# Script generated by TTT

Title: Seidl: Programmoptimierung (04.11.2015)

Date: Wed Nov 04 10:12:09 CET 2015

Duration: 83:37 min

Pages: 60

Example:  $\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$ 

$$x_1 \supseteq \overline{\{a\} \cup x_3}$$

$$x_2 \supseteq \overline{x_3 \cap \{a, b\}}$$

$$x_3 \supseteq \overline{x_1 \cup \{c\}}$$

Wanted: minimally small solution for:





where all  $f_i: \mathbb{D}^n \to \mathbb{D}$  are monotonic.

Idea

F (T)



• Consider  $F: \mathbb{D}^n \to \mathbb{D}^n$  where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with  $y_i = f_i(x_1, ..., x_n)$ .

- If all  $f_i$  are monotonic, then also F.
- We successively approximate a solution. We construct:

$$\perp$$
,  $F \perp$ ,  $F^2 \perp$ ,  $F^3 \perp$ , ...

Hope: We eventually reach a solution ... ???

96

Example:  $\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$ 

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

|       | 0 | 1 | 2 | 3 | 4 |
|-------|---|---|---|---|---|
| $x_1$ | Ø | a |   |   |   |
| $x_2$ | Ø | 8 |   |   |   |
| $x_3$ | Ø | ٥ |   |   |   |

Example:  $\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$ 

$$\mathbb{D} = 2^{\{a,b,c\}}, \quad \sqsubseteq = \subseteq$$

$$x_1 \supseteq \{ a \} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

|       | 0 | 1            | 2   | 3 | 4 |
|-------|---|--------------|-----|---|---|
| $x_1$ | Ø | { <b>a</b> } | 90  |   |   |
| $x_2$ | Ø | Ø            | ×   |   |   |
| $x_3$ | Ø | { <i>c</i> } | aic |   |   |

Example: 
$$\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$$

$$x_1 \supseteq \{a\} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

Example: 
$$\mathbb{D} = 2^{\{a,b,c\}}, \subseteq = \subseteq$$

$$x_1 \supseteq \{ \mathbf{a} \} \cup x_3$$

$$x_2 \supseteq x_3 \cap \{a, b\}$$

$$x_3 \supseteq x_1 \cup \{c\}$$

The Iteration:

|       | 0 | 1            | 2                       | 3                 | 4 |
|-------|---|--------------|-------------------------|-------------------|---|
| $x_1$ | Ø | { <b>a</b> } | { <b>a</b> , <b>c</b> } | {n,c}             |   |
| $x_2$ | Ø | Ø            | Ø                       | { <del>a</del> }- |   |
| $x_3$ | Ø | { <i>c</i> } | { <b>a</b> , <b>c</b> } | €aj€}             |   |

101

## Theorem

•  $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$  form an ascending chain :

$$\perp$$
  $\sqsubseteq$   $F \perp$   $\sqsubseteq$   $F^2 \perp$   $\sqsubseteq$  ...

- If  $F^k \perp = F^{k+1} \perp$ , a solution is obtained which is the least one.
- If all ascending chains are finite, such a *k* always exists.

## Theorem

•  $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$  form an ascending chain :

$$\perp$$
  $\sqsubseteq$   $F \perp$   $\sqsubseteq$   $F^2 \perp$   $\sqsubseteq$  ...

- If  $F^k \perp = F^{k+1} \perp$ , a solution is obtained which is the least one
- If all ascending chains are finite, such a k always exists.

## Proof

The first claim follows by complete induction:

**Foundation:**  $F^0 \perp = \perp \sqsubseteq F^1 \perp$ .

1

104

### Theorem

•  $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$  form an ascending chain :

$$\perp$$
  $\sqsubseteq$   $F \perp$   $\sqsubseteq$   $F^2 \perp$   $\sqsubseteq$  ...

- If  $F^k \perp = F^{k+1} \perp$ , a solution is obtained which is the least one.
- If all ascending chains are finite, such a k always exists.

## Proof

The first claim follows by complete induction:

Foundation:  $F^0 \perp = \perp \sqsubseteq F^1 \perp$ .

Step: Assume  $F^{i-1} \perp = F F^{i-1} \perp = F^{i+1} \perp$  Then  $F^i \perp = F F^{i-1} \perp = F^{i+1} \perp$ 

since F monotonic.

105

**Step:** Assume  $F^{i-1} \underline{\perp} \sqsubseteq F^i \underline{\perp}$ . Then

$$F^{i} \underline{\perp} = F(F^{i-1} \underline{\perp}) \sqsubseteq F(F^{i} \underline{\perp}) = F^{i+1} \underline{\perp}$$

since F monotonic.

#### Theorem

•  $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$  form an ascending chain :

 $\bot$   $\sqsubseteq$   $F\bot$   $\sqsubseteq$   $F^2\bot$   $\sqsubseteq$  ...

- If  $F^k \perp = F^{k+1} \perp$ , a solution is obtained which is the least one
- If all ascending chains are finite, such a k always exists.

## Proof

The first claim follows by complete induction:

Foundation:  $F^0 \perp = \perp \sqsubseteq F^1 \perp$ .

104

**Step:** Assume  $F^{i-1} \perp \sqsubseteq F^i \perp$ . Then

$$F^{i} \underline{\perp} = F(F^{i-1} \underline{\perp}) \sqsubseteq F(F^{i} \underline{\perp}) = F^{i+1} \underline{\perp}$$

since F monotonic.

## Conclusion

If D is finite, a solution can be found which is definitely the least.

### Question

What, if  $\mathbb{D}$  is not finite ???

### Theorem

•  $\underline{\perp}, F \underline{\perp}, F^2 \underline{\perp}, \dots$  form an ascending chain :

 $\bot \quad \sqsubseteq \quad F\bot \quad \sqsubseteq \quad F^2\bot \quad \sqsubseteq \quad \dots$ 

- If  $F^k \perp = F^{k+1} \perp$ , a solution is obtained which is the least one.
- If all ascending chains are finite, such a k always exists



103

### Theorem

### Knaster - Tarski

Assume  $\mathbb{D}$  is a complete lattice. Then every monotonic function  $f:\mathbb{D}\to\mathbb{D}$  has a least fixpoint  $d_0\in\mathbb{D}$ .

Let  $P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$ 

Then  $d_0 = \prod P$ .



Bronisław Knester (1893-1980), tepology

### Theorem

## Knaster – Tarski

Assume  $\mathbb{D}$  is a complete lattice. Then every monotonic function  $f: \mathbb{D} \to \mathbb{D}$  has a least fixpoint  $d_0 \in \mathbb{D}$ .

Let  $P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$ 

Then  $d_0 = \prod P$ .

# Proof

(1) 
$$d_0 \in P$$
:

do Ifd. e. Efdo do is Rasa

### Theorem

## Knaster - Tarski

Assume  $\mathbb{D}$  is a complete lattice. Then every monotonic function  $f: \mathbb{D} \to \mathbb{D}$  has a least fixpoint  $d_0 \in \mathbb{D}$ .

Let 
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$

Let 
$$P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$$
  $\times \supseteq f \times$ 

Then 
$$d_0 = \prod P$$
.

107

### Theorem

## Knaster - Tarski

Assume  $\mathbb{D}$  is a complete lattice. Then every monotonic function  $f: \mathbb{D} \to \mathbb{D}$  has a least fixpoint  $d_0 \in \mathbb{D}$ .

Let  $P = \{d \in \mathbb{D} \mid f d \sqsubseteq d\}.$ 

Then  $d_0 = \prod P$ .

## Proof

(1) 
$$d_0 \in P$$
:

 $f d_0 \sqsubseteq f d \sqsubseteq d$  for all  $d \in P$ 

 $\implies f d_0$  is a lower bound of P

 $\longrightarrow$   $f d_0 \sqsubseteq d_0$  since  $d_0 = \prod P$ 

 $\longrightarrow$   $d_0 \in P$ 



111

(2) 
$$f d_0 = d_0$$
:  
 $f d_0 \sqsubseteq d_0$  by (1)  
 $\Longrightarrow f(f d_0) \sqsubseteq f d_0$  by monotonicity of  $f$   
 $\Longrightarrow f d_0 \in P$ 

 $\implies$   $d_0 \sqsubseteq f d_0$  and the claim follows.

(3)  $d_0$  is least fixpoint:

(2) 
$$f d_0 = d_0$$
:

 $f d_0 \sqsubseteq d_0 \text{ by (1)}$ 
 $f(f d_0) \sqsubseteq f d_0 \text{ by monotonicity of } f$ 
 $f d_0 \in P$ 
 $f d_0 \in P$ 

(3)  $d_0$  is least fixpoint:

113

(3)  $d_0$  is least fixpoint:  $f d_1 = d_1 \sqsubseteq d_1 \quad \text{an other fixpoint}$   $\Longrightarrow \quad d_1 \in P$   $\Longrightarrow \quad d_0 \sqsubseteq d_1$ 

#### Remark

The least fixpoint  $d_0$  is in P and a lower bound.

 $\implies$   $d_0$  is the least value x with  $x \supseteq f x$ 

115

# Remark

The least fixpoint  $d_0$  is in P and a lower bound.

 $\longrightarrow$   $d_0$  is the least value x with  $x \supseteq f x$ 

# Application

 $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$ Assume

is a system of constraints where all  $f_i: \mathbb{D}^n \to \mathbb{D}$  are monotonic.

 $\implies$  least solution of(\*)  $\implies$  least fixpoint of F.

#### Remark

The least fixpoint  $d_0$  is in P and a lower bound.

 $\longrightarrow$   $d_0$  is the least value x with  $x \supseteq f x$ 

# **Application**

 $x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$  (\*) Assume

is a system of constraints where all  $f_i: \mathbb{D}^n \to \mathbb{D}$  are monotonic.

116

### Remark

The least fixpoint  $d_0$  is in P and a lower bound.

 $\longrightarrow$   $d_0$  is the least value x with  $x \supseteq f x$ 

## **Application**

Assume  $x_i \supseteq f_i(x_1, \ldots, x_n), \quad i = 1, \ldots, n$ 

is a system of constraints where all  $(f_i)$   $\mathbb{D}^n \to \mathbb{D}$  are monotonic.

Example 1 
$$\mathbb{D} = 2^U$$
,  $f x = x \cap a \cup b$ 

Example 1 
$$\mathbb{D} = 2^U$$
,  $f x = x \cap a \cup b$ 

$$\begin{array}{c|cccc}
f & f^k \perp & f^k \top \\
\hline
0 & \emptyset & U
\end{array}$$

118

119

$$\begin{array}{c|c}
x = x \cap a \cup b \\
 & \searrow \\
\hline
f^k \perp & f^k \top \\
\emptyset & U \\
b & a \cup b
\end{array}$$

$$\begin{array}{c|c}
M \cap Q \cup 5 \\
= Q \cup 5$$

Example 1  $\mathbb{D} = 2^U$ ,  $f x = x \cap a \cup b$ 

| f | $f^k \bot$ | $f^k \top$ |
|---|------------|------------|
| 0 | Ø          | U          |
| 1 | b          | $a \cup b$ |
| 2 | b          | $a \cup b$ |

Example 2  $\mathbb{D} = \mathbb{N} \cup \{\infty\}$ 

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad {\color{red} \sqsubseteq} \quad i+1 = f^{i+1} \perp$$

- Ordinary iteration will never reach a fixpoint!
- Sometimes, transfinite iteration is needed.

Example 1  $\mathbb{D} = 2^U$ ,  $f x = x \cap a \cup b$ 

| f | $f^k \bot$ | $f^k \top$ |
|---|------------|------------|
| 0 | Ø          | U          |
| 1 | b          | $a \cup b$ |
| 2 | b          | $a \cup b$ |
|   | 1          | 0 Ø 1 b    |

Example 2  $\mathbb{D} = \mathbb{N} \cup \{\infty\}$ 

Assume f x = x + 1. Then

$$f^i \perp = f^i \, 0 = i \quad \square \quad i+1 = f^{i+1} \perp$$

- Ordinary iteration will never reach a fixpoint!
- → Sometimes, transfinite iteration is needed.

123

### Conclusion

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

### Conclusion

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides.

124

### Conclusion

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

# Example



|   | 1                     | 2                     |
|---|-----------------------|-----------------------|
| 0 | Ø                     | Ø                     |
| 1 | $\{1, x > 1, x - 1\}$ | {1}                   |
| 2 | Expr                  | $\{1, x > 1, x - 1\}$ |
| 3 | $\{1, x > 1, x - 1\}$ | $\{1, x > 1, x - 1\}$ |
| 4 | {1}                   | {1}                   |
| 5 | Expr                  | $\{1, x > 1, x - 1\}$ |

## Conclusion

Systems of inequations can be solved through fixpoint iteration, i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

# Example



|   | 1                     | 2                     | 3                     | 4              | 5     |
|---|-----------------------|-----------------------|-----------------------|----------------|-------|
| 0 | Ø                     | Ø                     | Ø                     | Ø              |       |
| 1 | $\{1, x > 1, x - 1\}$ | {1}                   | {1}                   | {1}            |       |
| 2 | Expr                  | $\{1, x > 1, x - 1\}$ | $\{1,x>1\}$           | $\{1, x > 1\}$ |       |
| 3 | $\{1, x > 1, x - 1\}$ | $\{1, x > 1, x - 1\}$ | $\{1, x > 1, x - 1\}$ | $\{1, x > 1\}$ | ditto |
| 4 | {1}                   | {1}                   | {1}                   | {1}            |       |
| 5 | Expr                  | $\{1, x > 1, x - 1\}$ | $\{1, x > 1\}$        | $\{1, x > 1\}$ |       |

131

# Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

## Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

132

# Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

# Example



|   |                | (\$51 |
|---|----------------|-------|
|   | 1              | '     |
| 0 | Ø              |       |
| 1 | {1}            |       |
| 2 | $\{1,x>1\}$    |       |
| 3 | $\{1,x>1\}$    |       |
| 4 | {1}            |       |
| 5 | $\{1, x > 1\}$ |       |

= { 1]

## Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

# Example



133

# Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

# Example





## Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

# Example



|   | 1              |
|---|----------------|
| 0 | Ø              |
| 1 | {1}            |
| 2 | $\{1, x > 1\}$ |
| 3 | $\{1,x>1\}$    |
| 4 | {1}            |
| 5 | $\{1,x>1\}$    |

134

## Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

# Example



|   | 1           |
|---|-------------|
| 0 | Ø           |
| 1 | {1}         |
| 2 | $\{1,x>1\}$ |
| 3 | $\{1,x>1\}$ |
| 4 | {1}         |
| 5 | $\{1,x>1\}$ |

133

## Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns.

# Example



|   | 1           | 2     |
|---|-------------|-------|
| 0 | Ø           |       |
| 1 | {1}         |       |
| 2 | $\{1,x>1\}$ |       |
| 3 | $\{1,x>1\}$ | ditto |
| 4 | {1}         |       |
| 5 | $\{1,x>1\}$ |       |

135

### Correctness

Assume  $y_i^{(d)}$  is the *i*-th component of  $F^d \perp$ .

Assume  $x_i^{(d)}$  is the value of  $x_i$  after the d-th RR-iteration.

The code for Round Robin Iteration in Java looks as follows:

```
\begin{split} &\text{for } (i=1; i \leq n; i++) \; x_i = \bot; \\ &\text{do } \{ \\ & \quad finished = \text{true}; \\ &\text{for } (i=1; i \leq n; i++) \; \{ \\ & \quad new = f_i(x_1, \ldots, x_n); \\ &\text{if } (!(x_i \; \sqsupseteq \; new)) \; \{ \\ & \quad finished = \text{false}; \\ & \quad x_i = x_i \sqcup new; \\ & \quad \} \\ &\text{\} while } (!finished); \end{split}
```

136

## Correctness

Assume  $y_i^{(d)}$  is the i-th component of  $F^d \perp$ . Assume  $x_i^{(d)}$  is the value of  $x_i$  after the i-th RR-iteration.

One proves:

$$(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)}.$$

### Correctness

Assume  $y_i^{(d)}$  is the i-th component of  $F^d \perp$ .

Assume  $x_i^{(d)}$  is the value of  $x_i$  after the i-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)}.$
- (2)  $x_i^{(d)} \sqsubseteq z_i$  for every solution  $(z_1, \ldots, z_n)$ .

139

#### Correctness

Assume  $y_i^{(d)}$  is the *i*-th component of  $F^d \perp$ .

Assume  $x_i^{(d)}$  is the value of  $x_i$  after the *i*-th RR-iteration.

One proves: vind on of

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)}.$
- (2)  $x_i^{(d)} \sqsubseteq z_i$  for every solution  $(z_1, \ldots, z_n)$ .
- (3) If RR-iteration terminates after d rounds, then  $(x_1^{(d)}, \dots, x_n^{(d)})$  is a solution.

## Caveat

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

141

The code for Round Robin Iteration in Java looks as follows:

```
for (i=1;i\leq n;i++) x_i=\bot; do { finished=\text{true}; for (i=1;i\leq n;i++) { finished=f_i(x_1,\ldots,x_n); finished=false; finished=fals
```

# Correctness

Assume  $y_i^{(d)}$  is the i-th component of  $F^d \perp$ . Assume  $x_i^{(d)}$  is the value of  $x_i$  after the i-th RR-iteration.

One proves:

- $(1) \quad y_i^{(d)} \sqsubseteq x_i^{(d)}.$
- (2)  $x_i^{(d)} \sqsubseteq z_i$  for every solution  $(z_1, \ldots, z_n)$ .
- (3) If RR-iteration terminates after d rounds, then  $(x_1^{(d)},\dots,x_n^{(d)})$  is a solution.

140

## Caveat

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

#### Good:

- $\rightarrow$  *u* before v, if  $u \rightarrow^* v$ ;
- → entry condition before loop body.

## Caveat

The efficiency of RR-iteration depends on the ordering of the unknowns !!!

141

## Good:

$$\begin{array}{c} 0\\ y=1;\\ \\ 1\\ \hline \\ Pos(x>1)\\ \hline \\ 2\\ y=x*y;\\ \hline \\ 3\\ x=x-1\\ \hline \\ 4\\ \end{array}$$

## Bad:

$$y = 1;$$

$$y = 1;$$

$$y = 1;$$

$$y = x * y;$$

$$y = x * y;$$

$$y = x + 1;$$

# Inefficient Round Robin Iteration



145

... end of background on: Complete Lattices

# Inefficient Round Robin Iteration



|   | 1                 | 2                 | 3              | 4     |
|---|-------------------|-------------------|----------------|-------|
| 0 | Expr              | $\{1, x > 1\}$    | $\{1, x > 1\}$ |       |
| 1 | {1}               | {1}               | {1}            |       |
| 2 | $\{1, x-1, x>1\}$ | $\{1, x-1, x>1\}$ | $\{1, x > 1\}$ | ditto |
| 3 | Expr              | $\{1, x > 1\}$    | $\{1, x > 1\}$ |       |
| 4 | {1}               | {1}               | {1}            |       |
| 5 | Ø                 | Ø                 | Ø              |       |

significantly less efficient!

149

... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ????

... end of background on: Complete Lattices

# Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice  $\mathbb{D}$ , consider systems:

$$\mathcal{I}[start] \supseteq d_0$$

$$\mathcal{I}[v] \supseteq [\![k]\!]^{\sharp} (\mathcal{I}[\underline{u}]) \qquad k = (\underline{u}, \underline{\ }, \underline{v}) \text{ edge}$$

where  $d_0 \in \mathbb{D}$  and all  $[\![k]\!]^\sharp : \mathbb{D} \to \mathbb{D}$  are monotonic ...

152