Script generated by TTT

Title: Seidl: Programmoptimierung (26.11.2015)
Date: Thu Nov 26 08:35:22 CET 2015
Duration: 90:23 min

Pages: 30

Alias Analysis 3. Idea

Determine one equiyateqce relaton = on variables@nd
memory accesses with s1=s, whenever s,,5, may
contain the same address at some u;, u,

... in the Simple Example

380

Discussion

e The resulting constraint system has size O(k-n) for &
abstract addresses and 1 edges.

e The number of necessary iterations is O(k(k + # Vars)) ..
e The computed information is perhaps still too zu precise !1?

e Inorder to prove correctness of a solution s € States* we
show:

379

Discussion

» We compute a single information fo the whole program.

» The computation of this information maintains partitions
™= {Pj_.,....,Pm}.

» Individual sets P, are identified by means of
representatives p; € P,.

> The operatMn T are:
' .p) = p itpep;
// returns the representative

union (i, piy, piy) = {Fy U P,}U{F; [0 # j # iz}
// unions the represented classes

381

> If a1,z € Vars are equivalent, then also z,[| and
z3[] must be equivalent.

> If PN Vars # 0, then we choose p; € Vars . Then we can

apply union recursively :

in_if p;.p. € Vars
union® (7, pi, [|, pis[1)

else

382

... in the Simple Example

{zd b {13 Al 1}
O, 1) | {{at, {wh {131 {wl 11}
(1,2) | {{ah, {wh {11 {wl 11}
(
(

2,3) | ek {21} Awl 1}

3,4) | b w1} {wl]}

384

The analysis iterates over all edges once:

7= {{x},{z[]} | = € Vars};
forall k= (,lab,) do == [lab]*m;

where:

[t=y]'r = union* (7, x,y)

[z =yle:]*7 = union* (7, z,y|])

lyle] = =)f 7w = union* (7, z,y[])

[lab]t = = otherwise
383

... in the More Complex Example

D

rl

e o e @

(2,3) | {{n1} »{g ; {hﬁv&ﬂ}}
G,4) [{{h A, 1} {7}

(4,5) {{nt,rs ALY}

(5,6) {nt,r,h12[1}}

LT

385

... in the More Complex Example

{h} {rh Aed (R, e
2,3) | {{{h e} {rh[{RL] 21}]}

3.4 | (AL} Ak
4,5) {{h,t,r, W], ¢[1}]}
,6) {{htrs b T3}

385

Idea

Represent partition of U/ as directed forest:

o For welU areference Flu tothe fatheris maintained;
s Rootsareelements « with Flu] =u.

Single trees represent equivalence classes.
Their roots are their representatives ...

387

Caveat

In order to find something, we must assume that variables /
addresses always receive a value before they are accessed.

Complexity

we have:
O(# edges + # Vars) calls of union®
O(# edges + # Vars) calls of find
O(# Vars) calls of union

—— We require efficient Union-Find data-structure ...

386

» find (7, u) follows the father references.
> union (m,u1,uz) re-directs the father reference of one

388

i ...

(D) @ _5D
N ﬁ
© @ ®

[o[t]2]3]4]s]6]()

1[1]3[1{4)7]5{7)

389

S
N VN
L

[o[1]2]3]4]5]6]7]

[fefs]e]7]7]s]7]

393

The Costs

union 1 O(1)
find : O(depth(w))

Strategy to Avoid Deep Trees

e Put the smaller tree below the bigger !

¢ Use findto compress paths ...

391

D
2
3)
(\2/) 7
@ &
@ ®
01 3 5|6

397

398

Remark

e By this data-structure, nunion- und m find operations
require time O(n + m - a(n, n))
// o theinverse Ackermann-function.

e For our application, we only must modify union such that
roots are from Vars whenever possible.

e This modification does not increase the asymptotic run-time.

Summary

The analysis is extremely fast — but may not find very much.

400

Robert Endre Tarjan, Princeton

399

L
Remark l/\ ® Q

e By this data-structure, nunion- und m find operations
require time O(n + m - a(n,n))
// « theinverse Ackermann-function.

e For our application, we only must modify union such that
roots are from Vars whenever possible.

e This modification does not increase the asymptotic run-time.

Summary

The analysis is extremely fast — but may not find very much.

400

Background 3: Fixpoint Algorithms

Consider: xi I filer,.. @), i=1,...,n

Observation

RR-lteration is inefficient:

> We require a complete round in order to detect termination.

> If in some round, the value of just one unknown is changed,
then we still re-compute all.

» The practical run-time depends on the ordering on the
variables.

401

Idea: Worklist Iteration

Ifan unknown =; changes its value, we re-compute all
unknowns which depend on ;. Technically, we require:

> thelists Dep f; of unknowns which are accessed during
evaluation of f;. From that, we compute the lists:

]{1’1] = {SL’j | T € D(ip fJ}
i.e.,alistofall z; which depend on the value of =, ;

» thevalues D[z;] ofthe z; whereinitially Dlz;]= 1 ;

> alist W of all unknowns whose value must be
recomputed ...

402

Background 3: Fixpoint Algorithms

Consider: i 3 fi(zr,.. ., x), i=1....n

Observation

RR-lteration is inefficient:

> Woe require a complete round in order to detect termination.

> If in some round, the value of just one unknown is changed,
then we still re-compute all.

» The practical run-time depends on the ordering on the

variables.
401
The Algorithm
W = [z1,...,Za);
while (W # []) {
x; = extractW;
t = fieval;
if (¢ % Dli]) {
D[jﬁl] = D[ﬁfi}ut;
W = append [I[z;] W;
}
}
where: eval z; = D[zj]

403

Example

I3 ﬁiﬂl,l“z‘D

Example

{a} Uzs
x3 N {a,b}
z1 U {ec}

=
()
IR

L]

€T {’.,8'3}

x3 | {x1,z2}

404

| Dlei] | Dlws] | DIzl || W

0 0 Ty |, T2, T3
{a}] (2273
(| 0 @
{a}] {a,c} (1], 22
{a,c} | O |{a,c} (z3], 72
{a,c} | O |{a,c})
(e} | {a} | {00}]

405

Example
z 2 {a} Uz | Dlzy] | Dlz] | DIzl | W
xy 2 x3M{a,b}
m m V] Xy, Tg,T3
x3 2 x1U{c}
{U} w m Io|, T3
([0 | 0 =]
T 0 O [0 e
I {x3} {a, c} 0 {a,c} , To
T2 1] {(]7 ‘-:} m {U., ('Z} @
x3 | {x1, T2} {a,c} | {a} |{a,c} [
405

Theorem

Let = 2O fi(z1,...,2,), i=1,...,n denote aconstraint
system over the complete lattice D of height 7 > 0.

(1) The algorithm terminates after at most % - N evaluations
of right-hand sides where

mn

N =Y (1+#(Depf)) /| size of the system

i=1

(2) The algorithm returns a solution.
If all |f1- are monotonic, it returns the least one.

406

Proof

Ad (1):

Every unknown z; may change its value at most & times.
Each time, the list I[z;] isaddedto W .
Thus, the total number of evaluations is:

< nt i (b # ()
= n+h- 30 #(I[x])

= n+h- 35 # (Dep fi)
< h-3T (L4 4 (Dep fi)
= h-N

407

Ad (2):

We only consider the assertion for monotonic f; .
Let D, denote the least solution. We show:

® Dlx;| 2 fieval
¢ On termination, the algo returns a solution

- x; e W (at exit of the loop body)

408

Proof

Ad (1):

Every unknown z;

may change its value at most
is added to

Each time, the list [[z;]

Thus, the total number of evaluations is:

IA

IA

n+ 3l (h-# (I[z:]))
n+h-> #([z;])
n+h-3 # (Dep fi)
h- 37 (L+ # (Dep f)
h -

N

407

W

h

times.

