Script generated by TTT Example: Matrix-Matrix Multiplication

for (i=0;i< N;i++)

Title: Seidl: Programmoptimierung (21.01.2016) for (j=0;j < M;j++)
for (k=0k < K; k++)
Date: Thu Jan 21 08:38:13 CET 2016 clillj] = €lillj] + ali][k] - bIK][5];

Duration: 86:16 min

Over B]][] the iteration is columnwise.

Pages: 48

756

1 Exchange the two inner loops
=
4
for (i=0;i< N;i++)
||2 374 0 for (k=0;k < K; k++)
for (j =0;5 < M;j++)
cli]lj] = cli](5] + ali][k] - bK][5];

Is this permitted 777

757 758

ST

759

1]2

4 1‘4|9|l()

759

Discussion

e Correctness follows as before.

e A similar idea can also be used for the implementation of
multiplication for row compressed matrices.

e Sometimes, the program must be massaged such that the
transformation becomes applicable.

e Matrix-matrix multiplication perhaps requires initialization of
the result matrix first ...

760

Discussion

e Correctness follows as before.

¢ A similar idea can also be used for the implementation of
multiplication for row compressed matrices.

¢ Sometimes, the program must be massaged such that the
transformation becomes applicable.

e Matrix-matrix multiplication perhaps requires initialization of
the result matrix first ...

760

for (i=0;i< N;i++)
for (j=0;5 < M;j++) {
elillj] = 0
for (k=0k < K;k++)
clil[] = clells] + ala] k] - bK][5];

o Now, the two iterations can no longer be exchanged.
o The iteration over j, however, can be duplicated ...

761

We obtain:

for (i=0;i< N;i++) {
for (j=0;5 < M;j++) [i][j] =0;
for (k=0;k < K;k++)
for (j=0;7 <M;j++)
clil[7] = cli]l5] + el k] - bIK][5];
}

Discussion

¢ Instead of fusing several loops, we now have distributed the
loops.

e Accordingly, conditionals may be moved out of the loop
—— if-distribution ...

763

We obtain:

for (i=0;i< N;yit+) {
for (j=0;j < M;j++) cfi][j] = 0;
for (k=0;k < K;k++)
for (j =0;5 < M;j++)
eilj] = cfilli] + ali] - BRI
t

Discussion

e Instead of fusing several loops, we now have distributed the
loops.

e Accordingly, conditionals may be moved out of the loop
—— if-distribution ...

763

Caveat

Instead of using this transformation, the inner loop could also be
optimized as follows:

for (i=0;i< N;i++)
for (=057 < M;j++) {
t=20;
for (k=0;k < K; k++)
b= t+ali[K] - BRI
filli] = &

764

Idea

If we find heavily used array elements afei]. .. [e.] whose index
expressions stay constant within the inner loop, we could instead
also provide auxiliary registers.

Caveat

The latter optimization prohibits the former and vice versa ...

765

Discussion
e so far, the optimizations are concerned with iterations over

arrays.

e« Cache-aware organization of other data-structures is
possible, but in general not fully automatic ...

Example: Stacks

[T 23 (4]

766

Idea

If we find heavily used array elements afey] ... [e;] whose index
expressions stay constant within the inner loop, we could instead
also provide auxiliary registers.

Caveat

The latter optimization prohibits the former and vigerveysa ...

765

Disadvantage

The data-structure is bounded.

Improvement

e Ifthe array is full, replace it with another of double size !!!
e Ifthe array drops empty to a quarter, halve the array again !!!

—= The extra amortized costs are constant.

=—=> The implementation is no longer so trivial.

769

Disadvantage

The data-structure is bounded.

Improvement

e Ifthe array is full, replace it with another of double size !!!
e |f the array drops empty to a quarter, halve the array again !!!

—=- The extra amortized costs are constant.

—— The implementation is no longer so trivial.

769

2. Stack Allocation instead of Heap Allocation

Problem

¢ Programming languages such as Java allocate all
data-structures in the heap — even if they are only used
within the current method.

e If no reference to these data survives the call, we want to
allocate these on the stack.

= Escape Analysis

7

Discussion

» The same idea also works for queues.
» Other data-structures are attempted to organize blockwise.

Prablem: how can accesses be organized such that they
refer mostly to the same block 777?

=S Algorithms for external data

770

Idea

Determine points-to information.

Determine if a created object is possibly reachable from the out
side ...

Example: Our Pointer Language

= new();
y = new();
z[A] = y;
z=1y;
ret = z;

... could be a possible method body.

772

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret; or
e are reachable from global variables.

... in the Example:

775

Extension: Procedures

e We require an interprocedural points-to analysis.

e We know the whole program, we can, e.g., merge the
control-flow graphs of all procedures into one and compute
the points-to information for this.

o (Caveat: If we always use the same global variables
i, Yys, ... for (the simulation of) parameter passing, the
computed information is necessarily imprecise.

e Ifthe whole program is not known, we must assume that each

reference which is known to a procedure escapes.

778

We conclude:

e The objects which have been allocated by the first new()
may never escape.

e They can be allocated on the stack.

Caveat

This is only meaningful if only few such objects are allocated
during a method call.

Ifalocal new() occurs within a loop, we still may allocate the
objects in the heap.

777

Accessible from the outside world are memory blocks which:

e are assigned to a global variable such as ret; or
e are reachable from global variables.

... in the Example:

x = new();
y =|new()|;
z[A] = y;
z= |£|

ret =[z];

776

Extension: Procedures

We require an interprocedural points-to analysis.

We know the whole program, we can, e.g., merge the
control-flow graphs of all procedures into one and compute
the points-to information for this.

Caveat: If we always use the same global variables
, Y2 ... for (the simulation of) parameter passing, the
computed information is necessarily imprecise.

If the whole program is not known, we must assume that each
reference which is known to a procedure escapes.

778

Procedures: | Tail Recursion + Inlining
Stack Allocation

Loops: Iteration Reordering
» if-Distribution
» for-Distribution
Value Caching
Bodies: Life-Range Splitting (SSA)
Instruction Scheduling with

» Loop Unrolling
» Loop Fusion

Instructions: | Register Allocation
Instruction Selection
Peephole Optimization

780

34

Wrap-Up

We have considered various optimizations for improving hardware
utilization.

Arrangement of the Optimizations:

First, global restructuring of procedures/functions and of
loops for better memory behavior.

Then local restructuring for better utilization of the instruction
set and the processor parallelism.

Then register allocation and finally,

ephole optimization for the final kick ...

779

Procedures: | Tail Recursion + Inlining
Stack Allocation

Loops: Iteration Reordering
» if-Distribution
» for-Distribution
Value Caching
Bodies: Life-Range Splitting (SSA)
Instruction Scheduling with

> Loop Unrolling
+ Loop Fusion

Instructions: | Register Allocation
Instruction Selection
Peephole Optimization

780

4 Optimization of Functional Programs

Example:

let rec facx = if <1 then 1

else z-fac(z —1)

e There are no basic blocks.
e There are no loops.
e \Virtually all functions are recursive!

781

Strategies for Optimization:

—— Improve specific inefficiencies such as:
e Pattern matching
e Lazy evaluation (if supported)
¢ Indirections — Unboxing / Escape Analysis
« Intermediate data-structures — Deforestation
= Detect and/or generate loops with basic blocks!
¢ Tail recursion
e Inlining
¢ let-Floating
Then apply general optimization techniques
... .., by translation into C.

782

Strategies for Optimization:

E—

Improve specific inefficiencies such as:
e Pattern matching
e Lazy evaluation (if supported)
e Indirections — Unboxing / Escape Analysis
¢ Intermediate data-structures — Deforestation
Detect and/or generate loops with basic blocks!
e Tail recursion
e Inlining
o let-Floating
Then apply general optimization techniques
... e.g., by translation into C.

782

Warning:

Novel analysis techniques are needed to collect information about
functional programs.

Example: Inlining
let max (z,y) = if z >y then z
else y
let abs z = max (z,—z)

As result of the optimization we expect ...

783

let max (z,y) = if >y then «

else y
let abs z = let z=2=2
inlet y=-—z
in if £ >y then x
else y

Discussion:

For the beginning, max is just a name. We must find out which
value it takes at run-time

—— Value Analysis required !!

784

The complete picture:

786

let max (z,y) = if >y then =z
else y
let abs z = let z=2z
inlet y=—=2
in if £>y then z
else y
Discussion:
For the beginning, max is | name. We must find out which

value it takes at run-time

== Value Analysis required !!

784

Nevin Heintze in the Australian team
of the Prolog-Programming-Contest, 1998

785

The complete picture:

786

let max (z,y) = if z >y then =z
else y
let abs z = let z==
inlet y= -2
in if x>y then x

Discussion:

For the beginning, max is just a name. We must find out which

value it takes at run-time

else y

—— Value Analysis required !!

784

4.1 A Simple Functional Language
For simplicity, we consider:
e = bl(ey,....,ex) | cey ... e | funz — e

| (e1e2) | (Oye) [(e1Dzez) |

let 7y = e ineg |

match ey with py — e | ... | pr — e
p = blx|exy .oz | (2, ..., 2y)
t = letrecx; =e¢ and... and z; =¢; ine

where b isaconstant, z isavariable, ¢ isa
(data-)constructorand O, are i-ary operators.

787

uwbﬁ% —
\ ><>"g)0]@4wx

@64,(9}

l l
’ a — ﬁﬂ(fao"(_>

... in the Example:

41 A Simple Functional Language A definition of max may look as follows:

For simplicity, we consider: .
let max = funz — match z with (z;,z,) — (

match z; < x2

e = bl(e,....,ep) | cey...ep|funz — e
with True — =
[(exez) | (Dre) | (e1Dzes) | ’
. | False - =z

let z; = e; in ey
match eg withp, —e; | ... | pp = e)

p = blz|ex . .z | (2, 2%)

t = letrecx; =e;and...and x; = ¢, ine

where b isaconstant, x isavariable, ¢ isa
(data-)constructorand O; are i-ary operators.

787 789

Discussion

océ?o op-levd)«%\wE N 4.1 A Simple Functional Language
}&ea ays%ry. stedd, there are/explicit tuples.

For simplicity, we consider:

s iffexpressions and case diWncﬁon definitions is
reduced to match-expressiohs. a i= b (e
e 1
ns.

-~ In case distinctions, we allow just simple pa

funz — e

oex)|eer e

| (exea) | (Dre) | (e1 Dze) |
~—" == Complex patterns rmoit be decow let 7, = e1 in e
o WMresp?n%t a%&vlocks. match eo withp, — e | ... | pe — e

. Type\-éﬂrl.citations‘%abl s, jpatterns or expressions could p o= blxicz... x| (®g,...,7)
further usefulirfformation
igh we ignore.

™
|

t = letrecx; =e¢ and... and z; =¢; ine

(g/ where b isaconstant, z isavariable, ¢ isa
(data-)constructor and O; are i-ary operators.

788 787

Discussion ... in the Example:

s let rec only occurs on top-level. A definition of max may look as follows:
e Functions are always unary. Instead, there are explicit tuples.

o if-expressions and case distinction in function definitions is let max = funz — matchz With—> (
reduced to match-expressions. match(T, s
S

e In case distinctions, we allow just simple patterns.
—— Complex patterns must be decomposed ...
e let-definitions correspond to basic blocks.

¢ Type-annotations at variables, patterns or expressions could
provide further useful information
— which we ignore.

788 789

Accordingly, we have for abs:

let abs = funz — let z = (z,

in max z

4.2 A Simple Value Analysis

Idea

For every subexpression ¢ we collect the set
values of e ...

790

x)

HC}]:

of possible

