Script generated by TTT

Title: Matthes: Soft-Arch (10.01.2012)
Date: Tue Jan 10 19:19:38 CET 2012
Duration: 16:17 min

Pages: 10

5— Evo\ut\on of Sof‘tware Arch\tectures and
L1

Refactomng Sebis

= chw to Change the Architecture of a Syste m?

u Rnfactormg

akuitat rar lnrermatik

Ci\Users\Tobias\DocumentsiMy Dropbox\Tobias Schrads
\SoftArchBuilding png

Software Arc hitectures

5. Evolution of Software

Arch\tectures and Refactor\ng

prof. F\orlan Matthos, Sascha Roth

boftwnre engineering for business information systems (SED\S)

wwwm atthes.in.tum.de

. . CAUsersilobiasDocumenteby DrophoxiTobias Schrade
AFirst Exampie \S oftArchiBuiking prg

. prlmc\ples in Rnfactaw'lng
. Bad Smel\s in COE\D

. ACatang af Refactorlmgia

Recommended Readlng][Fogg] Sebls

LOOK INSIDE!™

Qof&ctorrng“ {m proving the De sign of Exrsnﬂg Code snows

how refactoring can make object-oriented code simpler and

ReracorinG
o

easier to maintain.

Boswdes an introduction to refactoring, this handbook
provides a catalog of dozens of tips for improving code.
This book is a guide to refactoring,; it is written for a

——— professional programmer. It shows how to refactor in such a
@ way that you dontintroduce bugs into the code butinstead

methodically improve the structure.

Fawlmr. M Rnfactow'lng: i’mpr'ovtng the Do sign of Exrstm'g

C?odc. Add\som'\fvos\ey professwonal. 1999

Th\s book ultimately lead to the fast adoption of refactoring in

|DE$; like Ecl\psm.

-
Evolut\on of a Software System without Yl

ArchitecturalChanges SEbIS

Arch\tocturnl changes

" are difficult and expensive — even in the design phase

" jnitially decrease the quality of the system

" m ay require retraining of developers and updates of neighboring systems

r\This often leads to the “Piggyback” syndrome which tries to avoid architectural

changes by quietly violating architectural rules.

u Fumct\omalmes are introduced into the system, often by bypassing the interfaces
which should be used, but are not totally adequate.

u Encapsu\nt\om is violated.

]

parts of the code are not used anymore or are duplicated.

\I" CDCID is not written as compact as it could be possible.

9 Changos become more and more expensive and risky.
The maintainability and adaptability of a “piggyback” system at some point “hits a
lv_alll of complexity”.

|m the worst case, these systems have to be replaced by completely new systems. '

—

[RHO8]

Demo... sebis

P]
Customar Rentar Movie
A s

statement| tring daysRented int title | String

priceCode Tint

Tha praogram is told which movies a customer rented and for how long.
= There are three kinds of movies: regular, children’s, and new releases.
——— 2 es Z T

Tha statement method of Cu stomer calculates and prints a statement of a

customer’s charges at a video store.
|m addition to calculating charges, the statement also computes frequentrente

points, which vary depending on whether the film is w
———

KeepingaSoftware System Healthy and A\ive SEbIS

Goal: keeping requirements, architecture, design, and imp\amentatic

through continuous stepwise (mamagec\) evolutio
’—————_———-__—'

prll:];lp\es /47/
" nused or dysfunctional code is replaced immediately.
—

" efactgrthe code and the interfaces as soon as the program becomes difficult
to change.
u ‘f the refactorings do not match the existing architecture, consider architectural
changes which have to be consistent with strategic business requirements.
A
" Thc architecture is simplified where this is possible. A

The |n|t|a\ statement() Method (1)

public String statement() {
double totalBmount = 0;
int frequentRenterPoints = 0;
String result = "Rental Record for " + getName() + "\n";
for tal each : rentals) (
double “%hisAmount — 0;
//de ne amounts for each line
Switch (each.getMovie () .getPriceCode ()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getDaysRented() > 2) {
thisAmount += (each.getDaysRented() - 2) * 1.5;

}
break;
case MOVJ'.E.NEW_REI.EASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDREN:
thisAmount += 1.5;
if (each.getDaysRented() > 3) {
thisAmount +— (each.getDaysRented() - 3) * 1.5;
}

break;

The ‘n\t\al Statement() Method [1) SEbiS.

N
puhlic@g statement () {
double totalBmount — 0; 7/

int frequentRenterPoints =
String result = A1 Record for " + getName() + "\n";

for (Rental each : rentals) {
double thisAmount = 0;
//determine amounts for cach line &

switch (ea tMovie () .getPriceCode()) {
case Movie. :
thisAmount F= 2;

if (each.getDaysRented() > 2) {
thisAmount +— (each.getDaysRented() - 2) @

}
break;
case Movi@b‘&
thisAmount += each.getDaysRented() @
break;

case Movie.(HILDRRN: 4/'
thisAmount += 1.5;
if (each.getDaysRented() > 3) {
thisAmount += (each.getDaysRented() - 3) & 1.5
}

break;

The |nitia\ Statement() Method [2)

sebis

\5 // add frequent renter points
frequentRenterPoints++;
// add bonus for a two day new release rental
if ((each.getMovie().getPriceCode() — Movie.NEW_RELEASE) && cach.getDaysRented() > 1) {
frequentRenterPoints++;
1
// show figures for this rental

result += "\t" + eac.h.getﬂovie()) + "\t" + String.valueOf (thisAmount) + "\n";
totalAmount
—_—

+thisAmount;

}

// add footer lines

result += "Amount owed is " + String.valueOf (totalAmount) + "\n";

result += "You earned " + String.valueOf (frequentRenterPoints) + " frequent renter points";
return result;

Ba5|c Ru\es for Refactomng

Thero are t to be made on the g 'Tlp\a:

u Tha statement should be formatted in

= Tha way the movies are classified should D@‘

(1) Wnen you find you have to add a feature to a program, and the program’s code

is not structured in a convenient way to add the feature, first refactor the
program to make it easy to add the feature, then add the feature.

(2)B i T

L efore you startrefactoring, check that you have a solid suite of tests. hese
tests must be self~-checking.

(2 R

2 efactoring changes the programs in small steps. If you make a mistake, itis
easy to find the bug.

P
[4) Amy fool can write code that a computer can understand. Goccl programmers

write code that humans can understand.

B wawn 10

