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Recommended Readlng][Fogg] Sebls

LOOK INSIDE!™

Qof&ctorrng“ {m proving the De sign of Exrsnﬂg Code snows

how refactoring can make object-oriented code simpler and

ReracorinG
o

easier to maintain.

Boswdes an introduction to refactoring, this handbook
provides a catalog of dozens of tips for improving code.
This book is a guide to refactoring,; it is written for a

——— professional programmer. It shows how to refactor in such a
@ way that you dontintroduce bugs into the code butinstead

methodically improve the structure.

Fawlmr. M Rnfactow'lng: i’mpr'ovtng the Do sign of Exrstm'g

C?odc. Add\som'\fvos\ey professwonal. 1999

Th\s book ultimately lead to the fast adoption of refactoring in

|DE$; like Ecl\psm.
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Evolut\on of a Software System without Yl

ArchitecturalChanges SEbIS

Arch\tocturnl changes

" are difficult and expensive — even in the design phase

" jnitially decrease the quality of the system

" m ay require retraining of developers and updates of neighboring systems

r\This often leads to the “Piggyback” syndrome which tries to avoid architectural

changes by quietly violating architectural rules.

u Fumct\omalmes are introduced into the system, often by bypassing the interfaces
which should be used, but are not totally adequate.

u Encapsu\nt\om is violated.

]

parts of the code are not used anymore or are duplicated.

\I" CDCID is not written as compact as it could be possible.

9 Changos become more and more expensive and risky.
The maintainability and adaptability of a “piggyback” system at some point “hits a
lv_alll of complexity”.

|m the worst case, these systems have to be replaced by completely new systems. '

—
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Customar Rentar Movie
A s

statement| tring daysRented int title | String

priceCode Tint

Tha praogram is told which movies a customer rented and for how long.
= There are three kinds of movies: regular, children’s, and new releases.
——— 2 es Z T

Tha statement method of Cu stomer calculates and prints a statement of a

customer’s charges at a video store.
|m addition to calculating charges, the statement also computes frequentrente

points, which vary depending on whether the film is w
———

KeepingaSoftware System Healthy and A\ive SEbIS

Goal: keeping requirements, architecture, design, and imp\amentatic

through continuous stepwise (mamagec\) evolutio
’—————_———-__—'

prll:];lp\es /47/
" nused or dysfunctional code is replaced immediately.
—

" efactgrthe code and the interfaces as soon as the program becomes difficult
to change.
u ‘f the refactorings do not match the existing architecture, consider architectural
changes which have to be consistent with strategic business requirements.
A
" Thc architecture is simplified where this is possible. A

The |n|t|a\ statement() Method (1)

public String statement() {
double totalBmount = 0;
int frequentRenterPoints = 0;
String result = "Rental Record for " + getName() + "\n";
for tal each : rentals) (
double “%hisAmount — 0;
//de ne amounts for each line
Switch (each.getMovie () .getPriceCode ()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getDaysRented() > 2) {
thisAmount += (each.getDaysRented() - 2) * 1.5;

}
break;
case MOVJ'.E.NEW_REI.EASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDREN:
thisAmount += 1.5;
if (each.getDaysRented() > 3) {
thisAmount +— (each.getDaysRented() - 3) * 1.5;
}

break;




The ‘n\t\al Statement() Method [1) SEbiS.

N
puhlic@g statement () {
double totalBmount — 0; 7/

int frequentRenterPoints =
String result = A1 Record for " + getName() + "\n";

for (Rental each : rentals) {
double thisAmount = 0;
//determine amounts for cach line &

switch (ea tMovie () .getPriceCode()) {
case Movie. :
thisAmount F= 2;

if (each.getDaysRented() > 2) {
thisAmount +— (each.getDaysRented() - 2) @

}
break;
case Movi@b‘&
thisAmount += each.getDaysRented() @
break;

case Movie.(HILDRRN: 4/'
thisAmount += 1.5;
if (each.getDaysRented() > 3) {
thisAmount += (each.getDaysRented() - 3) & 1.5
}

break;

The |nitia\ Statement() Method [2)

sebis

\5 // add frequent renter points
frequentRenterPoints++;
// add bonus for a two day new release rental
if ((each.getMovie().getPriceCode() — Movie.NEW_RELEASE) && cach.getDaysRented() > 1) {
frequentRenterPoints++;
1
// show figures for this rental

result += "\t" + eac.h.getﬂovie()) + "\t" + String.valueOf (thisAmount) + "\n";
totalAmount
—_—

+thisAmount;

}

// add footer lines

result += "Amount owed is " + String.valueOf (totalAmount) + "\n";

result += "You earned " + String.valueOf (frequentRenterPoints) + " frequent renter points";
return result;

Ba5|c Ru\es for Refactomng

Thero are t to be made on the g 'Tlp\a:

u Tha statement should be formatted in

= Tha way the movies are classified should D@‘

(1) Wnen you find you have to add a feature to a program, and the program’s code

is not structured in a convenient way to add the feature, first refactor the
program to make it easy to add the feature, then add the feature.

(2)B i T

L efore you startrefactoring, check that you have a solid suite of tests. hese
tests must be self~-checking.

(2 R

2 efactoring changes the programs in small steps. If you make a mistake, itis
easy to find the bug.

P
[4) Amy fool can write code that a computer can understand. Goccl programmers

write code that humans can understand.
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