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... which transformations can be composed to the effect of a path
T™= k‘l Ce k‘,-:

[ = koo [kl

The effect [k]* ofanedge k& = (u,lab,v) only dependson
the label lab, i.e., [k]* = [lab]' where:

[JFA = A
[Pos(e)]* A = [Neg(e)]t A = AU{e}
[t=e]fA = (Au{e})\Expr, where

Ezpr_ all expressions which contain «

36

Question:

How do we compute A[u] for every program point u

[x = M[e];]F A
[Mle] = f.g:]i;'l
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(AU {eh\ Expr,
AU {eq, ea}
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Question: T Yw—- b&i —_ 3 Wanted:

How can we compute A[u] for every program point v ?? * amaximally large solution
e an algorithm which computes this

(?7)

Example:

We collect all restrictions to the values of A[«] into a system of
constraints:

]

N1

wm k= (u, ,v) edge
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Question: Wanted:

. . i i 27
How can we compute A[u] for every program point v ?? a maximally large solution  (??)

e an algorithm which computes this

Example:
We collect all restrictions to the values of A[u| into a system of
constraints:
Alstart] < @
Alv] C [k (A k= (u,_,v) edge
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Wanted:

¢ amaximally large solution (?7?)
e an algorithm which computes this  :-)

Example:

Al < 0
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Wanted:

¢ amaximally large solution (?7)
e an algorithm which computes this )

Example:

ANl € @
All] <
Al € A[]
A2l C
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(A[0] U {1 1)\ Expr

Al U {z > 1}

Y

Wanted:

e amaximally large solution (??)
e an algorithm which computes this =)

Example:

A < @
Al € (A0 U {1})\Ezpr,
All] < Al
58
Wanted:
e amaximally large solution (?7)
e an algorithm which computes this )
Example:
A € B
Alt] < (A0 U {1})\ Ezpr,
Alll € Al
A2l © Alju{z>1}
ABl € (A2]U {z = y})\ Ezpr,
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Wanted: Wanted:

¢ amaximally large solution (?7?) e amaximally large solution (??)

e an algorithm which computes this  :-) e an algorithm which computes this =)

Example: Example:
A < 0 A < @
Al € (A[0]u {1})\Expr, All] € (A[0]U {1})\Ezpr,
ALl C Al4] A2 A
ARl € AU {z > 1} Al U {z > 1}
ARl © (A[2]U {z = y})\ Expr, ABl 2| U {z + y})\ Expr,
Ald] € (A[B]U {z — 1})\Ezpr, A[4]('g'TA[3] U {z — 1})\ Expr,

AB] © AU {z > 1}
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Wanted: Wanted:

¢ amaximally large solution (?7) e amaximally large solution (?7)

e an algorithm which computes this ) e an algorithm which computes this =)

Example: Example:

Solution:
Al € @
All] < (A[0]U {1})\Ezpr, Al = 0
Al € A4 Al = {1}
A2l € AU {z > 1} AR = {l,z>1}
A3l C (A[2]U {z = y})\ Expr, Al = {la>1}
Al € (ABRJ U {z — 1})\Eupr, A4l = {1}
A['—)] c .A[l] U {:T > l} A[r)] — {LIJ‘ -~ J_}
62 63




Observation:

e The possible values for .4[u] form a complete lattice:

D= QEIPT with B1 E BQ iff Bl 2 BQ
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Background 2: Complete Lattices

A set D together with a relation C C D x D is a partial order if

foralla,b,cc D,

ala reflexivity
aCbAabCa = a=b anti—symmetry
aCbAbBCe = alc transitivity

Examples

1. D = 2{=> with the relation “C” :
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Observation:

e The possible values for A[u| form a complete lattice:

D= QEIPT' with Bl E Bz iff Bl 2 Bz

e Thefunctions [k]*: DD — D are monotonic, ie.,

[K]*(By) C [k]*(B:) whenever B, C By
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3.

a9

(“-‘

4. Z, = Z U {L} with the ordering:
. (:2)\ 1) (%I 1) (2) «ee

—
—
o

W

~
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d € D is called upper bound for X C I if

rCd forallz € X

68

d € D is called upper bound for X C D if

rCd forallz e X

d is called least upper bound (lub) if
1. dis an upper bound and

2. d C y for every upper bound y of X.
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d € D is called upper bound for X C D if

xCd forallz € X

O

68

d € D is called upper bound for X C I if

rCd forallz e X

d is called least upper bound (lub) if
1. d is an upper bound and

2. d C y for every upper bound y of X.

Caveat

e {0,2,4,...} C Zhas no upper bound!
e {0,2,4} C Z has the upper bound@&(i, e
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A complete lattice (cl) D

is a partial ordering where every

subset X CD hasaleastupperbound ||X D

Remark

Every complete lattice has

> aleastelement 1 =

L]0 €D

» agreatestelement T =||D eD.

Examples

1. D =2lebd jsacl.
. D = Z with “="is not.
. D = Z with “<” is neither.

2
3
4. D =7Z, is also not.
5

71

. With an extra element T, we obtain the flat lattice

Z] =ZU{l,T}

Examples

1.

D = 2{eb} js g cl.

2. b = Z with “="is not.
3. D = Z with “<" is neither.
4. D = 7, is also not.
5. With an extra element T, we obtain the flat lattice
ZI=ZuU{L, T}
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We have:
Theorem

If

b is a complete lattice, then every subset

greatest lower bound [1X.
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XCD hasa



We have:

Theorem

If D isacomplete lattice, then every subset X C D has a
greatest lower bound [1X.
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We have:

Theorem

If D isacomplete lattice, then every subset X CDD hasa
greatest lower bound [1X.

Proof

Construct U={ueD|VreX: ul z}.
// the set of all lower bounds of X

Set: g:=||U

Claim: g=[1Xx
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We have:

Theorem

If I isacomplete lattice, then every subset
greatest lower bound [1X.

Proof

Construct U={ueld|VzeX: ulz}.

// the set of all lower bounds of X
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(1) gisalowerbound of X :

Assume =z € X.Then:
wC xforallue U
—— ris an upper bound of U

— gLz
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XCD hasa
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We are looking for solutions for systems of constraints of the form:

T | fi(xla"'7ITL)
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(+)

80

We are looking for solutions for systems of constraints of the form:

(%)

where:

T unknown here:
values here:

C C DxD | ordering relation here:

m constraint here:
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We are looking for solutions for systems of constraints of the form:

e 2 filry, .. zn) (*)
where:
T; unknown here:  Alu]
D values here: 2%=r

C C DxD | ordering relation here: 2

fiD* =D constraint here:

Constraint for  Afv] (v # start):

Al € (IR (Alul) | & = (u, _,v) edge}
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We are Iooji/ng for s ans for systems of constraints of the form:

;I i(xla- v 1:‘2n) (*)
where:

T unknown here: Aluy]

D values here: 2Emer

C C DxID | orderingrelation here: D

fiD* =D constraint here:

Constraint for  A[v] (v # start):
ARl € (IR (Al) | k= (u,_v) edge}

Because:
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Amapping f:D; —» Dy

all

A mapping f:DD; — Dy

all

a C b.

al b

is called monotonic, if f(a) C f(b)
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is called monotonic, if  f(a) C f(b)

85

for
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A mapping f:D — D; is called monotonic, if f(a) C f(b) for
all aCb

Examples

(1) Dy=D;=2Y forasetUand fa=(zxna)Ub.
Obviously, every such f is monotonic.

(2) DDy = Dy = Z (with the ordering “<"). Then:

e incx=x+1 is monotonic.

e decx=z—1 ismonotonic.
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Theorem

Iif fi:D, —+D, and f,:D, — D3 are monotonic, then also
f; o] f1 : Dl > Dg.
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A mapping f:D; —» D, is called monotonic,is f(a) C f(b)

a-g(y) = XN {W’Lg

(1) Dy =D,=2Y forasetUand fx=(xNna)Ub.
Obviously, every such f is monotonic.

Examples

(2) Dy =Dy = Z (with the ordering “<”). Then:

e incx=x+1 ismonotonic.
e decx=ax—1 ismonotonic.

e invz = —x isnot monotonic.

88

Theorem

If f1:D; —-Dy, and f,:D, — D3 are monotonic, then also
fg [e] fl : Dl > DS-

Theorem

If is a complete lattice, then the set [ @ of
monofonic functions f: 1y — I is also a complete lattice

where
@ it @ forall z € I,
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Theorem

it fi:Dy —Dy and fy:D;, — D3 are monotonic, then also
f20f1 . ID1 —r I.Dg.

Theorem

If I, isacomplete lattice, then the set [y — ;] of
monotonic functions f: Dy — D, is also a complete lattice
where

fCg iff fzCgx forallzeD,

In particular for  F C [y — Dy,

| |F=f mit fe=||{gz|geF}

a1

Theorem

Iif fi:D, —+D, and f,:D, — D3 are monotonic, then also
f20f1 : Dl —r Dg.

Theorem

If Dy isacomplete lattice, then the set [D; — D] of
monaotonic functions f:1; — D, is also a complete lattice
where

fCg iff fzCgx forallzeD

In particular for  F C [D; — Dy,

I_lF:f mit f:c:[_l{gx|g€F}

a1

For functions  f;x = a; Nz U b;, the operations  “o”, “LI" and "1
can be explicitly defined by:

(faofi)z = |arNaz|NxUjazNb Ub
(AUf)x = [(eaUas) Nz U|b Uby

(AN fo)x

24
LT

}

For functions f;x = a; Nz Ub;, the operations “o”, “LI" and “1”
can be explicitly defined by:

(faofi)z = [aNax|NxUjazNb Uby
(huf)r =y (a-luag)‘ﬁazu|b1ub2$(
(hnfl)z = (alubl)m(agubg)‘m;ru|blmb2

T A

92

(ay Uby )N (az Ubg) NzU|by Nby
neufbing)
T



For functions  f; z = a; Nz U b;, the operations  “o”, “LU" and “r”

can be explicitly defined by:

(fzofi)xr = |arNaz|NazUjagNb Ub;

(AUf)z = |[(agUaz) | NzU|b Ubsy
(ANf)z = [(aaUb) N (a2Uby) |NaU[byNby
92
Wanted:  minimally small solution for:
x; J filzr,...,zm), t=1,...,n (%)

where all f; : D" — I are monotonic.
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)
gz_{f/\ x)=a,n (QACW Ubﬂ> U EL

%, 0a, 1X 0|05 U,

For functions f; x = a; Nz U b;, the operations “o", “LU" and “r”
can be explicitly defined by:

(fao fi)z
(U fo)x
(M fo)x

laxNaz|NzUaz b Uby
(a1 Uay) [N U[by Uby|

= [(a Ubl)ﬁ(agubg)‘ﬁxu|b1ﬂb2
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Wanted:  minimally small solution for:

Ii;lfi(rlr"a‘rn)a 3.21.,...7?1 (*)

where all f;:D* — D are monotonic.

a3

Wanted:  minimally small solution for:

x; J filzr,...,zm), t=1,...,n (%)

where all f; : D" — D are monotonic.

Idea

e Consider F:D"™— D" where
Flzy,...,x0) = (11, ,ya) With y; = fi(ze, ..., z0)-
e Ifall f; are monotonic,then also F.

w3 TX
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Wanted:  minimally small solution for:

;D fi(rq,...,x,), i=1,....n ()

where all f;: D" — D are monotonic.

Idea &( L\/

e Consider F:D"— D" where
Flzy,...,xn) = (Y1y. ., Ye) With gy = fi(zr, ..., x0).

94

Wanted:  minimdlly small solwtion for:

I 2 fg(:l‘:l, e

where all f;: D" — 1 are monotpnic.

Idea

e Consider F:D"— D" here

Flzy,...,x) = (yd. .., yn) with gy, = fi(zy, ..., 2,).
e Ifall f; are monotonic,then also F.
roximate a solution. We construct:

Hope: We eventually reach a solution ... 7??

¢ We successively a
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