Stakeholder Needs / Laws / Standards
Variability  Customer Variability Customer £
B Requirements | 2
:
o - - - | A T A z
External variability is the variability of domain artifacts that is visible to customers. % Design |5
= Example: The customers of a home automation system can choose between a /S TV BT NN
different door lock identification mechanisms: keypad, magnetic card, and g
fingerprint scanners. Components
= Causes: Stakeholder needs, laws and standards |\ el he e e (_4_---&; ------------------
Internal variability is the variability of domain artifacts that is hidden from teral Internal Tests
customers. Vool Varability
= Example: The communication protocol of a home automation system network
offers two different modes.
= Causes: Refinement of external variability; technical reasons
‘Sohware Architectures: 4. Reuse © sebis 151 Softwara Architectures: 4. Reusa © sebis 152
. . . . S L . . . L L1
Explicit Documentation of Variability sebis Advantages of explicit documentation sebis

An adequate documentation of variability information should at least include all the
information needed to answer the following questions:
= What varies?
+ Variable properties of the development artifacts have to be documented by
variation points.
= Why does it vary?
+ Causes for internal/external variability
* How does it vary?
T Available variants and their ljnking to the domain model elements
= For whom is it documented?

Sohware Architecures: 4. Reuse ©sebis 153

* |mproves decision making by forcing engineers to document the rationales for
introducing a certain variation point

= |Improves communication about the variability of a software product line by
providing a high-level abstraction of variable artifacts

= Allows for improved traceability of variability between its source and the
corresponding variable artifacts.

Software Architectures: 4. Reuse © sebis 154




Variability Definition sebis

Variability can be defined either as an integral part of development artifacts orin a
separate variability model.
Shortcomings of modeling variability within the traditional software development
models:
= |f variability is spread, it is almost impossible to keep the intcﬁﬁation consistent
= |tis hard to determine, which variability information in requirements has
influenced which variability information in design, realization or test artifacts.

® The software development models are already com |EM overloaded by
adding the variability information é
* The concepts used to define variability differ between the different kinds of
software development models
- The variability defined in different models does not integrate well into an overall
picture of the software variability.

Sohware Architecures: 4. Reuse ©sebis 155

Example (2 sebis

rd

Door
Locks

Intrusion Security
Detection Package

,)\_,r‘ Pl

Camera Motion Cullet Fingerprint
‘S‘.ur\eﬂlance Sensm\ Detection Sasis Ad\:anced LKC\FMJ Scanner

e
\q‘g]cxj W1

r

AN

Software Architectures: 4. Reuse © sebis 162

sebit

= Design Patterns
= Architectural Patterns
= Frameworks
. Refere@mchitectures __\
= Softwarg Product Line Engineerifig
+ Principles of Product Line E
» A Framework for Software Product Line Engineering

+ Principles of Variability
+ Documenting Variability

Sohware Architecures: 4. Reuse ©sebis 163

Traceability between Variability Model and Other .
Development Artifacts sebis

Variability defined in the variability model has to be related to software artifacts
specified in other models, textual documents, and_c;d}

| Variability i /

Realisation

Requlrements

Variation Point - = Variant

o 0.+ e

{o .
VP Arefact | | i
oty 1 /e Depéndency

0 o
reprosanted by k Artifact realized by

Software Architectures: 4. Reuse © sebis 159




Variability Meta Model sebis

Traceability between Variability Model and Other

. ses
Development Artifacts sebis
Variability defined in the variability model has to be related to software artifacts
X . :l specified in other models, textual documents, and code
Variation Point 1 i Variant
Fonyie il | Variability i
Varlability ¥

Varlation Point Depandancy @l

— S—

Exl_imll mmmm-—unmnm

Variation Point Optional Wandawory : —
Requirements Realisation
2
Alternative
partaf 01 Cholee Variation Paint | i Vartant
™ o- 0+
7777777 Artefact
Dependency
[ [

roprasented by Artifact realized by

‘Sohware Architectures: 4. Reuse © sebis 157 Softwara Architectures: 4. Reusa © sebis 159
. . A . . L . . S . . a8 s
Documenting Variability in a Class Diagram sebis Documenting Variability in a State Diagram sebis
i : State Machine Diagram & Variability Diagram
Class Diagram Variability Diagram =
fenable
.‘\_P Inactive
Motion . by it
Somval i) | Camera Motion
] uro:;c:: g @ = DM"“‘?" Surveillance Detection
ctection
; = | SetGroup
i@; A
‘Sohware Architectures: 4. Reuse © sabis 165

Software Architectures: 4. Reuse © sebis 166




Relationships between Requirements Artifacts .
and the Variability Model sebis

Features o) >
L J -
Variability Model Use Cases-
= T | - .

pe

Conclusion sebis
— e ———

~—ThEKey differences of soltware product line engineering in comparison with single

software-system development:
* The need for two distinct development processes: domain engineering and
application engineering.
= The need to explicitly define and manage variability:
+ During domain engineering, variability is introduced in all domain
engineering artifacts.
+ It is exploited during application engineering to derive applications tailored

- to the specific needs of different customers.
Text . g - ———/—_\
= [ o~ Traditional Requirements

‘Sohware Architectures: 4. Reuse © sebis 167 Softwara Architectures: 4. Reusa © sebis 168
Bl 4 - Reuse.pdf - Adobe Reader
File Edt Wiew Document Tools Window Help
4 - Reuse. p:ﬂl

[T1] S I -
Conclusion sebis ERHLAIE e e el e — l,
E— =
—The Key differences ol soitware product Ine engineering in comparison with single

sebis

software-system development:
* The need for two distinct development processes: domain engineering and
application engineering.
* The need to explicitly define and manage variability:
+ During domain engineering, variability is introduced in all domain
engineering artifacts.
+ Itis exploited during application engineering to derive applications tailored
to the specific needs of different customers.

———— ]

Sohware Architecures: 4. Reuse ©sebis 168

Conclusion

The key differences of software product line engineering in comparison with single
software-system development:
= The need for two distinct development processes: domain engineering and
application engineering.
= The need to explicitly define and manage variability:
+ During domain engineering, variability is introduced in all domain
engineering artifacts.
Itis exploited during application engineering to derive applications tailored

ifferent customers.

Software Archilectures: 4. Reuse ©sebis 168




Fle E

dt View Terminal Help

tttQttt-laptop: ~$ cd Dasktop

tttgttt-laptop: ~/Desktops 1

Aufzeich i desktop®

AufzeichnungenoLD/ foliens

TIT (another copy).desktop® kill_local_VHCserver.desktop*
TTT_Wachbearbei tung. r tf% start-local_VHCserver. desktop®
adobereader . desktop® tit-new/

ttt@tEt-LpprER =/ bDesktops cd folien

tEE@EEE- ;ntn ~/Desktop/folieng 1

4 - Reusd.pdf* Ausgabez.pdf* GAD/ SoftArch/ other/
Ausgabe. fdf* EIST/ SEBA Bachelor/ Theo/

ttt@ttt-Yaptop: ~/Desktop/folient cd SoftArch
ttt@ttt-Japtop: ~/Desktop/folien/SoftArchs 1

o -outlife - Hew.pdf* 2 - Description.pptx*
0 rﬂntL'lt  Hew.pptx®* 3 - Construction.pdf*
odf

5 - Evolution. pptx®
6 - Systems of Systems.pdf*
3 - Construction.pptx* 6 - Systems of Systems.pptx®
7

0 -0utli|

0 - Outlifie. pptx* 4 - Reuse.pdf= - MDSD. pdfx

1 - Intrpduction.pptx® 4 - Reuse.pptx® 7 - MDSD.pptx*

2 - Desdription.pdf* 5 - Evolution.pdf* Thesis _Vorstellung_VW.pdf*
ttt@ttt{laptop: ~/Desktop/folien/SoftArch§ acroread 4\ -\ Reuse. pdf

Xlib: gxtension "RANDR' missing on display ":1.0".

(1171333
Xlib:

Laptop: ~/Desktop/folien/Sof tArch§ acroread 5\ -\ Evolution. pdf
xtension "RANDR' missing on display ":1.0".

5 - Evolution of Software Architectures and

Ref'a ctoring

F Refa ctoring

AFirst Exa mple
Principles in Refactoring
Bal:l Smells in Ccde

A Catalog of Refactorings

Sonware Aechitacturas: 5 Fuotution

LI




