Script generated by TTT

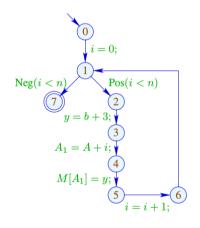
Title: Seidl: Programmoptimierung (09.12.2015)

Date: Wed Dec 09 10:19:18 CET 2015

Duration: 91:56 min

Pages: 54

The Control-flow Graph



1.8 Application: Loop-invariant Code

Example

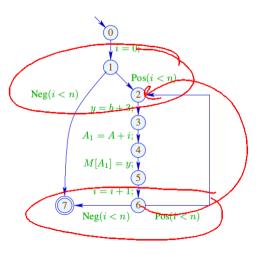
for
$$(i = 0; i < n; i++)$$

 $a[i] = b + 3;$

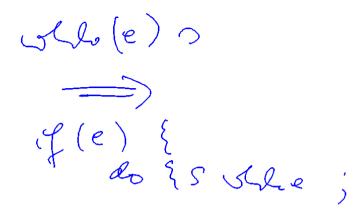
- The expression b+3 is recomputed in every iteration.
- // This should be avoided!

438

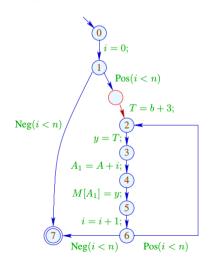
Idea Transform into a do-while-loop ...



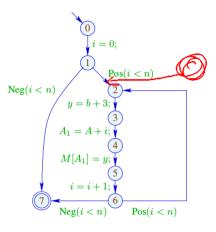
441



... now there is a place for T = e;.

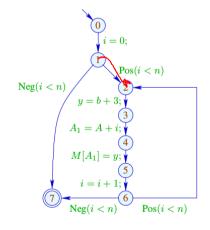


Idea Transform into a do-while-loop ...



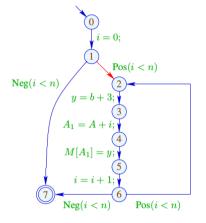
441

Application of T5 (PRE):



	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b+3\}$
3	$\{b+3\}$	Ø
4	$\{b + 3\}$	Ø
5	$\{b+3\}$	Ø
6	$\{b+3\}$	Ø
7	Ø	Ø

Application of T5 (PRE):



	\mathcal{A}	\mathcal{B}
0	Ø	Ø
1	Ø	Ø
2	Ø	$\{b + 3\}$
3	$\{b + 3\}$	Ø
4	$\{b+3\}$	Ø
5	$\{b + 3\}$	Ø
6	$\{b + 3\}$	Ø
7	Ø	Ø

444

Problem

If we do not have the source program at hand, we must re-construct potential loop headers

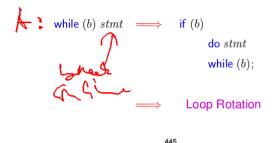
Pre-dominators

u pre-dominates v , if every path $\pi: start \to^* v$ contains u. We write: $u \Rightarrow v$.

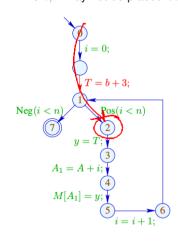
"⇒" is reflexive, transitive and anti-symmetric.

Conclusion

- Elimination of partial redundancies may move loop-invariant code out of the loop.
- This only works properly for do-while-loops!
- To optimize other loops, we transform them into do-while-loops before-hand:



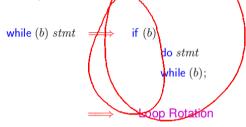
Caveat T = b + 3; may not be placed before the loop:



 \longrightarrow There is no decent place for T = b + 3;.

Conclusion

- Elimination of partial redundancies may move loop-invariant code out of the loop.
- This only works properly for do-while-loops!
- To optimize other loops, we transform them into do-while-loops before-hand



445

Computation

We collect the nodes along paths by means of the analysis:

$$\mathbb{P} = 2^{Nodes} \quad , \qquad \qquad \sqsubseteq \ = \ \supseteq$$

$$[\![(_,_,v)]\!]^{\sharp} \ P \quad = \boxed{P \cup \{v\}}$$

Then the set $\mathcal{P}[v]$ of pre-dominators is given by:

$$\mathcal{P}[v] = \bigcap \{ \llbracket \pi \rrbracket^{\sharp} \; \{ \textit{start} \} \; | \; \pi : \textit{start} \to^* v \}$$

Problem

If we do not have the source program at hand, we must re-construct potential loop headers

Pre-dominators

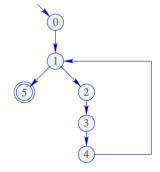
u pre-dominates v , if every path $\pi: start \to^* v$ contains u. We write: $u \Rightarrow v$.

"⇒" is reflexive, transitive and anti-symmetric.

446

Since $[\![k]\!]^\sharp$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration ...

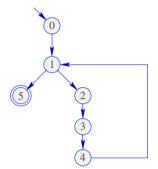
Example



	\mathcal{P}
0	{0}
1	{0, 1}
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0,1,2,3,4\}$
5	$\{0, 1, 5\}$

Since $[\![k]\!]^\sharp$ are distributive, the $\mathcal{P}[v]$ can computed by means of fixpoint iteration ...

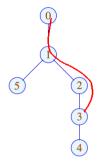
Example



	\mathcal{P}
0	{ <mark>0</mark> }
1	{ <mark>0</mark> , 1 }
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0,1,2,3,4\}$
5	$\{0, 1, 5\}$

448

The partial ordering " \Rightarrow " in the example:



	\mathcal{P}
0	{ <mark>0</mark> }
1	{0,1}
2	$\{0, 1, 2\}$
3	$\{0, 1, 2, 3\}$
4	$\{0, 1, 2, 3, 4\}$
5	$\{0, 1, 5\}$

Apparently, the result is a tree.

In fact, we have:

Theorem.

Every node v has a most one immediate pre-dominator.

Proof

Assume:

there are $u_1 \neq u_2$ which immediately pre-dominate v.

If $u_1 \Rightarrow u_2$ then u_1 not immediate.

Consequently, u_1, u_2 are incomparable.

450

Apparently, the result is a tree.

In fact, we have:

Theorem

Every node v has at most one immediate pre-dominator.

Proof

Assume:

there are $u_1 \neq u_2$ which immediately pre-dominate v.

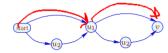
If $u_1 \Rightarrow u_2$ then u_1 not immediate.

Consequently, u_1, u_2 are incomparable.

Now for every $\pi: start \to^* v$:

$$\pi=\pi_1 \; \pi_2 \qquad \text{with} \qquad \pi_1: start \to^* u_1 \ \pi_2: u_1 \to^* v$$

If, however, u_1, u_2 are incomparable, then there is path: $start \rightarrow^* v$ avoiding u_2 :



451

Observation

The loop head of a while-loop pre-dominates every node in the body.

A back edge from the exit $\ u$ to the loop head $\ v$ can be identified through

$${\color{red} v} \in \mathcal{P}[{\color{red} u}]$$

Accordingly, we define:

(u, -, 5)

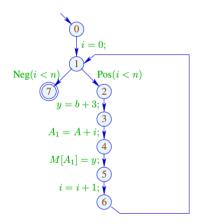
Now for every $\pi: start \to^* v$:

$$\pi=\pi_1 \; \pi_2 \qquad ext{with} \qquad \pi_1: start o^* u_1 \ \pi_2: u_1 o^* v$$

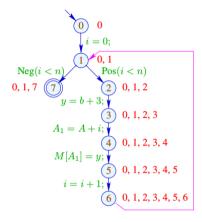
If, however, u_1,u_2 are incomparable, then there is path: $start \to^* v$ avoiding u_2 :

452

... in the Example



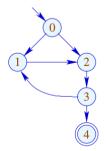
... in the Example



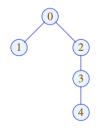
457

Caveat

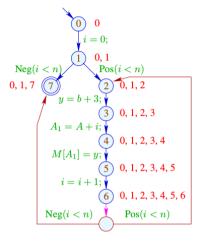
There are unusual loops which cannot be rotated:



Pre-dominators:

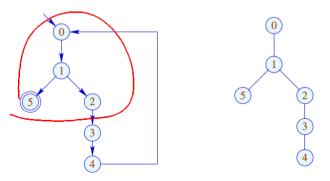


... in the Example



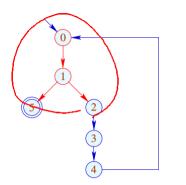
458

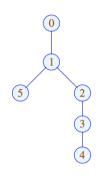
... but also common ones which cannot be rotated:



Here, the complete block between back edge and conditional jump should be duplicated.

... but also common ones which cannot be rotated:



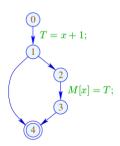


Here, the complete block between back edge and conditional jump should be duplicated.

461

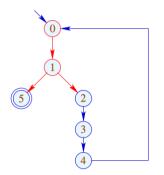
1.9 Eliminating Partially Dead Code

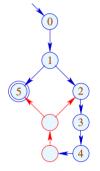
Example



x+1 need only be computed along one path.

... but also common ones which cannot be rotated:

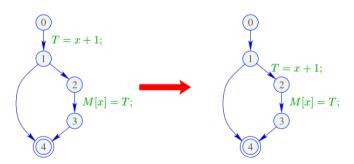




Here, the complete block between back edge and conditional jump should be duplicated.

462

Idea



Problem

- The definition x=e; $(x \notin Vars_e)$ may only be moved to an edge where e is safe.
- The definition must still be available for uses of x.

 \Longrightarrow

We define an analysis which maximally delays computations:

465

Problem

- The definition $x=e; (x \not\in Vars_e)$ may only be moved to an edge where e is safe.
- The definition must still be available for uses of x.

 \Longrightarrow

We define an analysis which maximally delays computations:

... where:

$$Use_e = \{y = e'; \mid y \in Vars_e\}$$

$$Def_x = \{y = e'; \mid y \equiv x \lor x \in Vars_{e'}\}$$

466

... where:

$$Use_e = \{y = e'; | y \in Vars_e\}$$

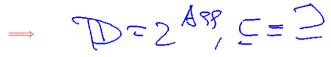
 $Def_x = \{y = e'; | y \equiv x \lor x \in Vars_{e'}\}$

For the remaining edges, we define:

$$\begin{split} & \llbracket x = M[e]; \rrbracket^{\sharp} \, D &= D \backslash (\mathit{Use}_e \cup \mathit{Def}_x) \\ & \llbracket M[e_1] = e_2; \rrbracket^{\sharp} \, D &= D \backslash (\mathit{Use}_{e_1} \cup \mathit{Use}_{e_2}) \\ & \llbracket \mathsf{Pos}(e) \rrbracket^{\sharp} \, D &= \llbracket \mathsf{Neg}(e) \rrbracket^{\sharp} \, D &= D \backslash \mathit{Use}_e \end{split}$$

Problem

- The definition x = e; $(x \notin Vars_e)$ may only be moved to an edge where e is safe.
- The definition must still be available for uses of x.



We define an analysis which maximally delays computations:

$$[\![x]\!]^{\sharp} D = D$$

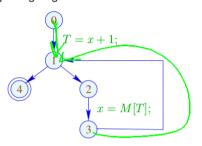
$$[\![x = e ;]\!]^{\sharp} D = \begin{cases} D \backslash (Use_e \cup Def_x) \cup \{x = e ; \} & \text{if} \quad x \notin Vars_e \\ D \backslash (Use_e \cup Def_x) & \text{if} \quad x \in Vars_e \end{cases}$$

We conclude:

- The partial ordering of the lattice for delayability is given by "⊃".
- At program start: $D_0 = \emptyset$. Therefore, the sets $\mathcal{D}[u]$ of at u delayable assignments can be computed by solving a system of constraints.
- We delay only assignments a where a a has the same effect as a alone.
- The extra insertions render the original assignments as assignments to dead variables ...

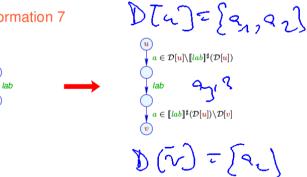
Caveat

We may move y = e; beyond a join only if y = e; can be delayed along all joining edges:

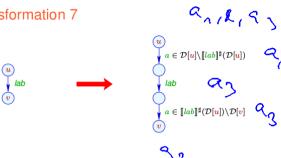


Here, T = x + 1; cannot be moved beyond 1 !!!

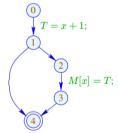
Transformation 7



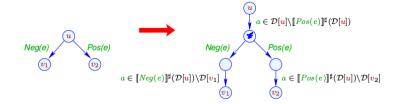
Transformation 7



470



	\mathcal{D}
0	Ø
1	$\mid \{T = x + 1;\}$
2	$\mid \{T = x + 1;\}$
3	Ø
4	Ø

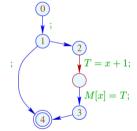


Remark

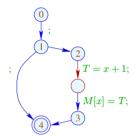
Transformation T7 is only meaningful, if we subsequently eliminate assignments to dead variables by means of transformation T2.

In the example, the partially dead code is eliminated:

471



	\mathcal{L}
0	{ <i>x</i> }
1	{ <i>x</i> }
2	{ <i>x</i> }
2'	$\{x,T\}$
3	Ø
4	Ø

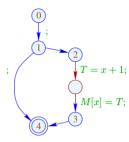


	\mathcal{L}
0	{ <i>x</i> }
1	{ <i>x</i> }
2	{ <i>x</i> }
2'	$\{x,T\}$
3	Ø
4	Ø

474

Remarks

- After T7, all original assignments y=e; with $y \not\in Vars_e$ are assignments to dead variables and thus can always be eliminated.
- By this, it can be proven that the transformation is guaranteed to be non-degradating efficiency of the code.
- Similar to the elimination of partial redundancies, the transformation can be repeated.



	\mathcal{L}
0	{ <i>x</i> }
1	{ <i>x</i> }
2	{ <i>x</i> }
2'	$\{x,T\}$
3	Ø
4	Ø

474

Conclusion

- → The design of a meaningful optimization is non-trivial.
- Many transformations are advantageous only in connection with other optimizations!
- → The ordering of applied optimizations matters !!
- → Some optimizations can be iterated !!!

... a meaningful ordering:

T4	Constant Propagation
	Interval Analysis
	Alias Analysis
T6	Loop Rotation
T1, T3, T2	Available Expressions
T2	Dead Variables
T7, T2	Partially Dead Code
T5, T3, T2	Partially Redundant Code

477

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

		Multiplication	ıs	Α	dditio	ns
naive	Ι,	$\frac{1}{2}n(n+1)$			n	
re-use		2n-1			n	
Horner-Scheme		\overline{n}			n	

... a meaningful ordering:

T4	Constant Propagation	
	Interval Analysis	
	Alias Analysis	
T6	Loop Rotation	
T1, T3, T2	Available Expressions	
T2	Dead Variables	
T7, T2	Partially Dead Code	
T5, T3, T2	Partially Redundant Code	

477

Idea

$$f(x) = (\dots((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

- (2) Tabulation of a polynomial f(x) of degree n:
- \rightarrow To recompute f(x) for every argument x is too expensive.
- → Luckily, the *n*-th differences are constant !!!

2 Replacing Expensive Operations by Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

	Multiplications	Additions
naive	$\frac{1}{2}n(n+1)$	n
re-use	2n-1	n
Horner-Scheme	n	n

478

Example: $f(x) = 3x^3 - 5x^2 + 4x + 13$

Here, the n-th difference is always

$$\Delta_h^n(f) = n! \cdot a_n \cdot h^n$$
 (h step width)

480

Idea

$$f(x) = (\dots((a_n \cdot x + a_{n-1}) \cdot x + a_{n-2}) \dots) \cdot x + a_0$$

- (2) Tabulation of a polynomial f(x) of degree n:
 - \rightarrow To recompute f(x) for every argument x is too expensive.
 - → Luckily, the n-th differences are constant !!!

479