# Script generated by TTT

Title: Seidl: Programmoptimierung (26.11.2015)

Date: Thu Nov 26 08:35:22 CET 2015

Duration: 90:23 min

Pages: 30

## Alias Analysis 3. Idea

Determine one equivalence relation  $\equiv$  on variables x and memory accesses  $y[\ ]$  with  $s_1 \equiv s_2$  whenever  $s_1, s_2$  may contain the same address at some  $u_1, u_2$ 

## ... in the Simple Example



## Discussion

- The resulting constraint system has size  $O(k \cdot n)$  for k abstract addresses and n edges.
- The number of necessary iterations is O(k(k + #Vars)) ...
- The computed information is perhaps still too zu precise !!?
- In order to prove correctness of a solution  $s^{\sharp} \in States^{\sharp}$  we show:



379

### Discussion

- → We compute a single information fo the whole program.
- The computation of this information maintains partitions  $\pi = \{P_1, \dots, P_m\}.$
- $\rightarrow$  Individual sets  $P_i$  are identified by means of representatives  $p_i \in P_i$ .
- $\rightarrow$  The operations on a partition  $\pi$  are:

- $\rightarrow$  If  $x_1, x_2 \in Vars$  are equivalent, then also  $x_1[\ ]$  and  $x_2[\ ]$  must be equivalent.
- ightarrow If  $P_i \cap Vars \neq \emptyset$ , then we choose  $p_i \in Vars$ . Then we can apply union recursively :



382

... in the Simple Example

$$\begin{array}{c} 0 \\ y = \text{new}(); \\ 1 \\ y = \text{new}(); \\ 2 \\ x[0] = y; \\ 3 \\ y[1] = 7; \end{array} \\ \begin{array}{c} \{\{x\}, \{y\}, \{x[\,]\}, \{y[\,]\}\} \\ (0,1) \\ \{\{x\}, \{y\}, \{x[\,]\}, \{y[\,]\}\} \\ (1,2) \\ \{\{x\}, \{y\}, \{x[\,]\}, \{y[\,]\}\} \\ (2,3) \\ \{\{x\}, \{y, x[\,]\}, \{y[\,]\}\} \\ (3,4) \\ \{\{x\}, \{y, x[\,]\}, \{y[\,]\}\} \end{array} \\ \end{array}$$

The analysis iterates over all edges once:

$$\begin{split} \pi &= \{\{x\}, \{x[\ ]\} \mid x \in \mathit{Vars}\}; \\ \text{forall} \quad & \pmb{k} = (\_, lab, \_) \quad \text{do} \quad \pi = [\![lab]\!]^\sharp \, \pi; \end{split}$$

where:

$$\begin{split} & \llbracket x = y; \rrbracket^{\sharp} \, \pi &= & \mathsf{union}^{*} \, (\pi, x, y) \\ & \llbracket x = y[e]; \rrbracket^{\sharp} \, \pi &= & \mathsf{union}^{*} \, (\pi, x, y[\ ]) \\ & \llbracket y[e] = x; \rrbracket^{\sharp} \, \pi &= & \mathsf{union}^{*} \, (\pi, x, y[\ ]) \\ & \llbracket lab \rrbracket^{\sharp} \, \pi &= & \pi & \mathsf{otherwise} \end{split}$$

383

... in the More Complex Example





## ... in the More Complex Example



|        | $\{\{h\},\{r\},\{t\},\{h[\ ]\},\{t[\ ]\}\}$                                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------|
| (2, 3) | $\{[h,t], \{r\}, [h[],t[]]\}$                                                                                     |
| (3, 4) | $\{ \boxed{\{h,t,h[\ ],t[\ ]\}},\{r\} \}$                                                                         |
| (4, 5) | $\{ \hspace{-0.5cm} \big[ \hspace{-0.5cm} \{ h,t,r,h[\hspace{0.1cm}],t[\hspace{0.1cm}] \} \hspace{-0.5cm} \big] $ |
| (5, 6) | $\{\{h,t,r,h[\ ],t[\ ]\}\}$                                                                                       |

385

### Idea

Represent partition of U as directed forest:

- For  $u \in U$  a reference F[u] to the father is maintained;
- Roots are elements u with F[u] = u.

Single trees represent equivalence classes.

Their roots are their representatives ...

## Caveat

In order to find something, we must assume that variables / addresses always receive a value before they are accessed.

# Complexity

we have:

 $\mathcal{O}(\# \ edges + \# \ Vars)$  calls of union\*  $\mathcal{O}(\# \ edges + \# \ Vars)$  calls of find  $\mathcal{O}(\# \ Vars)$  calls of union

→ We require efficient Union-Find data-structure ...



- $\rightarrow$  find  $(\pi, u)$  follows the father references.
- $\rightarrow$  union  $(\pi, u_1, u_2)$  re-directs the father reference of one  $u_i$  ...









389





# The Costs

union :  $\mathcal{O}(1)$ 

find :  $\mathcal{O}(depth(\pi))$ 

# Strategy to Avoid Deep Trees

- Put the smaller tree below the bigger!
- Use find to compress paths ...



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 5 | 1 | 3 | 1 | 7 | 7 | 5 | 3 |



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 5 | 1 | 3 | 1 | 1 | 7 | 1 | 1 |

398

### Remark

- By this data-structure, n union- und m find operations require time  $\mathcal{O}(n+m\cdot\alpha(n,n))$ 
  - //  $\alpha$  the inverse Ackermann-function.
- For our application, we only must modify union such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time.

## Summary

The analysis is extremely fast — but may not find very much.



Robert Endre Tarjan, Princeton

399

## Remark



- By this data-structure, n union- und m find operations require time  $\mathcal{O}(n+m\cdot\alpha(n,n))$ 
  - //  $\alpha$  the inverse Ackermann-function.
- For our application, we only must modify union such that roots are from *Vars* whenever possible.
- This modification does not increase the asymptotic run-time.

## Summary

The analysis is extremely fast — but may not find very much.

# Background 3: Fixpoint Algorithms

Consider:  $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$ 

### Observation

#### RR-Iteration is inefficient:

- → We require a complete round in order to detect termination.
- → If in some round, the value of just one unknown is changed, then we still re-compute all.
- → The practical run-time depends on the ordering on the variables.

401

## Idea: Worklist Iteration

If an unknown  $x_i$  changes its value, we re-compute all unknowns which depend on  $x_i$ . Technically, we require:

 $\rightarrow$  the lists  $Dep f_i$  of unknowns which are accessed during evaluation of  $f_i$ . From that, we compute the lists:

$$I[x_i] = \{x_j \mid x_i \in Dep f_j\}$$

i.e., a list of all  $x_j$  which depend on the value of  $x_i$ ;

- ightarrow the values  $D[x_i]$  of the  $x_i$  where initially  $D[x_i] = \bot$ ;
- ightarrow a list W of all unknowns whose value must be recomputed ...

# Background 3: Fixpoint Algorithms

Consider:  $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$ 

### Observation

#### RR-Iteration is inefficient:

- → We require a complete round in order to detect termination.
- If in some round, the value of just one unknown is changed, then we still re-compute all.
- → The practical run-time depends on the ordering on the variables.

401

### The Algorithm

```
W = [x_1, \dots, x_n]; while (W \neq [\,]) { x_i = \operatorname{extract} W; t = f_i \operatorname{eval}; if (t \not\sqsubseteq D[x_i]) { D[x_i] = D[x_i] \sqcup t; W = \operatorname{append} I[x_i] W; } } \} where : \operatorname{eval} x_j = D[x_j]
```

# Example



|       | I              |
|-------|----------------|
| $x_1$ | $\{x_3\}$      |
| $x_2$ | Ø              |
| $x_3$ | $\{x_1, x_2\}$ |
|       | $\overline{}$  |

404

## Example

$$x_1 \supseteq \{a\} \cup x_3$$
 $x_2 \supseteq x_3 \cap \{a, b\}$ 
 $x_3 \supseteq x_1 \cup \{c\}$ 



| $D[x_1]$                | $D[x_2]$     | $D[x_3]$                | W               |
|-------------------------|--------------|-------------------------|-----------------|
| Ø                       | Ø            | Ø                       | $x_1, x_2, x_3$ |
| { <b>a</b> }            | Ø            | Ø                       | $x_{2}, x_{3}$  |
| { <b>a</b> }            | Ø            | Ø                       | $x_3$           |
| { <b>a</b> }            | Ø            | { <b>a</b> , <b>c</b> } | $x_1, x_2$      |
| { <b>a</b> , <b>c</b> } | Ø            | { <b>a</b> , <b>c</b> } | $x_3, x_2$      |
| { <b>a</b> , <b>c</b> } | Ø            | { <i>a</i> , <i>c</i> } | $x_2$           |
| $\{a,c\}$               | { <b>a</b> } | { <i>a</i> , <i>c</i> } | []              |

## Example

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

|       | I             |
|-------|---------------|
| $x_1$ | $\{x_3\}$     |
| $x_2$ | Ø             |
| $x_3$ | $\{x_1,x_2\}$ |

| $D[x_1]$                | $D[x_2]$     | $D[x_3]$                | W               |
|-------------------------|--------------|-------------------------|-----------------|
| Ø                       | Ø            | Ø                       | $x_1, x_2, x_3$ |
| { <b>a</b> }            | Ø            | Ø                       | $x_2, x_3$      |
| $\{aalgangle a$         | Ø            | Ø                       | $x_3$           |
| $\{aa$                  | Ø            | $\{a,c\}$               | $x_1, x_2$      |
| { <b>a</b> , <b>c</b> } | Ø            | { <b>a</b> , <b>c</b> } | $x_3, x_2$      |
| $\{a,c\}$               | Ø            | { <b>a</b> , <b>c</b> } | $x_2$           |
| $\{a,c\}$               | { <b>a</b> } | $\{a,c\}$               | []              |

405

## Theorem

Let  $x_i \supseteq f_i(x_1, \dots, x_n)$ ,  $i = 1, \dots, n$  denote a constraint system over the complete lattice  $\mathbb D$  of height h > 0.

(1) The algorithm terminates after at most  $h\cdot N$  evaluations of right-hand sides where

$$N = \sum_{i=1}^{n} (1 + \# (Dep f_i))$$
 // size of the system

(2) The algorithm returns a solution.

If all  $f_i$  are monotonic, it returns the least one.

### Proof

### Ad (1):

Every unknown  $x_i$  may change its value at most h times.

Each time, the list  $I[x_i]$  is added to W.

Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$

407

### Ad (2):

We only consider the assertion for monotonic  $f_i$ .

Let  $D_0$  denote the least solution. We show:

- $D_0[x_i] \supseteq D[x_i]$  (all the time)
- $D[x_i] \not\supseteq f_i \text{ eval} \implies x_i \in W$  (at exit of the loop body)
- On termination, the algo returns a solution

## Proof

### Ad (1):

Every unknown  $x_i$  may change its value at most h times.

Each time, the list  $I[x_i]$  is added to W.

Thus, the total number of evaluations is:

$$\leq n + \sum_{i=1}^{n} (h \cdot \# (I[x_i]))$$

$$= n + h \cdot \sum_{i=1}^{n} \# (I[x_i])$$

$$= n + h \cdot \sum_{i=1}^{n} \# (Dep f_i)$$

$$\leq h \cdot \sum_{i=1}^{n} (1 + \# (Dep f_i))$$

$$= h \cdot N$$