Script generated by TTT

1.8 Application: Loop-invariant Code

Title: Seidl: Programmoptimierung (09.12.2015) Example
Date: Wed Dec 09 10:19:18 CET 2015 for (i = 0;7 < myi++)
| = b+ 3;
Duration: 91:56 min ol
Pages: 54 // The expression b+ 3 is recomputed in every iteration.

/{ This should be avoided !

438

The Control-flow Graph Idea Transformintoa do-while-loop ..

0
7
1
Pos(i < n)
Neg(i < n) 2
1
3
Ay = A+
;\.[[_11; E[g
T =1+ 1; —
®
Neg(i < n) < n)

439 441

..now there is a place for T =e;.

1 =0

Pos(i < n)

()
/

Neg(i < n)

@

Neg(i < n) Pos(i < n)

442

Idea

Neg(i < n)

Transform intoa do-while-loop ...

Neg(i < n)

@)

Neg(i < n) Pos(i < n)
441
Applicationof T5 (PRE):
B
0 0 0
1 0 0
2| 0 |{b+3}
3| {b+3} 1]
4| {b+3} 0
5[{b+3} 0
6| {b+3} 1]
6 7 0 0
Neg(i < n) Pos(i < n)
443

Applicationof T5 (PRE):

|l al B
0 1]]
- 10 0
Neg(i < n) 9 0 {b I 3}
3| {b+3} 0
4| {b+3} 0
5| {b+3} 0
o 6| {b+3} 0
5 7 0 0
@ Neg(i < n]-\L/ Pos(i < n)
444
Problem

If we do not have the source program at hand, we must
re-construct potential loop headers

— Pre-dominators

u pre-dominates v, if every path = : start —* v contains
We write: u«= v .

=" s reflexive, transitive and anti-symmetric.

446

.

Conclusion

e Elimination of partial redundancies may move loop-invariant
code out of the loop.

e This only works properly for do-while-loops !

e To optimize other loops, we transform them into
do-while-loops before-hand:

ﬁ;—‘: while (b) stmt = if (b)
do stmt
while (b);
L —r

= Loop Rotation

445

Caveat T =b+3; may notbe placed before the loop :

—— There is no decent place for 7T =b+3;.

440

Conclusion Problem

If we do not have the source program at hand, we must

¢ Elimination of partial redundancies may move loop-invariant re-construct potential loop headers
code out of the loop.
e This only works propr do-while-loops ! —_— Pre-dominators

¢ To optimize other loops, {@ sform them in
do-while-loops before-hang. u pre-dominates v, if every path 7 :start —* v contains .

We write: u=v.

while (b) stmt

“=" s reflexive, transitive and anti-symmetric.

445 446

Computation Since [k]* are distributive, the P[y] can computed by means
of fixpoint iteration ...

We collect the nodes along paths by means of the analysis:

P = 2}\"0:}!&8 , g — 2 Example
(oot e 7ot o T]
0 {0}
(1) 1 {01
Then the set P[v] of pre-dominators is given by: @ o 2 {0,1,2}
3] {0,1,2,3}
Plo] = (WIAT {start} | 7 : start —* v} ©), 1]1{0,1,2,3,4)
@ 50 {0,1,5)

447 448

Since [k]* are distributive, the P[v] can computed by means
of fixpoint iteration ...

Example

© | » |
0
1
2
3
4

{0}

(1) [0, 1}
[0,1,2}
[0,1,2,3)
10,1,2,3,4}

50 {0,1,5}

©)

448

The partial ordering “=" in the example:

N 0 {0}
(5 (0,1}

1
2 {0,1,2}
3| {0,1,2,3}
41{0,1,2,3,4)

O 50 {0,1,5}

449

Apparently, the result is a tree.

In fact, we have:

Theore

Every nbde one{mmediate pre-dominator.

Proof

Assume:

there are u; # " Whith immediately pre-dominate w.
If w, = u, then w; notimmediate.

Consequently, wu;,u; are incomparable.

450

Apparently, the result is a tree.

In fact, we have:

Theorem

Every node © has at most one immedig

Proof a
Assume:
there are u; # w2 which immediately pre-dominate v.
If wu; = us then wu; notimmediate.

Consequently, wu,,u; areincomparable.

450

Now for every w : start —* v :

T =1 T with my @ start —* g
Mgty = v

If, however, w,,us areincomparable, then there is path:

*

start —* v avoiding us :

451

Observation

The loop head of a while-loop pre-dominates every node in the
body.

A back edge from the exit « tothe loop head © canbe
identified through

v € Plu]

Accordingly, we define:

453

Now for every : start —* v :

T =1y Ty with 7y @ start —* uy

Tyt =%

If, however, wu;,us areincomparable, then there is path:
start —* v avoiding s :

T T

fur) (v)

452

... in the Example

455

... in the Example

0;

i
(1) 0,1

Neg(i < n) Pos(i < n)

(4) 0,1,2,3,4
' 0,1,2,3,4,5

457

Caveat

There are unusual loops which cannot be rotated:

o Pre-dominators:

% S

459

\ 0,1,2,3,4,5,6

... in the Example

Neg(i <n)

1 N
o 0,1

0

Pos(i < n)

0,1,2,3,4

' 0,1,2,3,4,5

0,1,2,3,4,5,6

P Pos(i < n)

Y

458

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump

should be duplicated.

460

... but also common ones which cannot be rotated:

Here, the complete block between back edge and conditional jump
should be duplicated.

461

1.9 Eliminating Partially Dead Code

Example

z+1 need only be computed along one path.

463

... but also common ones which cannot be rotated:

(2)
® ﬂ/ ®
O O=®

Here, the complete block between back edge and conditional jump
should be duplicated.

462

Idea

464

Problem

e The definition z =e¢; (x & Vars,) may only be moved to
an edge where ¢ s safe.

e The definition must still be available for uses of .

We define an analysis which maximally delays computations:

LIFD = D
[D D\(Use.U Def YU {z =e;} if = ¢ Vars,
Tr = € =
D\(Use. U Def) if ze Vars.
465
Problem

e The definition = =¢; (z ¢ Vars.) may only be moved to
an edge where ¢ s safe.

e The definition must still be available for uses of =.

We define an analysis which maximally delays computations:
L]F D = D

[1D D\(Use.U Def YU {z =e;} if = ¢ Vars,
r = € =
D\ (Use. U Def) if ze Vars.

465

... where:
Use. = {y=¢|ye Vars.}
Def, = {y=¢|y=xVvare Varse}
466
... where:
Use. = {y=¢;|ye Vars.}
Def, = {y=¢;|ly=xVze Varsy}

For the remaining edges, we define:

[« =MD = D\(Use.UDef,)
[Mley] = ey]* D = D\(Use,, U Use,,)
[Pos(e)]* D = [Neg(e)!D = D\Use,

467

Problem

e The definition z =e¢; (x & Vars,) may only be moved to
an edge where ¢ s safe.

e The definition must still be available for uses of .

— o= ZA??(_ 3

We define an analysis which maximally delays computations:

LIFD = D
[I D\(Use.U Def YU {z =e;} if = ¢ Vars,
Tr = € =
D\(Use. U Def) if ze Vars.
465
We conclude:

e The partial ordering of the lattice for delayability is given by
sy,

e Atprogram start: Dy = 0.

Therefore, the sets D[u] ofat wu delayable assignments
can be computed by solving a system of constraints.

¢ Wedelay only assignments « where aa hasthe same
effect as « alone.

e« The extra insertions render the original assignments as
assignments to dead variables ...

469

Caveat

We may move y =-¢; beyondajoinonlyif y=e¢; canbe
delayed along all joining edges:

Here, 7 =2+ 1; cannotbe movedbeyond 1 !l

468

Transformation 7 b Z_C—J]‘Z qul 7q ’Ll

a € Dul\[lab](D[u])
O

lab — lab Q.:}; Q
O

a € [lab]#(D[u])\D[v]

D () Tl

470

Transformation 7

a’\fi{q N

®
a € Dlu]\[lab]#(D[u]) C{
® Q a
lab —) lab (o }
® O
a € [lab]#(Pu])\P[v] q
@ 3
A
470
D
0 0
(T=2+1)
T; 2({T' =z +1;}
3 0
1 0

472

a € Dlul\[Pos(e)]* (P[u])

Neg(e) /(K,%sr’e) Neg(e) Pos(e)

@ ©) O
a € [Neg(e)F(Pu])\D[v1] a € [Pos(e)]*(Plu])\DPva]
)

Remark

Transformation T7 is only meaningful, if we subsequently
eliminate assignments to dead variables by means of
transformation T2.

In the example, the partially dead code is eliminated:

® | -

; 0| {z}

0 1 o)

fT z+1 9 {:}
Igu.r T, 2 w1

3 0

® i

L L
0 {z} 0 {z}
1| {z} L {z}
2| {=z} 2| {z}
2| {z,T} 2' | {z,T}
3] 3 0
4] + 0
474 474
Remarks Conclusion
e After 77, all original assignments y =¢; withy & Vars, > The design of a meaningful optimization is non-trivial.
are e:;lssignments to dead variables and thus can always be » Many transformations are advantageous only in connection
eliminated. with other optimizations !
e By this, it can be proven that the transformation is guaranteed » The ordering of applied optimizations matters !!
non-degradating efficiency of the code. o .
tobe no 9 g Y > Some optimizations can be iterated !!!
e Similar to the elimination of partial redundancies, the
transformation can be repeated.
475 476

... a meaningful ordering:

T4 Constant Propagation
Interval Analysis
Alias Anaj.ysi\s
T6 oop Rotation
T1,T3, T2 | Available Expressions
T2 Dead Variables

T7,T2 Partially Dead Code
15, T3, T2 | Partially Redundant Code

477

2 Replacing Expensive Operations by
Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f(ﬁf) = an'xn+ 7L—1'Irl_1+... a1 - H ag

| Multiplications | Additions

naive Intn+1) n

re-use 2n —1 n

Horner-Scheme n n

478

... a meaningful ordering:

T4 Constant Propagation
Interval Analysis
Alias Analysis

T6 Loop Rotation

T1,T3, T2 | Available Expressions
T2 Dead Variables
T7,T2 Partially Dead Code
T5, T3, T2 | Partially Redundant Code

477

Idea

f(SC) = (---((an'ﬂ?wLan_l)-a:+an_2)..,)-;g+a0

(2) Tabulation of a polynomial f(x) of degree n:

» Torecompute f(z) forevery argument x is too expensive.
> Luckily, the n-th differences are constant !!!

479

2 Replacing Expensive Operations by
Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

fx) = an-2"+ana-2" 4. oz tag

| | Muttiplications | Additions

naive in(n+1) n

re-use 2n —1 n

Horner-Scheme n n

478

Example: f(x) = 32% — 522 + 4z + 13
nl|)| A | a2
of 13| 2| s [[8]
1| 15 | 10
2 25 |[36] W
3| 61 | €S
4;’1‘!4

Here, the n-th difference is always

AR(f)=n!-a, -h" (hstep width)

480

Idea

f((L‘) = ("'((arz'$+art—1)'I+ﬂrL—2)---)'$+ﬂg

(2) Tabulation of a polynomial f(z) of degree n:

» Torecompute f(z) forevery argument x is too expensive.
> Luckily, the n-th differences are constant !!!

479

