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3
Wanted:  mipimally small solution for: l

xid

where all

e Consider F:D*— D" where
F(Ila---axn):(yl-:----:yn) Wlth Ui =
e Ifall f; are monotonic,then also F.

o We successively approximate a solution. We construct:

Example:

The lteration:

1:':17---7IIL)7 i=1

n

3y

i % D are monotonic.
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fi(l’la---,

Hope: We eventually reach a solution ... 7?7
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D =2fbd C=cC

71 2 {a}Um,

T2 D z3zN{a,b}

T3 2 zlu{c}
| Jol ] 2| 3 | 4]
n|[0] %
Ia m Qé
3| 0| €
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Example:

The lteration:

Example:

The lteration:

D=2t C=cC
ry 2 {a}Uuxs
x2 2 z3N{a,b}
I 2 CElLJ{C}

[ ol i 2[3 [4]
|| 0| {a} O'\{a«
xp |0 0 )Z
z3 || 0| {c} |

99

D= Q[cl,b,u}' E — (;
I 2 {U} U g
xz 2 x3N{a,b}
Ty 2 1’1U{('1}

[ Jofvl 23 [4]
zy || 0| {a} | {a,c} | {a,c} | ditto
zg |0 0 0 {a}
z3 | 0| {c} | {a,c} | {a,c}
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Example:

D= 2{(!‘&6}‘ C=C

r 2 {(}}Uffg
za 2 x3N{a,b}
T 2 s} U{C}
The lteration:
HUEERERES
x || 0| {a} | {a,c} | f,S
w0 0| o | B
xy || 0] {c} | {a,c} ‘Fﬂ{ﬁ-}—

Theorem

. £aF£aF2£1"'
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form an ascending chain :

1l C FL C F*1 C

o If FFL=F"11,

one.

a solution is obtained which is the least

e If all ascending chains are finite, sucha & always exists.
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Theorem

e 1., F1,F?1,. .. forman ascending chain :

L C FL C F*L C

e If FF1 =FF'1, asolutionis obtained which is the least
one.

e If all ascending chains are finite, sucha % always exists.

Proof

The first claim follows by complete induction:
Foundation: F°1 = 1 C F' L. '\/
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Theorem

e 1, F1,F?1,... forman ascending chain:
L C FL C FL C

e |If FFL=FF'1 asolutionis obtained which is the least
one.

e If all ascending chains are finite, sucha % always exists.

Proof
The first claim follows by complete induction:

Foundation: F° 1 = | C F' .
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Step: Assume r@ Then
F)“;:F @e :Fi+1£

since F  monotonic.
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Step: Assume F'1 C F'1. Then
FiézF(Fi_lé) EF(F1£):F1+1£

since F  monotonic.
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Theorem Theorem

e 1., F1,F?1,. .. forman ascending chain : e | F1,F?1 form an ascending chain :
L C FL C F'L C .. 1l C FL C F*L C
e If FF1 =FF'1, asolutionis obtained which is the least e If F¥1 =F"'1, asolutionis obtained which is the least
one. one.

e If all ascending chains are finite, sucha % always exists. e Ifall ascending chains are finite, sucha & always exi
]
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Proof “ o . 7:'O_L ,L c & \/
The first claim follows by complete induction: {: 7 , L .:rF = 1 ,L C

< - Se oA =
Foundation: FOL = 1 C F' L. '_f: J_ = T ["F ¢ L)CT Eof(
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Step: Assume F"'1 C F'L. Then Theorem Knaster — Tarski
FiL=F(FTLCFFL=F"1 Assume D is a complete lattice. Then every monotonic function

since F monotonic. f:D—D has aleast fixpoint dy € .

Llet P={deD|fdC d}.
Then dy=[1P

Conclusion

If D isfinite, a solution can be found which is definitely the least.

Question

What, if D is not finite 777
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Theorem Knaster — Tarski

Assume I is a complete lattice. Then every monotonic function
f:D—D has aleast fixpoint dy € D.

let P={deD|fdCd}.

Then dy=[1P
Proof Ofa 9 ’f‘i’:{-
(1)  doeP: ‘feé C _ﬁ{p

d, o oA

Theorem Knaster — Tarski

Assume D is a complete lattice. Then every monotonic function
f:D —D has aleast fixpoint dy € D.

Let P={deD|fdCd. YK 3 ,67:
Then dy=[1P .
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Theorem Knaster — Tarski

Assume D is a complete lattice. Then every monotonic function
f:D—D hasaleast fixpoint dy € D.

let P={deD|fdC d}.

Then dy=[1P
Proof
(1)  dyeP:

fdoC fdC d forallde P
= fdy isalower bound of P
——  fdoCdy sincedy=[1P
== dpeP
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(W

fdoidof

11

fd[] =dp:

fdoTdy by (1)
——=  f(fdo) C fdy by monotonicity of f
= fdoe P

== dqC fdy and the claim follows.

dy is least fixpoint:
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fdoidof

fdiTdy by (1)

—_— do) O f dy | by monotonicity of
1 do) 7o by y of f

— |fdyeP
== dy C fdy

dy is least fixpoint:

fdgzd[]:

and the claim follows.
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fdoCdy by (1)
—  f(fdy) C fdy by monotonicity of f

= fd[]CP
> dggfdg

dy is least fixpoint:

and the claim follows.

(4%

fdy=d; C dy an other fixpoint

— = dl epP
= dLCd
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Remark

The least fixpoint dy isin P and a lower bound.

—— d, istheleastvalue zwith zJ fz
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Remark

The least fixpoint dy isin P and alower bound.

—— d, istheleastvalue zwith zJ fz

Application

Assume ; D filzr, .., zm), i=1,...,n (%)

is a system of constraints where all  f;: D" — ) are monotonic.

—— least solution of(x) = least fixpoint of F'.

17

Remark

The least fixpoint dp isin P and a lower bound.

—— d, istheleastvalue zwith z J fz

Application

Assume i J fi(zr, ... xn), i=1,....n ()
is a system of constraints where all f; : D™ — [ are monotonic.
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Remark

The least fixpoint dy isin P and a lower bound.

—— d, istheleastvaluezwith z 3 fz

Application

Assume ;3D filzr, ... xa), i=1,...,n (%)

is a system of constraints where all @ D® — I are monotonic.

—— least solution of(x) = least fixpoint of F.
— b
= D -

17



Example 1

Example 1

D =2Y,

D=2V,

fr=xznNauUb
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fr=xznNnauUb

< 2
FEL T
0| o U
1 b aUb
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Example 1

D=2V, fz=znaUb

Pl
0o U
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Example1 D=2Y, fz=znaUb

FlLfEL| T

0| 0 U

1 alUb

2 b |aUb
Example 2 D =NuU {0}
Assume fx=x+1.Then

fil=f0=i C i+1=f"1

—

Ordinary iteration will never reach a fixpoint !

Sometimes,

transfinite iteration is needed.
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Example 1 D=2V, fex=znNaUb

AFAES VAR
o 0 U
1 alUb
2 b |aUb

Example 2 D=NuU{x}
Assume fx =axz+ 1.Then

fil=f0=i C i+1=f*"1

—— Ordinary iteration will never reach a fixpoint !

—— Sometimes, transfinite iteration is needed.

123

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.
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Conclusion

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides.
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Conclusion

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

‘ 1 2

0 (] ]

1| {L,e>1,2—1} {1}

2 Eapr {l,z > 1,2 —1}
3 | {1,z >1,z—1} | {1,z > 1,z —1}
4 {1} {1}

5 Eapr {2 > 1,2 -1}
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Conclusion

Systems of inequations can be solved through fixpoint iteration,
i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example
1 2 3 4
0 0 0 [ 1]
1| {1,z > 1,21} {1} {1} {1}
2 Eapr {1,z > 1,2 -1} {1,z > 1} {1,z > 1}
3| {Le > 1,21} | {2 > 121} | {l,e> 1,21} | {1,z > 1}
4 {1} {1} {1} {1}
5 Ezpr {L,z>1,2-1} {1,z > 1} {1,z > 1}

ditto

131

Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.
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Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.
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Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.

Example

JERZ)N

1
T &=,
L 1 {1} - }-
el 2y 2| {1,z>1} ~ % /]3
3| {1,z>1}
4 {1}
5| {1,z > 1}
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Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.

Example

Neg(z > 1)

|:;|JA:.\:|\:»—-S‘
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Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.

Example

Neg(z > 1)

0
EERTRE
D

133

Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.

Example
1
0 (]
Neg(x > 1) ! -
2
3| {1,z>1}
4 {1}
5| {1,z>1}
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Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.

Example
1
0 0
Neg(z > 1) ! {1}
2 | {1,z >1}
3| {Lz>1}
4 {1}
5| {Lz>1}

134



Idea: Round Robin lteration

Instead of accessing the values of the last iteration, always use the
current values of unknowns.

Example
1 2

0 ]

1 {1}

2| {1,z >1}

3| {1,z > 1} | ditto
4 {1}

5| {L,z>1}
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Correctness

Assume y,f‘i) is the i-th component of F9 L.
(d)

Assume z; is the value of =z; after the d-th RR-iteration.
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The code for Round Robin lteration in Java looks as follows:

for (i=1i <njit+) z; = L;
do {
finished = true;
for (i = 1;¢ < nyit+) |
new = fi(z1,..., xn);
if ((z; 3 new)){
finished = false;
T; = r; L new;

}
} while (1finished);
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Correctness

Assume y(‘f) is the i-th component of F9 L.

i

@)

i

Assume =z

One proves:
(1) y@ 2@,

i

138

is the value of =z; after the i-th RR-iteration.



Correctness

Assume y?

3

()

is the i-th component of F9 1.

Assume =z, isthevalue of x; after the i-th RR-iteration.

One proves:
(1) y9 @,

i

(2) 29 C 2 forevery solution (z,...,z,).

139

Correctness

Assume ¥ s the i-th component of F¢ L.

3

()

i

Assume =z

L8
One proves: g;’ LA -1 Of
(1) 4 ca.

(2) 9 C7F forevery solution (z1,...,z,).

(3) If RR-iteration terminates after d rounds, then
(9, ..., 2) is a solution.

140

is the value of z; after the i-th RR-iteration.

Caveat

The efficiency of RR-iteration depends on the ordering of the
unknowns !!!

141

The code for Round Robin lteration in Java looks as follows:

for (i =10 <njitd) z; = L
do {

finished = true;

for (¢ = 1,2 < nyi++) {

L —F -::En);

finished = false;
T; = x; U new,

}
} while (!finished);

136



Correctness

Assume ylgd) is the i-th component of F? 1.

()

i

Assume =z

One proves:
(1) yi(d) C 2@

i

(2) 29 C 2 forevery solution (z,...,z,).
(3) If RR-iteration terminates after d rounds, then
(9 ... 2y s a solution.
140
Caveat

The efficiency of RR-iteration depends on the ordering of the
unknowns !!!

Good:

v ubeforewv, if w—*uv;

> entry condition before loop body.
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is the value of z; after the i-th RR-iteration.

Caveat

The efficiency of RR-iteration depends on the ordering of the
unknowns !l!

141
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Inefficient Round Robin lteration

... end of background on:
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Complete Lattices

Inefficient Round Robin lteration

1 2 3 4

0 Expr {1,z =1} {1,z > 1}

1 (1} (1} (1}

2 | {l,e—1,2>1} | {l,2 — 1,2 > 1} | {1,z > 1} | ditto
3 Ezpr {1,z > 1} {1,z =1}

1 (1} (1} (1}

5 0 0 p

— significantly less efficient !

... end of background on:

Final Question

Why is a (or the least) solution of the constraint system useful 777
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Complete Lattices
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... end of background on:  Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ?7?

For a complete lattice I, consider systems:

I[start] 3 do
AG 3 [&]* (Z[ul) k=(u ,v) edge

where dye D andall [k]*:D — D are monotonic ...
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