Script generated by TTT

Title: Seidl: Programmoptimierung (29.10.2015)

Date: Thu Oct 29 08:33:43 CET 2015

Duration: 89:14 min

Pages: 55

... which transformations can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp}$$

The effect $[\![k]\!]^{\sharp}$ of an edge k=(u,lab,v) only depends on the label lab, i.e., $[\![k]\!]^{\sharp}=[\![lab]\!]^{\sharp}$ where:

$$\begin{split} & [\![]\!]^{\sharp} \boldsymbol{A} &= \boldsymbol{A} \\ & [\![Pos(e)]\!]^{\sharp} \boldsymbol{A} &= [\![Neg(e)]\!]^{\sharp} \boldsymbol{A} &= \boldsymbol{A} \cup \{e\} \\ & [\![x=e;]\!]^{\sharp} \boldsymbol{A} &= (\boldsymbol{A} \cup \{e\}) \backslash Expr_x & \text{where} \\ & Expr_x \text{ all expressions which contain } x \end{split}$$

Question:

How do we compute A[u] for every program point u??

$$\begin{split} & \llbracket x = M[e]; \rrbracket^{\sharp} \, {\color{blue}A} & = & ({\color{blue}A} \cup \{e\}) \backslash \textit{Expr}_x \\ & \llbracket M[e_1] = e_2; \rrbracket^{\sharp} \, {\color{blue}A} & = & {\color{blue}A} \cup \{e_1, e_2\} \end{split}$$

Question:

How can we compute A[u] for every program point u??

We collect all restrictions to the values of $\mathcal{A}[u]$ into a system of constraints:

$$\begin{array}{ccc}
A[star)] & \subseteq & \emptyset \\
A[v] & \subseteq & [\![k]\!]^{\sharp} & A[u]
\end{array}$$

$$k = (u, _, v)$$
 edge

55

Question:

How can we compute A[u] for every program point u??

We collect all restrictions to the values of $\mathcal{A}[u]$ into a system of constraints:

$$\begin{array}{lll} \mathcal{A}[start] &\subseteq & \emptyset \\ \\ \mathcal{A}[v] &\subseteq & [\![k]\!]^\sharp \left(\mathcal{A}[u]\right) & k = (u,_,v) & \text{edge} \end{array}$$

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

56

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

59

57

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

58

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

$$\mathcal{A}[0] \subseteq \emptyset$$

$$\mathcal{A}[\mathbf{1}] \subseteq (\mathcal{A}[\mathbf{0}] \cup \{1\}) \backslash Expr_y$$

$$\mathcal{A}[1] \subseteq \mathcal{A}[4]$$

$$\mathcal{A}[\mathbf{2}] \subseteq \mathcal{A}[\mathbf{1}] \cup \{x > 1\}$$

$$\mathcal{A} [\mathbf{3}] \quad \subseteq \quad (\mathcal{A} [\mathbf{2}] \cup \{x * y\}) \backslash \mathit{Expr}_y$$

$$\mathcal{A}[\mathbf{4}] \quad \subseteq \quad (\mathcal{A}[\mathbf{3}] \cup \{x-1\}) \backslash \mathit{Expr}_x$$

61

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

$$\mathcal{A}[0] \subseteq \emptyset$$

$$\mathcal{A}[\mathbf{1}] \subseteq (\mathcal{A}[\mathbf{0}] \cup \{1\}) \setminus Expr_y$$

$$\mathcal{A}[1] \subseteq \mathcal{A}[4]$$

$$\mathcal{A}[\mathbf{2}] \subseteq \mathcal{A}[\mathbf{1}] \cup \{x > 1\}$$

$$\mathcal{A}[\mathbf{3}] \quad \subseteq \quad (\mathcal{A}[\mathbf{2}] \cup \{x * y\}) \backslash \mathit{Expr}_y$$

$$\mathcal{A}[4] \subseteq (\mathcal{A}[3] \cup \{x-1\}) \setminus Expr_x$$

$$\mathcal{A}[\mathbf{5}] \quad \subseteq \quad \mathcal{A}[\mathbf{1}] \cup \{x > 1\}$$

62

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

$$\mathcal{A}[0] \subseteq \emptyset$$

$$\mathcal{A}[\textcolor{red}{1}] \quad \subseteq \quad (\mathcal{A}[\textcolor{red}{0}] \cup \{1\}) \backslash \textit{Expr}_{y}$$

$$\mathcal{A}[3] \subseteq (\mathcal{A}[2] \cup \{x * y\}) \setminus Expr_y$$

$$\mathcal{A}[4] \subseteq (\mathcal{A}[3] \cup \{x-1\}) \setminus Expr_x$$

$$\mathcal{A}[\mathbf{5}] \subseteq \mathcal{A}[\mathbf{1}] \cup \{x > 1\}$$

62

Wanted:

- a maximally large solution (??)
- an algorithm which computes this :-)

Example:

Solution:

$$\mathcal{A}[0] = \emptyset
\mathcal{A}[1] = \{1\}
\mathcal{A}[2] = \{1, x > 1\}
\mathcal{A}[3] = \{1, x > 1\}
\mathcal{A}[4] = \{1\}
\mathcal{A}[5] = \{1, x > 1\}$$

Observation:

• The possible values for A[u] form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

2.4

Background 2: Complete Lattices

A set $\mathbb D$ together with a relation $\ \sqsubseteq \subseteq \mathbb D \times \mathbb D$ is a partial order if for all $a,b,c\in \mathbb D$,

$$\begin{array}{ll} a \sqsubseteq a & reflexivity \\ a \sqsubseteq b \wedge b \sqsubseteq a \implies a = b & anti-symmetry \\ a \sqsubseteq b \wedge b \sqsubseteq c \implies a \sqsubseteq c & transitivity \end{array}$$

Examples

1. $\mathbb{D} = 2^{\{a,b,c\}}$ with the relation " \subseteq ":

Observation:

• The possible values for A[u] form a complete lattice:

$$\mathbb{D} = 2^{Expr} \quad \text{with} \quad B_1 \sqsubseteq B_2 \quad \text{iff} \quad B_1 \supseteq B_2$$

 $\bullet \quad \text{ The functions } \quad [\![k]\!]^{\sharp}: \mathbb{D} \to \mathbb{D} \quad \text{are monotonic, i.e.,}$

$$[\![k]\!]^{\sharp}(B_1) \sqsubseteq [\![k]\!]^{\sharp}(B_2)$$
 whenever $B_1 \sqsubseteq B_2$

65

2. \mathbb{Z} with the relation "=":

3. \mathbb{Z} with the relation " \leq ":

4. $\mathbb{Z}_{\perp} = \mathbb{Z} \cup \{\bot\}$ with the ordering:

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

 $x \sqsubseteq d$ for all $x \in X$

60

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

 $x \sqsubseteq d$ for all $x \in X$

~ 00

68

 $d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$x \sqsubseteq d$$
 for all $x \in X$

d is called least upper bound (lub) if

- 1. d is an upper bound and
- 2. $d \sqsubseteq y$ for every upper bound y of X.

Caveat

- $\bullet \quad \{ {\color{red} 0,2,4,\ldots} \} \subseteq \mathbb{Z} \text{ has no upper bound!}$
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $\{0,5,6,\ldots\}$

A complete lattice (cl) $\mathbb D$ is a partial ordering where every subset $X\subseteq \mathbb D$ has a least upper bound $\coprod X\in \mathbb D$.

Remark

Every complete lattice has

- \rightarrow a least element $\perp = \bigsqcup \emptyset \in \mathbb{D}$;
- \rightarrow a greatest element $\top = \bigcup \mathbb{D} \in \mathbb{D}$.

71

Examples

- 1. $\mathbb{D} = 2^{\{a,b,c\}}$ is a cl.
- 2. $\mathbb{D} = \mathbb{Z}$ with "=" is not.
- 3. $\mathbb{D} = \mathbb{Z}$ with " \leq " is neither.
- 4. $\mathbb{D}=\mathbb{Z}_{\perp}$ is also not.
- 5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top}=\mathbb{Z}\cup\{\bot,\top\}$:

Examples

- 1. $\mathbb{D} = 2^{\{a,b,c\}}$ is a cl.
- 2. $\mathbb{D} = \mathbb{Z}$ with "=" is not.
- 3. $\mathbb{D} = \mathbb{Z}$ with " \leq " is neither.
- 4. $\mathbb{D} = \mathbb{Z}_{\perp}$ is also not.
- 5. With an extra element \top , we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top}=\mathbb{Z}\cup\{\bot,\top\}$:

72

We have:

Theorem

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

We have:

Theorem

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

73

We have:

Theorem

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof

```
U=\{u\in\mathbb{D}\mid\forall\,x\in X:\;u\sqsubseteq x\}. // the set of all lower bounds of X Set: g:=\bigsqcup U Claim: g=\bigcap X
```

We have:

Theorem

If $\mathbb D$ is a complete lattice, then every subset $X\subseteq \mathbb D$ has a greatest lower bound $\prod X$.

Proof

```
Construct U = \{u \in \mathbb{D} \mid \forall \, x \in X: \, u \sqsubseteq x\}. // the set of all lower bounds of X
```

74

(1) g is a lower bound of X:

```
Assume x \in X. Then: u \sqsubseteq x for all u \in U \implies x is an upper bound of U \implies g \sqsubseteq x
```


78

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

80

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$
 (*)

where:

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

where:

x_i	unknown	here:	$\mathcal{A}[\underline{u}]$
\mathbb{D}	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i: \mathbb{D}^n \to \mathbb{D}$	constraint	here:	

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[\pmb{v}] \quad \subseteq \quad \bigcap \{ \llbracket \pmb{k} \rrbracket^{\sharp} \left(\mathcal{A}[\pmb{u}] \right) \mid \pmb{k} = (\pmb{u},_,\pmb{v}) \; \; \mathsf{edge} \}$$

83

We are looking for solutions for systems of constraints of the form:

$$x_i \supseteq f_i(x_1, \dots, x_n)$$
 (*)

where:

x_i	unknown	here:	$\mathcal{A}[\underline{u}]$
\mathbb{D}	values	here:	2^{Expr}
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\supseteq
$f_i:\mathbb{D}^n o \mathbb{D}$	constraint	here:	

Constraint for A[v] $(v \neq start)$:

$$\mathcal{A}[v] \quad \subseteq \quad \bigcap \{ \llbracket k \rrbracket^{\sharp} \left(\mathcal{A}[\underline{u}] \right) \mid \underline{k} = (\underline{u}, \underline{\ \ }, \underline{v}) \ \ \mathsf{edge} \}$$

Because:

$$x \supseteq d_1 \land \ldots \land x \supseteq d_k \quad \text{iff} \quad x \supseteq \bigsqcup \{d_1, \ldots, d_k\}$$

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

85

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, if $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

Examples

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic.
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:
 - $\operatorname{inc} x = x + 1$ is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.

87

Theorem

If $f_1:\mathbb{D}_1\to\mathbb{D}_2$ and $f_2:\mathbb{D}_2\to\mathbb{D}_3$ are monotonic, then also $f_2\circ f_1:\mathbb{D}_1\to\mathbb{D}_3$.

A mapping $f: \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, is $f(a) \sqsubseteq f(b)$ for all $a \sqsubseteq b$.

f(x) = X = {1n}

Examples

- (1) $\mathbb{D}_1 = \mathbb{D}_2 = 2^U$ for a set U and $f x = (x \cap a) \cup b$. Obviously, every such f is monotonic.
- (2) $\mathbb{D}_1 = \mathbb{D}_2 = \mathbb{Z}$ (with the ordering " \leq "). Then:
 - inc x = x + 1 is monotonic.
 - $\operatorname{dec} x = x 1$ is monotonic.
 - inv x = -x is not monotonic.

88

Theorem

If $f_1:\mathbb{D}_1\to\mathbb{D}_2$ and $f_2:\mathbb{D}_2\to\mathbb{D}_3$ are monotonic, then also $f_2\circ f_1:\mathbb{D}_1\to\mathbb{D}_3$.

Theorem

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 - \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where $f \sqsubseteq g \quad \text{iff} \quad fx \sqsubseteq gx \quad \text{for all } x \in \mathbb{D}_1$

Theorem

If $f_1:\mathbb{D}_1\to\mathbb{D}_2$ and $f_2:\mathbb{D}_2\to\mathbb{D}_3$ are monotonic, then also $f_2\circ f_1:\mathbb{D}_1\to\mathbb{D}_3$.

Theorem

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

In particular for $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$,

$$| F = f \text{ mit } fx = | \{gx \mid g \in F\}$$

91

Theorem

If $f_1:\mathbb{D}_1\to\mathbb{D}_2$ and $f_2:\mathbb{D}_2\to\mathbb{D}_3$ are monotonic, then also $f_2\circ f_1:\mathbb{D}_1\to\mathbb{D}_3$.

Theorem

If \mathbb{D}_2 is a complete lattice, then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotonic functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is also a complete lattice where

$$f \sqsubseteq g$$
 iff $f x \sqsubseteq g x$ for all $x \in \mathbb{D}_1$

In particular for $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$,

$$\bigsqcup F = f \quad \mathsf{mit} \quad f \, x = \bigsqcup \{g \, x \mid g \in F\}$$

For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1)x = a_1 \cap a_2 \cap x \cup a_2 \cap b_1 \cup b_2$$

$$(f_1 \cup f_2)x = (a_1 \cup a_2) \cap x \cup b_1 \cup b_2$$

$$(f_1 \cap f_2)x = (a_1 \cup b_1) \cap (a_2 \cup b_2) \cap x \cup b_1 \cap b_2$$

92

For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \square " and " \square " can be explicitly defined by:

$$(f_2 \circ f_1) x = \underbrace{a_1 \cap a_2} \cap x \cup \underbrace{a_2 \cap b_1 \cup b_2}$$

$$(f_1 \cup f_2) x \Longrightarrow \underbrace{(a_1 \cup a_2) \cap x \cup b_1 \cup b_2}$$

$$(f_1 \cap f_2) x = \underbrace{(a_1 \cup b_1) \cap (a_2 \cup b_2)} \cap x \cup \underbrace{b_1 \cap b_2}$$

For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \sqcup " and " \sqcap " can be explicitly defined by:

$$(f_2 \circ f_1) x = \underbrace{a_1 \cap a_2} \cap x \cup \underbrace{a_2 \cap b_1 \cup b_2}$$

$$(f_1 \sqcup f_2) x = \underbrace{(a_1 \cup a_2)} \cap x \cup \underbrace{b_1 \cup b_2}$$

$$(f_1 \sqcap f_2) x = \underbrace{(a_1 \cup b_1)} \cap (a_2 \cup b_2) \cap x \cup \underbrace{b_1 \cap b_2}$$

92

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i:\mathbb{D}^n \to \mathbb{D}$ are monotonic.

$$f_{2}(f_{1}x) = a_{2}n(a_{1}n \times ob_{1}) \cup b_{2}$$

$$= a_{1}na_{1}n \times ob_{1}ob_{1}ob_{2}$$

For functions $f_i x = a_i \cap x \cup b_i$, the operations "o", " \square " and " \square " can be explicitly defined by:

$$(f_2 \circ f_1) x = \boxed{a_1 \cap a_2} \cap x \cup \boxed{a_2 \cap b_1 \cup b_2}$$

$$(f_1 \sqcup f_2) x = \boxed{(a_1 \cup a_2)} \cap x \cup \boxed{b_1 \cup b_2}$$

$$(f_1 \sqcap f_2) x = \boxed{(a_1 \cup b_1) \cap (a_2 \cup b_2)} \cap x \cup \boxed{b_1 \cap b_2}$$

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

93

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea

 $\bullet \quad \text{Consider} \quad F: \mathbb{D}^n \to \mathbb{D}^n \quad \text{where}$

$$F(x_1,...,x_n) = (y_1,...,y_n)$$
 with $y_i = f_i(x_1,...,x_n)$.

• If all f_i are monotonic, then also F.

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

94

Wanted: minimally small solution for:

$$x_i \supseteq f_i(x_1, \dots, x_n), \quad i = 1, \dots, n$$
 (*)

where all $f_i: \mathbb{D}^n \to \mathbb{D}$ are monotonic.

Idea

• Consider $F: \mathbb{D}^n \to \mathbb{D}^n$ where

$$F(x_1, ..., x_n) = (y_1, ..., y_n)$$
 with $y_i = f_i(x_1, ..., x_n)$.

- If all f_i are monotonic, then also F.
- We successively approximate a solution. We construct:

Hope: We eventually reach a solution ... ???