Script generated by TTT

Title: Seidl: Programmoptimierung (17.12.2015)
Date: Thu Dec 17 08:34:31 CET 2015
Duration: 88:26 min

Pages: 39

Problems

e How can we represent functions f : D — D ??7?

e If #D=oc,then D — D has infinite strictly increasing
chains.

Simplification: Copy-Constants

» Conditions are interpreted as

> Only assignments = =¢; with e¢e VarsUZ are treated
exactly.

559

The effects [f]* then can be determined by a system of
constraints over the complete lattice D — D

[v]* 2 Id v entry point
] 3 [k]F o [u] k= (u,_,v) edge
[/TF 2 [stops]* stop, end pointof f

[v]* : D—D describes the effect of all prefixes of computation
forests w of a procedure which lead from the entry pointto v.

558

Observation

> The effects of assignments are:

D@ {zw c} if e=ceZ
[r=¢]"D = Dp{z— (Dy)} if e=ye Vars
Dag{z— T} otherwise
» Let V denote the (finite !!!) set of constant right-hand
sides. Then variables may only take values from V.
» The occurring effects can be taken from

Dy =Dy with Dy =(Vars - V7).

The complete lattice is huge but finite 11!

w (&<l U"S"'A

Improvement
> Not all functions from 1Dy — Dy will occur.

> All occurring functions AD. 1 # M are of the form:

M = {zw (U, y) |z € Vars} where:
MD = {zr (bl Dy) |z € Varsy fir D#1L

» Let M denote the set of all these functions. Then for
My, Mye M (M; #AD. 1L # M) :

(MuMs)z = (M, z)U (M,)

» For k=#Vars , M hasheight O(k?).

561

... in the Example:

[t=0]F = {a+> ay,ret+s ret,[t = 0]}
{lay v t|, ret v ret, t v t}

=
]
fiy
—
=

In order to implement the analysis, we additionally must construct
the effectofacall k= (_ f();,_) fromthe effectof a procedure

f:
[&]* H (19 where:

H (A‘_’[) = Id |Loca.£s [35] (A‘_’[o entern) | Globals

T if = e Globals
enterf r = .
0 otherwise

563

Improvement (Cont.)

> Also, composition can be directly implemented:

(MyoMy)z = bU |_|y€‘,, Yy with
Vo= buUll,b.
I' = UaL where
M,z £ bu |_|y€1 Y
M,z = b.U er. Y

» The effects of assignments then are:

ldype @ {z ¢} if e=cekZ

[x =]t = if e=ye Vars
Idyus @ {x+— T} otherwise
562
Example: Constant Propagation

main() workg () \\
7

©)
t=0;
1
©
ret = 0;
© ®
a; =0
@
workg();
®
ret = 1;

©

553

... in the Example:

[t=0]F = {a;r> ay,retrsret, [t 0]}
Ja, =t]* = {lai = t]ret > ret, £ £}

In order to implement the analysis, we additionally must construct
the effectofacall k=(,f();,) from the effectof a procedure

f:

[k = 2/ where:
H (M) = Id|poems ® (M o enter®)| gropas
T if x e Globals
enterf r = .
0 otherwise
563
work () \'\
Neg (a1) Pos (a1) 1
7| {a1 > a1, ret — ret, 1 ¢}
work(); 9 {0-1 — aq, ret — ret, ¢ — t}

10 | {ay = ag,ret = ay,t > t}
et = ap;

,
8| {a1 > aq,ret — ret, 1 +— ¢}

[, 9o [8]F = {a1+—rajreta,t—t} o
{a, v~ ay,ret — ret, t — ¢}

= {ai = ay,ret v ay, t > t}

565

... in the Example:

If [work]* = {a1 + aq, ret — aq, t —(h}
then H [work]® = Idy @ {a1 > aq, ret +> a1}

{(11 = aq, ret = aq, t— i}

:
:

564

2

7 {ai v a1, ret v ret, t > ¢}

9 I{ul — ay, ret — aq Uret, { t}‘

10 ‘{(JIHal,retv—n':l,tHi}‘
8 {ai > ai,ret — ret, t > £}
[8,.. . [8]F = {a1+aj,ret = ay,irt} o

{a) > ay, ret — ret, { — 1}

= {ai > aq,ret = ay, t st}

566

work () \

Neg (ai) Pos (a;)

work();

work () \

Neg (a1) Pos (a1)

1

7| {a1 = ai,ret > ret, t > t}
9| {ay > ay,ret — ret, 1 — ¢}

10| {a; > ay,ret = ap, t — t}

8 | {a1 = ay,ret > ret, t > t}

= {alr > aq, ret — aq, tr :»t} o
{(‘11+ > aq, ret — ret, t+ >t}

= {(Jlr > aq, ret — aq, tr >t}

565

2

7 {ul > aqp, ret > ret, t}

10 ‘{uli—>al,ret»—>ul,i'—>t}‘

8 {a1 ¥ ay,ret v ret,t +— t}

9 I{m — aq, ret = a; Uret, ¢ — t}‘

= {ay = ag,ret s a,t—t} o
{a, v~ ay,ret — ret, t — ¢}

= {ai = ay,ret v ay, t > t}

566

2
7 {a1 v a1, ret > ret,t — ¢}
9 I{uli—)ul,retHWt,t'—)t}‘
10 ‘{ul >—>ul,reti—>u1,ti—>i}‘
8 {a1 ¥ a1, ret > ret, t > ¢}

[(8,.. ,NFo[8]F = {a1+ay,ret —ag,trt} o
{ulr > @, ret — ret, t+ >t}

= {ulr >, ret = aq, tr >t}

566

If we know the effects of procedure calls, we can put up a
constraint system for determining the abstract state when reaching
a program point:

R[main] I entert dy

R[f] 3 enterf (R[u]) k= (u,f(),_) call
Rlv] 3 R[f] v entry pointof f
R[v] 3 [k (Ru)) k= (u, ,v) edge

567

... in the Example:

{aq — T,ret— T4+ 0}
{a1+— T, ret+— T,t 0}
{a1— T, ret+— T,t+— 0}
{aq — T,ret— T4+ 0}
{a; 0 ret+— T,t+— 0}
{a1 + 0,ret — 0,¢+ 0}

{ar +— 0,ret = T+ 0}

568

... in the Example:

{aq — T,ret— T,t+ 0}
{aq = T,ret = T,1+ 0}
{aq — T,ret — T,1+ 0}
{aq — T,ret— T,t+ 0}
{aq =+ 0,ret = T, 0}
{ar — §ret =Dyt 0}

{aq — 0,ret = T, 0}

568

y

Discussion

At least copy-constants can be determined interprocedurally.

For that, we had to ignore conditions and complex
assignments.

In the second phase, however, we could have been more
precise.

The extra abstractions were necessary for two reasons:

(1) The set of occurring transformers M C D — D
must be finite;

(2) Thefunctions M € M must be efficiently
implementable.

The second condition can, sometimes, be abandoned ...

569

Discussion

At least copy-constants can be determined interprocedurally.

For that, we had to ignore conditions and complex
assignments.

In the second phase, however, we could have been more
precise.

The extra abstractions were necessary for two reasons:

(1) The set of occurring transformers M C D — D
must be finite;

(2) Thefunctions M e M must be efficiently
implementable.

The second condition can, sometimes, be abandoned ...

569

Observation Sharir/Pnueli, Cousot

» Often, procedures are only called for few distinct abstract
arguments.

» Each procedure need only to be analyzed for these.

> Put up a constraint system: (,ﬁ qg l
[v.alt 3 a v entry point ﬁ
[v, a]® combine? ([u, a]¥, [f, enterﬂ

(u, ()3 0) C&ll! f 7 q lﬁg?

‘

[v,a]* 2 [lab]® [u,a]* k= (u,lab,v) edge
[f,a]* 3 [stopsa]* stop, endpointof f
// [v,a]f = value for the argument a.
570
Observation Sharir/Pnueli, Cousot

» Often, procedures are only called for few distinct abstract
arguments.

> Each procedure need only to be analyzed for these.
» Put up a constraint system:

[v,a]* 3O a v entry point
[v,a]* 3 combine® ([u,a]*, [f, enter? [u,a] T
(u, f ()5, v) call
[v,a]* 2 [lab]® [u,a]* k= (u,lab,v) edge
[f,a]* 2 [stop;,a]* stop, endpointof f
// [v,alf = value for the argument a.

(ac ?Dv

570

Discussion

e This constraint system may be huge.
¢ We do not want to solve it completely!!!

e ltis sufficient to compute the correct values for all calls which
occur, i.e., which are necessary to determine the value
[main(), aq]? —— We apply our local fixpoint algorithm !

¢ The fixpoint algo provides us also with the set of actual
parameters a € ID for which procedures are (possibly) called
and all abstract values at their program points for each of
these calls.

571

Discussion

e This constraint system may be huge.
e We do not want to solve it completely!!!

e ltis sufficient to compute the correct values for all calls which
occur, i.e., which are necessary to determine the value
[main(), ao]? = We apply our local fixpoint algorithm !

e The fixpoint algo provides us also with the set of actual
parameters a € D for which procedures are (possibly) called
and all abstract values at their program points for each of

these calls. H’
e 4? P

571

... in the Example:

Let us try a full constant propagation ...

main()

Neg (t)

(2) The Call-String Approach

Idea

4
4

¥

| a1 ret “ ay ret |

=TI - I]

=

main()

T T[T
TT|TT
T T L
TOT
TOT
0T

o T

0o T
TOT

T Tllo 1

572

Compute the set of all reachable call stacks!

In general, this is infinite.

Only treat stacks up to a fixed depth
longer stacks, we only keep the upper prefix of length

Important special case:

d=0.

d precisely! From

= Just track the current stack frame ...

574

d.

Discussion

¢ Inthe Example, the analysis terminates quickly.

e If I hasfinite height, the analysis terminates if each
procedure is only analyzed for finitely many arguments. é_fJ

e Analogous analysis algorithms have proved very effective for
the analysis of Prolog.

¢ Together with a points-to analysis and propagation of
negative constant information, this algorithm is the heart of a
very successful race analyzer for C with Posix threads.

573

... in the Example:

enter

576

The conditions for 5,7,10, e.g., are: The conditions for 5,7,10, e.g., are:
Mg combinef (R[4], R[10]) R[5] I combine! (R[4], R[10])
R[7] 3 enterf (R[4]) R[7] 2 enter! (R[4])
R[7] 2 enterf (R[8]) R[7] 2 enter! (R[8])
R[9] 3 combine® (R[8], R[10]) R[9] 2 combine® (R[8], R[10])
Caveat Caveat
The resulting super-graph contains obviously impossible paths ... The resulting super-graph contains obviously impossible paths ...
577 577
... in the Example: The conditions for 5,7, 10, e.qg., are:
work() N\ enter R[5] 2 combine® (R[4], R[10])
LV G‘\
Neg (a1) Pos (a1) R[7] O enter* (R[4])
R[7] 2 enter (R[S])
R[9] T combinet (R[8], R[10])
3;
enter Caveat
—. combine The resulting super-graph contains obviously impossible paths ...
5!
@'ct 1 — ret;
576 577

... in the Example:

work () \

enter

Neg (a1)

enter

—., combine
S \
%rct 1 — ret;

576

... in the Example this is:

work () \

Neg (a1)

enter

578

Pos (a1)

enter

Pos (a;)

The conditions for 5,7,10, e.g., are:

R[]

R[7]
R[7]

R[]

Caveat

The resulting super-graph contains obviously impossible paths ...

i

[

I

combine! (R[4], R[10])

enter! (R[4])
enter! (R[8])

combine? (R[8], R[10])

577

... in the Example this is:

main()

579

Note:

»

>

>

»

Note:

¥

5

¥

¥

In the example, we find the same results:
more paths render the results less precise.

In particular, we provide for each procedure the result just
for one (possibly very boring) argument.

The analysis terminates — whenever [has no infinite
strictly ascending chains.

The correctness is easily shown w.r.t. the operational
semantics with call stacks.

For the correctness of the functional approach, the
semantics with computation forests is better suited.

580

In the example, we find the same results:
more paths render the results less precise.

In particular, we provide for each procedure the result just
for one (possibly very boring) argument.

The analysis terminates — whenever 1D has no infinite
strictly ascending chains.

The correctness is easily shown w.r.t. the operational
semantics with call stacks.

For the correctness of the functional approach, the
semantics with computation forests is better suited.

580

Note:

In the example, we find the same results:
more paths render the results less precise.

In particular, we provide for each procedure the result just
for one (possibly very boring) argument.

The analysis terminates — whenever D has no infinite
strictly ascending chains.

The correctness is easily shown w.r.t. the operational
semantics with call stacks.

For the correctness of the functional approach, the
semantics with computation forests is better suited.

580

3 Exploiting Hardware Features

Question:

How can we optimally use:

Registers
Pipelines
Caches

Processors 777

581

