Script generated by TTT

Title: Seidl: Programmoptimierung (27.01.2016)
Date: Wed Jan 27 10:22:47 CET 2016
Duration: 89:32 min

Pages: 66

Let V denote the set of occurring (classes of) constants,
functions as well as applications of constructors and operators. As
our lattice, we choose:

V= 2v

As usual, we put up a constraint system:

e If e isavalue, ie., oftheform: b,cer...ex (e1,...,6x),
an operator application or funxr — e we generate the
constraint:

[e]* 2 {e}

e If e=(e1e) and f=funz — ¢, then

[e]® (felal 7] - 0
[=]F (f € [ea]®) ?[e2]* - 0

o

79

Accordingly, we have for abs:

let abs = funz — let z = (z,-xz)

in max z

4.2 A Simple Value Analysis

Idea

For every subexpression e we collectthe set [¢]* of possible
values of e ..

790

e If e=letx =e¢ in e, then we generate:

[e]* 2 [ed]
[el* 2 [eo]?
e Analogously for ¢ = letrecz; =e;... 2, = ¢; ineg:
[z 2 [e]?
[l 2 [eolt

792

int-values returned by operators are described by the
unevaluated expression;

Operator applications might return Boolean values or other
basic values. Therefore, we do replace tests for basic values
by non-deterministic choice ...

Assume e = matcheywithp, — e | ... | o = e .
Then we generate for p; = b (basic value),

[[t'.]j) [[(‘-:t]]i

793

If pi=cy...yp and v=ce)...¢, Iisavalue,then

[2 (elal)?lelt : ¢
[l 2 O el gl o
If pi=(y,....,y) and wv=1{e),...,¢.) isavalue, then
[e]? (v e fea]®) 7 [es]® - 0
[lF 2 (welal)?[e]* : 0

If p;=y,then

J

=
—
F=
Y
=
.
—_
=

794

Let

int-values returned by operators are described by the
unevaluated expression;

Operator applications might return Boolean values or other
basic values. Therefore, we do replace tests for basic values
by non-deterministic choice ...

Assume ¢ = match ey withp, — ey | ... | pp — e .
Then we generate for p; = b (basic value),
[e]f 2 [ed!
793

V' denote the set of occurring (classes of) constants,

functions as well as applications of constructors and operators. As
our lattice, we choose:

V=2V

As usual, we put up a constraint system:

If e isavalue,ie., oftheform: b.cei...e, (e1,...,€x),
an operator application or funz — e we generate the
constraint:

[> {e}
If e=(e1ez) and f=funz — &, then

[el* 2 (fele)?[e] : 0
Bl 2 (Felal)? el : 0

e

f pi=cy...yr and wv=cel... ¢ isavalue, then

If pi=(y1,...,m) and wv=(e},... ¢) Iisavalue,then
[e]?
[y]*

If p,=y,then

(v efen])?[es]* : 0
(v € [e]®)? [[(:;]]n o]

I

794

e int-values returned by operators are described by the
unevaluated expression;

Operator applications might return Boolean values or other
basic values. Therefore, we do replace tests for basic values
by non-deterministic choice ...

e Assume ¢= matcheywithp, — e | ... | — e .
Then we generate for p; = b (basic value),
[e]* 2 [e:]!
793
Example The append-Function

Consider the concatenation of two lists. In Ocaml, we would write:

let recapp = funz — match z with

[] — funy — y
— h | appfly

in app [1; 2]|[3]

The analysis then results in:

[app]? = {funz — match...}

[T {1521, 12], [1}

[match..]t = {funy — y,funy — h:app...}

vl = {BB}

795

Values cey...e;, (ey,...,e,) oroperator applications e;0es
now are interpreted as recursive calls c[e]f. .. [ex]?,
(Ted]®,. .., [ex]®) or [ei]fOfe:]", respectively.

— regular tree grammar

[A]* = {1,2}

[t]* = {2, [}

[app1]* =

[app [1; 2]]¢ = {funy — y,funy — h::app...}
[appty]t =

[epp [1; 2] [B]F = {[3];h::app.. .}

Values ce;...ep, (e1,...,e;) oroperator applications e;0eq
now are interpreted as recursive calls c[e]f ... [ex]?,
([ea]®, . ., [ex]®) or [ei]fOfez]?, respectively.

— regular tree grammar

796

... in the Example:
We obtain for A = [appty]*:

A = 3] | [Rf=A
[hlF — 1 | 2

Let £(e) denote the set of terms derivable from [e]* w.r.t. the
regular tree grammar. Thus, e.g.,

Lty = {12
Clappty) = {lani....ar3] |7 > 0,0 € {1,2})

[n]* = {12}

[]* = {20}

[app]* =

[app [1; 2]]° = {funy — y,funy — h:app...}
[appty]* =

[app [1:2] 3] = {[3],h=:app...}

Values cey...ep, (er,...,e.) oroperator applications e;0ey
now are interpreted as recursive calls ¢ [el]*. .. [ex]?,
(leal?, -, [ex]®) or [ei]*Oez]?, respectively.

— regular tree grammar

796

... in the Example:

We obtain for A = [appty]*:

A y 3] | [r]F:A
[RI* — 1] 2

Let £(e) denate the set of terms derivable from [¢]* w.rt. the
regular tree grammar. Thus, e.g.,

L(R) =
L(appty) =

a0 € {1,2))
el i €128, [1)

797

4.4 Application: Inlining

Problem

e global variables. The program:

let z=1
inlet f= let z=2

808

4.3 An Operational Semantics

Idea

We construct a Big-Step operational semantics which evaluates
expressions w.r.t. an environment.

Values are of the form:
vi=b|ecv...c | (v1,...,0) | (funz — e,n)
Examples for Values

cl
[L2]l==1(:2]))
(funz — zuy, {y — [5]})

798

... computes something else than:
let z=1
inlet f= let =2
in funy —» y+=z

in let y==x

in y+zx

e recursive functions. In the definition:
foo = funy — fooy

foo should better not be substituted.

809

Idea 1

> First, we introduce unique variable names.

> Then, we only substitute functions which are staticly within
the scope of the same global variables as the application.

» For every expression, we determine all function definitions
with this property.

810

... computes something else than:

let z=1
inlet f= let z=2

in funy - y+z

in let y==

in y+zx

e recursive functions. In/t1|he definition:
foo = fun Yo foo y

foo should better not be substituted. -

A

809

... computes something else than:

let z=1
inlet f= let 33\32
in funy >y+:c,z_

in let y==x

in y+zx

e recursive functions. In the definition:

foo = funy — fooy

foo should better not be substituted.

809

Idea 1

> First, we introduce unigue variable names.

> Then, we only substitute functions which are staticly within
the scope of the same global variables as the application.

+ For every expression, we determine all function definitions
with this property.

810

Let D = D[e] denote the set of definitions which staticly arrive at

e If € = letzy=¢;ine; then:
Dled] = D
1})[(10] = DU {1‘1}
ee If e = funz — ¢ then:

Dlei] = DuU{x}

ee Similarly,for ¢ = match...cz; ...z — 6 ...

Dlei] :@ {21,

811

let z=1

inlet z;=2

et/ -
>1f funy = y+ux

in fz

—— the inner definition becomes redundant !!!

813

In all other cases, [is propagated to the sub-expressions

unchanged.

... in the Example:

let =1 77

inlet f= let z,=2
in funy — y+a

in fx

... the application f x is notinthe scope of z;

—— we first duplicate the definition of =, :

812

let z=1
inlet =, =2
inlet f=funy — y+

in fz

—— now we can apply inlining :

814

let z=1
inlet ;=2
inlet f=funy — y+ =,

in let y==x

in y+m

Removing variable-variable-assignments, we arrive at:

815

let z=1
inlet z; =2
inlet f=funy — y+ =

in |z + 2

816

Idea 2

> We apply our value analysis.
> We ignore global variables.

> We only substitute functions without free variables.

Example: The map-Function

letrec f=funzx — z-z
and map=fung — funzr — matchz
with [] — []
\ TUTLS — TiMapgrs

in map f list

817

Idea 2

> Woe apply our value analysis.
+ We ignore global variables.

> Woe only substitute functions without free variables.

Example: The map-Function

letrec f=funz — z-x
and map=fung — funz — matchz
with [] — []
| TurS — grimapgrs

in map f list

817

Idea 2 e The actual parameter f inthe application map g is

always funz — z-x.

» We apply our value analysis. e Therefore, map g can be specialized to a new function
> We ignore global variables. defined by:

» We only substitute functions without free variables.

Example: The map-Function

h = letg=funz — z-x

letrec f=funz — z-x in fun r — match z

and map=fung — funz — matchz with [] — []
with [] — [] | zizs — ga:l[mapgl|zs
| TUTS — T iiMapgrs

in map f list

817 818

The inner occurrence of map g can be replaced with h Inlining the function ¢ vyields:

—— fold-Transformation.

in funr — match z
with [] —
h = letg=funz — z-zx | zixs —
in funz — matchzx
with [] — [

| zizs - gziuhaos

819 820

Removing useless definitions and variable-variable assignments
yields:

h = » match x
with [] — []

| ziws - zxxzhas

821

e The actual parameter f inthe application map g is
always funz — xz-z.

e Therefore, map g can be specialized to a new function h
defined by:

h = letg=|funz - z-x
in fun z — match z
with [] — []

I.lxrs > gx:i|ima s
gz :[mapg

818

Idea 2

> We apply our value analysis.
> We ignore global variables.

> We only substitute functions without free variables.

Example: The map-Function

letrec f=funzx — z-z
and map=fung — funzr — matchz
with [] — []
\ TUTLS — TiMapgrs

in map f list

817

Removing useless definitions and variable-variable assignments
yields:

h = funz — matchz
with [] — []

| ruzs = zxz:hzxs

821

45 Deforestation

¢ Functional programmers love to collect intermediate results in
lists which are processed by higher-order functions.

e Examples of such higher-order functions are:

map = fun f — fun! — match/with[] — []

| zizs — fz:map f xs)

822

id = funz — =z

comp = funf — fung — funz — f(gz)

comp; = funf — fung — funz; — funxz, —
I (g x1) 22

comp, = funf — fung — funz, — funz; —
[(g 22)

824

fillker = funp — fun! — match [with [| — []

| x::zs — if px then z : filter p zs

else filter p xs)

foldl = fun f — funae — funl
823
Example
sum = foldl (+) 0
length = let f = map (funzx
in compsum f
dev = funl — let s, =
n
mean =
h
ly
S9

in s/n

825

» match! with [] — a
| zizs — foldl f (f ax) xs)
> 1)
sum [
length [
s1/n

map (fun = — = — mean) |
map (funz - z-2) [

sum Iy

Example

sum =

length =

dev =

Example

sum =

length =

dev =

foldl (+) 0
let f = map (funz

in compsum f

funl — let s, =

825

foldl (+) 0
let f = map (funz
in comp sum f

funl — let s; =

825

» 1)

sum [

length [

s1/n

map (fun z — = — mean) I
map (funz — z-z) [

sum Iy

» 1)

sum [

length [

s1/n

map (fun z — = — mean) I
map (funz — z-z) [

sum Iy

Observations

e Explicit recursion does no longer occur!

e The implementation creates unnecessary intermediate
data-structures!

length could also be implemented as:

length = let f = funae — funz — a+1
in foldl f0

e This implementation avoids to create intermediate lists !!!

826

Observations

e Explicit recursion does no longer occur!

e The implementation creates unnecessary intermediate
data-structures!

length could also be implemented as:

length = let f = funa — funz — a+1
in foldl f0

e This implementation avoids to create intermediate lists !!!

826

Simplification Rules

compid f

comp, fid

map id

comp (map f) (map g)
comp (foldl f a) (map g)

827

Observations

compfid = f
comp, fid = f
id

map (comp f g)
foldl (comp, f g) a

« Explicit recursion does no longer occur!

¢ The implementation creates unnecessary intermediate

data-structures!

length could also be implemented as:

length = let f = funa — funz — a+1

in foldl f 0

« This implementation avoids to create intermediate lists !!!

826

Example
sum = foldl (+) 0
length = let f = map (funz — 1)
in compsum f
dev = funl — let s; = suml
n length {
mean = si/n

Oﬂi?r

map (fun z — x — mean) |

map (funz — z-xz) [

So = sumliy
in sa/n
825
Simplification Rules
compid f = compfid = f
comp, fid = comp, fid = f
map id = id

comp (map f) (map g)
comp (foldl f a) (map g)
comp (filter p) (filter p3) =

comp (foldl f a) (filter p)

map (comp f g)
foldl (comp, f ¢) a
filter (funx — if pyx thenp, «
else false)
let h=funa — funz — if pz then fax
else a

in foldl h a

828

Simplification Rules Simplification Rules

compid f = compfid = f compid f = compfid = f
comp, fid = comp, fid = f comp, fid = comp, fid = f
map id = id map id = id

map (comp f g)
foldl (comp, f g) a

comp (map f) (map g)
comp (foldl f a) (map g)

map (comp f g)
foldl (comp, f ¢) a

comp (map f) (map g)
comp (foldl f a) (map g)
comp (filter p,) (filter ps)

filter (funz — if pyx thenp, x
else false)

comp (foldl f a) (filter p)

let h=funa — fun z — if px then fax

else a
in foldl h a
827 828
Caveat Simplification Rules
Function compositions also could occur as nested function calls ...
compid f = compfid = f
o - comp, fid = comp, fid = f
i i
map id [=1 map ! I
map f (map g 1) = map (comp f g) ! comp (map f) (map g) = map(comp f g)
foldl f a (map g 1) — foldl(comp, fg)al comp (foldl f @) (map g) = foldl (comp, f ¢)a
filt filt = filter (fi if th
filter py (filter p2 1) = filter (funz — pyx Apez)l comp (filter py) (filter p.) ter (fun = if py & thenprz
Ise fal
foldl f a (filter pl) = let h=funa — funz — if px then fax else false)
else a comp (foldl f a) (filker p) = let h=funa — funz — if pz then fax
else a

in foldl hal

fon 5t 5 | as

829

Caveat

Function compositions also could occur as nested function calls ...

idx =

map id [=

map f (map g)

foldl f a (map g I)
filter py (filter po [)
foldl f a (filter p I)

Simplification Rules

compid f

comp, fid

map id

comp (map f) (map g)
comp (foldl f a) (map g)

comp (filter p;) (filter ps)

comp (foldl f a) (filter p)

x

l

map (comp f g) !

foldl (comp, fg) al

filter (funz — pyax Apax)l

let h=funa — funx — if px then fax
else a

in foldl hal

829

= compfid = f
= compy, fid = f
= id

= map (comp f g)
= foldl (comp, f g) a

filter (funxz — if ppz thenp, z

else false)

else a

in foldl h a

828

let h=funa — funx — if px then fazx

Simplification Rules

compid f

comp, fid

map id

comp (map f) (map g)
comp (foldl f a) (map g)

comp (filter p,) (filter ps)

comp (foldl f a) (filter p)

Caveat

= compfid = f
= comp, fid = f
= id

map (comp f g)
foldl (comp, f ¢) a

filter (funz — if pyx thenp, x

else false)

else a
in foldl h a

828

Function compositions also could occur as nested function calls ...

idz =
map id [=
map f (map g)

foldl f a (map g)
filter py (filter py 1)
foldl f a (filter p)

x

l

map (comp f g) |

foldl (comp, f g) al

filter (funz — pyx Apyx)l

let h=funa — funx — if pxthen fax
else a

in foldl hal

829

let h=funa — fun z — if px then fax

Remarks Example, optimized:
¢ Allintermediate lists have disappeared. sum = foldl ()0
e Only foldl remain +i.e., loops. length = let f = comp, (+) (funz — 1)
¢ Compositions of functions can be further simplified in the next in foldl f 0
step by Inlining. dev = funl — let s = sum!
+ Inside dev, we then obtain: n = length!
mean = $si/n
g = funae — funz — let x; = = — mean f = |comp (funz —z-2)
T2 = T1-I1 (fun x — = — mean)

in o+ x2 g = [comp, (+) f

e The result is a sequence of let-definitions || sy = foldlg 0l
in s3/n
831 830
Remarks Remarks
e Allintermediate lists have disappeared. e Allintermediate lists have disappeared.
e Only foldl remain — i.e., loops. e Only foldl remain — i.e., loops.
o Compositions of functions can be further simplified in the next e Compositions of functions can be further simplified in the next
step by Inlining. step by Inlining.
¢ Inside dev, we then obtain: ¢ Inside dev, we then obtain:
g = |funae — funz — let fpy = = — mean g = funa — funz — let z;, = =z — mean
lra = TI1-T1 r2 = n1-*n

inl a+ xo in a+x

e The result is a sequence of let-definitions !!! ¢ Theresult is a sequence of Iet-c{efinitions I!
831 831

Extension: Tabulation

If the list has been created by tabulation of a function, the creation
of the list sometimes can be avoided ...

tabulate’ = funj — funf — funn —

if j > n then []

else (fj) :: tabulate’ (j +1) fn
tabulate = tabulate’ 0

@v\,

Then we have:

comp (map f) (tabulate g) = tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp, f g) @
where

loop = funj - funf — funa — funn —

if j > nthena

else loop’ (j+1) f(faj))n
loop = loop’ 0

833

Then we have:

comp (map f) (tabulate g)

tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp, f g) a

where

loop’

loop

funj - funf — funa — funn —

if j > n thena

elseloop’ (j+1) f(faj))n
loop’ 0

833

