Script generated by TTT

Title: Seidl: Programmoptimierung (17.12.2015)

Date: Thu Dec 17 08:34:31 CET 2015

Duration: 88:26 min

Pages: 39

Problems

- How can we represent functions $f: \mathbb{D} \to \mathbb{D}$???
- If $\#\mathbb{D}=\infty$, then $\mathbb{D}\to\mathbb{D}$ has infinite strictly increasing chains.

Simplification: Copy-Constants

- \rightarrow Conditions are interpreted as ;.
- ightarrow Only assignments x=e; with $e\in \mathit{Vars} \cup \mathbb{Z}$ are treated exactly.

The effects $[\![f]\!]^\sharp$ then can be determined by a system of constraints over the complete lattice $\mathbb{D} \to \mathbb{D}$:

 $\llbracket v \rrbracket^{\sharp} : \mathbb{D} \to \mathbb{D}$ describes the effect of all prefixes of computation forests w of a procedure which lead from the entry point to v.

558

Observation

→ The effects of assignments are:

$$\llbracket x = e ; \rrbracket^{\sharp} \, D \ = \ \begin{cases} D \oplus \{x \mapsto c\} & \text{if} \quad e = c \in \mathbb{Z} \\ D \oplus \{x \mapsto (D \, y)\} & \text{if} \quad e = y \in \mathit{Vars} \\ D \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

- ightarrow Let $\mathbb V$ denote the (finite $ext{!!!}$) set of constant right-hand sides. Then variables may only take values from $\mathbb V^\top$.
- ightarrow The occurring effects can be taken from

$$\mathbb{D}_f \to \mathbb{D}_f$$
 with $\mathbb{D}_f = (Vars \to \mathbb{V}^\top)_\perp$

→ The complete lattice is huge, but finite !!!

leght: (21,) 6.3 - 1

Improvement

- \rightarrow Not all functions from $\mathbb{D}_f \rightarrow \mathbb{D}_f$ will occur.
- \rightarrow All occurring functions $\lambda D. \perp \neq M$ are of the form:

$$\begin{array}{lll} M & = & \{x \mapsto (b_x \sqcup \bigsqcup_{y \in I_x} y) \mid x \in \mathit{Vars}\} & \text{where:} \\ M \ D & = & \{x \mapsto (b_x \sqcup \bigsqcup_{y \in I_x} D \ y) \mid x \in \mathit{Vars}\} & \text{für} \quad D \neq \bot \end{array}$$

 \rightarrow Let \mathbb{M} denote the set of all these functions. Then for $M_1, M_2 \in \mathbb{M}$ $(M_1 \neq \lambda D. \perp \neq M_2)$:

$$(M_1 \sqcup M_2) x = (M_1 x) \sqcup (M_2 x)$$

 \rightarrow For k = # Vars , M has height $\mathcal{O}(k^2)$.

561

... in the Example:

$$[t = 0;]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, [t \mapsto 0]\}$$
$$[a_1 = t;]^{\sharp} = \{[a_1 \mapsto t], \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

In order to implement the analysis, we additionally must construct the effect of a call $k=(_,f();,_)$ from the effect of a procedure f:

Improvement (Cont.)

→ Also, composition can be directly implemented:

$$\begin{array}{rcl} (M_1\circ M_2)\,x & = & b'\sqcup\bigsqcup_{y\in I'}y & \text{with} \\ b' & = & b\sqcup\bigsqcup_{z\in I}b_z & \\ I' & = & \bigcup_{z\in I}I_z & \text{where} \\ M_1\,x & = & b\sqcup\bigsqcup_{y\in I}y & \\ M_2\,z & = & b_z\sqcup\bigsqcup_{y\in I_z}y & \end{array}$$

→ The effects of assignments then are:

$$\llbracket x = e ; \rrbracket^{\sharp} = \begin{cases} \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto c\} & \text{if} \quad e = c \in \mathbb{Z} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto y\} & \text{if} \quad e = y \in \mathit{Vars} \\ \operatorname{Id}_{\mathit{Vars}} \oplus \{x \mapsto \top\} & \text{otherwise} \end{cases}$$

562

Example: Constant Propagation

$$[t = 0;]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, [t \mapsto 0]\}$$
$$[a_1 = t;]^{\sharp} = \{a_1 \mapsto t, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

In order to implement the analysis, we additionally must construct the effect of a call $\mathbf{k}=(_,f();,_)$ from the effect of a procedure f:

563

$\begin{array}{c} \text{work ()} \\ \text{Neg } (a_1) \\ \text{9} \\ \text{vork();} \\ \text{ret} = a_1; \\ \text{10} \\ \end{array}$

	1
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\left\{ a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t \right\}$
10	$ \{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\} $
8	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$

$$[[(8, \ldots, 9)]]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

... in the Example:

If
$$[\mathsf{work}]^\sharp = \{a_1 \mapsto a_1, \mathsf{ret} \mapsto a_1, t \mapsto a_1\}$$

then $H[\mathsf{work}]^\sharp = \mathsf{Id}_{\{t\}} \oplus \{a_1 \mapsto a_1, \mathsf{ret} \mapsto a_1\}$
 $= \{a_1 \mapsto a_1, \mathsf{ret} \mapsto a_1, t \mapsto t\}$

Now we can perform fixpoint iteration ...

The second of t

	2
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1 \sqcup \operatorname{ret}, t \mapsto t\}$
10	$\{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\}$
8	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$

$$[[(8, ..., 9)]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

	1
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\left\{ \mathbf{a_1} \mapsto a_1, ret \mapsto ret, t \mapsto t \right\}$
10	$ \{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\} $
8	$ \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\} $ $ \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\} $ $ \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} $ $ \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\} $

$$[[(8, \ldots, 9)]]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

	2
7	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$
9	$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1 \sqcup \operatorname{ret}, t \mapsto t\}$
10	$\{a_1 \mapsto a_1, ret \mapsto a_1, t \mapsto t\}$
8	$\{a_1 \mapsto a_1, ret \mapsto ret, t \mapsto t\}$

$$\begin{split} \llbracket (8,\ldots,9) \rrbracket^{\sharp} \circ \llbracket 8 \rrbracket^{\sharp} &= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ \\ &\qquad \{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\} \\ &= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \end{split}$$

$$[[(8, ..., 9)]^{\sharp} \circ [[8]]^{\sharp} = \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\} \circ$$

$$\{a_1 \mapsto a_1, \operatorname{ret} \mapsto \operatorname{ret}, t \mapsto t\}$$

$$= \{a_1 \mapsto a_1, \operatorname{ret} \mapsto a_1, t \mapsto t\}$$

If we know the effects of procedure calls, we can put up a constraint system for determining the abstract state when reaching a program point:

$$\begin{array}{c|c} 0 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \\ 1 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \\ 2 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \\ 3 & \{a_1 \mapsto \top, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \\ 4 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \\ 5 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto 0, t \mapsto 0\} \\ \\ 6 & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \top, t \mapsto 0\} \\ \end{array}$$

568

... in the Example:

$$\begin{array}{|c|c|c|} \hline \mathbf{0} & \{a_1 \mapsto \mathsf{T}, \mathsf{ret} \mapsto \mathsf{T}, t \mapsto 0\} \\ \hline \mathbf{1} & \{a_1 \mapsto \mathsf{T}, \mathsf{ret} \mapsto \mathsf{T}, t \mapsto 0\} \\ \hline \mathbf{2} & \{a_1 \mapsto \mathsf{T}, \mathsf{ret} \mapsto \mathsf{T}, t \mapsto 0\} \\ \hline \mathbf{3} & \{a_1 \mapsto \mathsf{T}, \mathsf{ret} \mapsto \mathsf{T}, t \mapsto 0\} \\ \hline \mathbf{4} & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \mathsf{T}, t \mapsto 0\} \\ \hline \mathbf{5} & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \mathsf{D}, t \mapsto 0\} \\ \hline \mathbf{6} & \{a_1 \mapsto 0, \mathsf{ret} \mapsto \mathsf{T}, t \mapsto 0\} \\ \hline \end{array}$$

Discussion

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments.
- In the second phase, however, we could have been more precise.
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable.
- The second condition can, sometimes, be abandoned ...

569

Discussion

- At least copy-constants can be determined interprocedurally.
- For that, we had to ignore conditions and complex assignments.
- In the second phase, however, we could have been more precise.
- The extra abstractions were necessary for two reasons:
 - (1) The set of occurring transformers $\mathbb{M} \subseteq \mathbb{D} \to \mathbb{D}$ must be finite;
 - (2) The functions $M \in \mathbb{M}$ must be efficiently implementable.
- The second condition can, sometimes, be abandoned ...

Observation

Sharir/Pnueli, Cousot

- Often, procedures are only called for few distinct abstract arguments.
- Each procedure need only to be analyzed for these.
- Put up a constraint system:

Observation

Sharir/Pnueli, Cousot

- Often, procedures are only called for few distinct abstract arguments.
- Each procedure need only to be analyzed for these.
- Put up a constraint system:

Discussion

- This constraint system may be huge.
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $[\text{main}(), a_0]^{\sharp}$ \Longrightarrow We apply our local fixpoint algorithm!
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls.

571

Discussion

- This constraint system may be huge.
- We do not want to solve it completely!!!
- It is sufficient to compute the correct values for all calls which occur, i.e., which are necessary to determine the value $[\text{main}(), a_0]^{\sharp}$ \Longrightarrow We apply our local fixpoint algorithm!
- The fixpoint algo provides us also with the set of actual parameters $a \in \mathbb{D}$ for which procedures are (possibly) called and all abstract values at their program points for each of these calls.

Let us try a full constant propagation ...

	a_1	ret	a_1	ret	
0	Т	Т	Т	Т	
1	Т	Т	Т	Т	
2	Т	Т			
3	Т	Т	Т	Т	
4	Т	Т	0	Т	
7	0	Т	0	Т	
8	0	Т			
9	0	Т	۵	Ţ	
10	0	Т	Q.	0	
5	Т	Т	0	0	
main()	Т	Т	0	1	

572

(2) The Call-String Approach

Idea

- → Compute the set of all reachable call stacks!
- → In general, this is infinite.
- → Only treat stacks up to a fixed depth d precisely! From longer stacks, we only keep the upper prefix of length d.
- \rightarrow Important special case: d = 0.
 - Just track the current stack frame ...

Discussion

- In the Example, the analysis terminates quickly.
- If D has finite height, the analysis terminates if each procedure is only analyzed for finitely many arguments.
- Analogous analysis algorithms have proved very effective for the analysis of Prolog.
- Together with a points-to analysis and propagation of negative constant information, this algorithm is the heart of a very successful race analyzer for C with Posix threads.

573

... in the Example:

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \supseteq \operatorname{combine}^{\sharp} (\mathcal{R}[4], \mathcal{R}[10])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp} (\mathcal{R}[4])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp} (\mathcal{R}[8])$$

$$\mathcal{R}[9] \supseteq \operatorname{combine}^{\sharp} (\mathcal{R}[8], \mathcal{R}[10])$$

Caveat

The resulting super-graph contains obviously impossible paths ...

577

... in the Example:

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \ \supseteq \ \mathsf{combine}^{\sharp} \left(\mathcal{R}[4], \mathcal{R}[10] \right)$$

$$\mathcal{R}[7] \ \supseteq \ \mathsf{enter}^{\sharp} \left(\mathcal{R}[4] \right)$$

$$\mathcal{R}[7] \ \supseteq \ \mathsf{enter}^{\sharp} \left(\mathcal{R}[8] \right)$$

$$\mathcal{R}[9] \ \supseteq \ \mathsf{combine}^{\sharp} \left(\mathcal{R}[8], \mathcal{R}[10] \right)$$

Caveat

The resulting super-graph contains obviously impossible paths ...

577

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \ \supseteq \ \operatorname{combine}^{\sharp} \left(\mathcal{R}[4], \mathcal{R}[10] \right)$$

$$\mathcal{R}[7] \ \supseteq \ \operatorname{enter}^{\sharp} \left(\mathcal{R}[4] \right)$$

$$\mathcal{R}[7] \ \supseteq \ \operatorname{enter}^{\sharp} \left(\mathcal{R}[8] \right)$$

$$\mathcal{R}[9] \ \supseteq \ \operatorname{combine}^{\sharp} \left(\mathcal{R}[8], \mathcal{R}[10] \right)$$

Caveat

The resulting super-graph contains obviously impossible paths ...

576

... in the Example this is:

578

The conditions for 5, 7, 10, e.g., are:

$$\mathcal{R}[5] \ \supseteq \ \mathsf{combine}^{\sharp} \left(\mathcal{R}[4], \mathcal{R}[10] \right)$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[4])$$

$$\mathcal{R}[7] \supseteq \operatorname{enter}^{\sharp}(\mathcal{R}[8])$$

$$\mathcal{R}[9] \supseteq \mathsf{combine}^{\sharp} (\mathcal{R}[8], \mathcal{R}[10])$$

Caveat

The resulting super-graph contains obviously impossible paths ...

577

... in the Example this is:

Note:

- In the example, we find the same results:
 more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument.
- → The analysis terminates whenever D has no infinite strictly ascending chains.
- The correctness is easily shown w.r.t. the operational semantics with call stacks.
- → For the correctness of the functional approach, the semantics with computation forests is better suited.

580

Note:

- In the example, we find the same results:
 more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument.
- → The analysis terminates whenever D has no infinite strictly ascending chains.
- → The correctness is easily shown w.r.t. the operational semantics with call stacks.
- For the correctness of the functional approach, the semantics with computation forests is better suited.

Note:

- In the example, we find the same results:
 more paths render the results less precise.
 In particular, we provide for each procedure the result just for one (possibly very boring) argument.
- → The analysis terminates whenever D has no infinite strictly ascending chains.
- The correctness is easily shown w.r.t. the operational semantics with call stacks.
- For the correctness of the functional approach, the semantics with computation forests is better suited.

580

3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

.. Pipelines

... Caches

. Processors ???