Script generated by TTT
Title: Petter: Programmiersprachen (22.01.2020)
Date: Wed Jan 22 12:21:41 CET 2020

Duration: 91:17 min

Pages: 38

“Is modularity the key principle to organizing software?*

Learning outcomes

@ AOP Motivation and Weaving basics

@ Bundling aspects with static crosscutting
@ Join points, Pointcuts and Advice

© Composing Pointcut Designators

© Implementation of Advices and Pointcuts

TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FOR INFORMATIK m

Programming Languages

Aspect Oriented Programming

Dr. Michael Petter
Winter 2019/20

Motivation i

@ Traditional modules directly correspond to code blocks

@ Aspects can be thought of seperately but are smeared over modules ~~ Tangling of
aspects

@ Focus on Aspects of Concern

~~ Aspect Oriented Programming

Motivation

@ Traditional modules directly correspond to code blocks

@ Aspects can be thought of seperately but are smeared over modules ~~ Tangling of
aspects

@ Focus on Aspects of Concern

~+ Aspect Oriented Programming

Aspect Oriented Programming

@ Express a system’s aspects of concerns cross-cutting modules
@ Automatically combine separate Aspects with a Weaver into a program

Static Crosscutting

Functional decomposition

V7
'
==
=]

Adding External Defintions

inter-type declaration

class Expr {}

class Const extends Expr {
public int val;
public Const(int val) {

this.val=val;

}}

class Add extends Expr {
public Expr 1,r;
public Add(Expr 1, Expr r) {
this.l=1;this.r=r;

}}

aspect ExprEval {
abstract int Expr.eval();

int Const.eval O {| return val; };
int Add.eval() {| return 1l.eval()
+ r.eval();

Aspect oriented decomposition

Aspect
Weaver

v

s

equivalent code

// aspec
abstract

tj-patched code
class Expr {

Iabstract int eval(); |

}

class Const extends Expr {

public

int val;

|public

int eval(){ return val; };

 —
this
+ 3

o : Y c
orst{Imt—vat)—T

.val=val;

class Add extends Expr {

public

Expr 1,r;

ublic

int eval() { return l.eval()
+ r.eval(); }

this.1l=1;this.r=r;

}
}

Join Points i

Well-defined points in the control flow of a program

A
\\/\\ method/constr. call executing the actual method-call statement
m method/constr. execution the individual method is executed
field get afield is read
field set a field is set
exception handler execution an exception handler is invoked
class initialization static initializers are run
object initialization dynamic initializers are run

Pointcuts and Designators T

Definition (Pointcut)

A pointcut is a set of join points and optionally some of the runtime values when program
execution reaches a refered join point.

Pointcut designators can be defined and named by the programmer:
(userdef) ::= ‘pointcut’ (id) ‘(’ (idlist)” *)’ =’ (expr) ‘;’
(idllist) == (id) (*, (id))*
(expr) ="V’ (expr)
| (expr) ‘&& (expr)
| (expr) ‘11" (expr)
| “C (expr) Y’
| (primitive)

Example:

pointcut dfs(): pxecution (void Tree.dfs()
xecution (ﬁoid Leaf.dfs()

&

Join Points i

Well-defined points in the control flow of a program

metnog/constr. call executing the actuat method-caii statement

method/constr. execution the individual method is executed
field get a field is read

field set a field is set

exception handler execution an exception handler is invoked

Tiass

zation static initializers are run
object initialization dynamic initializers are run

L]

Pointcuts and Designators T

Definition (Pointcut)

A pointcut is a set of join points and optionally some of the runtime values when program
execution reaches a refered join point.

Pointcut designators can be defined and named by the programmer:
(userdef) ::= ‘pointcut’ (id) ‘¢ (idlist)?)’ *:* (expr) ‘3’
(idlisty = (id) (*,” (id))*
(expr) == ‘1" (expr)
| (expr) ‘&& (expr)
| (expr) ‘11’ {expr)
| “C (expr) Y’
| {primitive)
Example:

pointcut dfs(): execution (void Tree.dfs()) ||
execution (void Leaf.dfs()) ;

Advice

... are method-like constructs, used to define additional behaviour at joinpoints:

@ before(formal)

@ after(formal)

@ after(formal) returning (formal)

@ after(formal) throwing (formal)
For example:

aspect Doubler {
before(): call(int C.foo(int)) {
System.out.println("About to call foo");
} 3

Binding Pointcut Parameters in Advices

Certain pointcut primitives add dependencies on the context:
@ args(arglist)

This binds identifiers to parameter values for use in in advices.

aspect Doubler {
before(int i): call(int C.foo(int)) && args(i) {
i = ix2;
} 3
arglist actually is a flexible expression:

(arglist) == ((arg) (*,’ (arg))")’

(arg) = (identifier) binds a value to this identifier
| (typename) filters only this type
| ¥ matches all types
\

matches several arguments

Advice

... are method-like constructs, used to define additional behaviour at joinpoints:
@ before(formal)
@ after(formal)
@ after(formal) returning (formal)
@ after(formal) throwing (formal)
For example:

aspect Doubler {
before(): call(int C.foo(int)) {
System.out.println("About to call foo");
} 3

Around Advice

Unusual treatment is necessary for
@ type around(formal)

/\ Here, we need to pinpoint, where the advice is wrapped around the join point — this is
achieved via proceed ():

aspect Doubler {
int around(int i): call{int C.foo(Oﬁijt, int)) && args(i) {
int newi = proceed(i*2);
return newi/2;

+}

Binding Pointcut Parameters in Advices T

Certain pointcut primitives add dependencies on the context:

@ args(arglist)

Unusual treatment is necessary for
This binds identifiers to parameter values for use in in advices. @ type around(formal)

/\ Here, we need to pinpoint, where the advice is wrapped around the join point — this is

aspect Doubler { achieved via proceed ():

before(int i): call(int C.foo(int)) && args(i) {
i = i*2;
} 3
aspect Doubler {
arglist actually is a flexible expression: int around(int i): call(int C.foo(Object, int)) && args(i) {
(arglist) = ((arg) (*,’ (arg))*)" int newi = proceed(ix2);
return newi/2;

(arg) = (identifier) binds a value to this identifier L
| (typename) filters only this type
| ¥ matches all types
\

matches several arguments

Method Related Designators

class MyClass{
public String toString() {

@ call(signature)

}
@ execution(signature) 0 public static void main(String[] args){
I MyClass ¢ = new MyClass();
<€.) System.out.println(c + c.toString());
e 1}
aspect CallAspect {
Matches call/execution join points at which the method or constructor called matches the pointcut calltostring() : String MyClass.toString());
given signature. The syntax of a method/constructor signature is: pointcut exectostring() :[execution(String MyClass.toString());
before() : calltostring() || exectostring() {
. System.out.println("advice!");
ResultTypeName RecvrTypeName.meth id(ParamTypeName, ...)
NewObjectTypeName.new(ParamTypeName, ...)

| s11ly me silly me

Around Advice I

T Method Related Designators T

Method Related Designators

@ call(signature)

@ execution(signature)

Matches call/execution join points at which the method or constructor called matches the
given signature. The syntax of a method/constructor signature is:

ResultTypeName RecvrTypeName.meth id(ParamTypeName, ...)
NewObjectTypeName.new(ParamTypeName, ...)

Field Related Designators

@ get(fieldqualifier)
@ set(fieldqualifier)

Matches field get/set join points at which the field accessed matches the signature. The
syntax of a field qualifier is:

FieldTypeName ObjectTypeName.field id

/\ : However, set has an argument which is bound via args:

aspect GuardedSetter {
before(int newval): set(static int MyClass.x) && args(mewval) {
if (Math.abs(newval - MyClass.x) > 100)
throw new RuntimeException();

T}

Method Related Designators T

class MyClass{

public String|toString() |{

return "silly me ";
}

public static void main(String[] args){
MyClass ¢ = new M

yClassO; —
System.out.printl +-EitoString‘)8
~—~————

}}

aspect CallAspect {
pointcut calltostring() :_Z;EEH (String|MyClass.toString());
pointcut exectostring() : execution[String]MyClass.toString()P;
before() : calltostring() [exectostring() {

System.out.println("advice!");

+}

N advice!

el advice!
M advice!
silly me silly me

Type based T

@ target (typeorid)

+ within(typepattern)

® withincode (methodpattern) |

Matches join points of any kind which
@ are refering to the receiver of type typeorid
@ is contained in the class body of type typepattern
@ is contained within the method defined by methodpattern

Flow and State Based T

@ cflow(arbitrary pointcut)

Matches join points of any kind that occur strictly between entry and exit of each join point
matched by arbitrary_pointcut.

9| if (boolean expression) |

Picks join points based on a dynamic property:

aspect GuardedSetter {

before(): |[if (thisJoinPoint.getKind () .equals (METHOD_CALL)) && within(MyClass)| {
System.out.printin("What an inefficient way to match calls"™);

T}

Implementation [

Aspect Weaving:
@ Pre-processor
@ During compilation
@ Post-compile-processor
@ During Runtime in the Virtual Machine
@ A combination of the above methods

Which advice is served first? I

Advices are defined in different aspects

o If Statementldeclare precedence:A, B;l exists, then advice in aspect A has
precedence over advice in aspect B for the same join point.

@ Otherwise, if aspect A is a subaspect of aspect B, then advice defined in A has
precedence over advice defined in B.

@ Otherwise, (i.e. if two pieces of advice are defined in two different aspects), it is
undefined which one has precedence.

Advices are defined in the same aspect

@ If either are after advice, then the one that appears /ater in the aspect has precedence
over the one that appears earlier.

@ Otherwise, then the one that appears earlier in the aspect has precedence over the
one that appears later.

Woven JVM Code o

aspect MyAspect {
Expr one = new Const(1); pointcut settingconst(): set(int Const.val);
one.val = 42; before () : settingconst() {
System.out.println("setter");

3

: invokestatic #73 // Method| MyAspect.aspectOf: ()LMyAspect;

: invokevirtual #79 // Method|MyAspect.ajc$before$MyAspect$2$704a2754: OV
: putfield [#54]// Field Const.val:I

Woven JVM Code

aspect MyAspect {
Expr one = new Const(1); pointcut callingtostring():
Expr e = new Add(one,one);
String s = e.toString(); before : callingtostrin
System.out.println(s); System.out.println("calling");

}}

: aload 2
: instanceof // class Expr
: ifeq
: invokestatic #67 // Method MyAspect.aspectOf:()MyAspect;

: invokevirtual #70 // Method MyAspect.ajc$before$MyAspect$1$4c1f7c11: OV

/ Method |java/l

Poincut Parameters and Around/Proceed

Around clauses often refer to parameters and proceed () — sometimes across different
contexts!

class C {
int foo(int i) { return 42+i; }
¥
aspect Doubler {
int around(int i): call(int *.foo(Object, int)) && args(i) {
return newi/2;

¥}
/\ Now, imagine code like:

public static void main(String[] args){
new C().foo(42);
}

[l

call (String Object.toString()) && target (Expr);

[l

Poincut Parameters and Around/Proceed

Around clauses often refer to parameters and proceed () — sometimes across different
contexts!

class C {
int foo(int i) { return 42+i; }
}
aspect Doubler {
int around(int i): call(int *.foo(Object, int)) && args(i) {
int newi = proceed(i*2);
return newi/2;

2
/\ Now, imagine code like:

public static void main(String[] args){
new C().foo(42);
}

Escaping the Calling Context

/\ However, instead of beeing used for a
direct call, proceed () and its parameters
may escape the calling context:

N
N

[

Pointcut parameters and Scope T

/N proceed() might not even be in the same scope as the original method!
/\ even worse, the scope of the exposed parameters might have expired!

class C {
int foo(int i) { return 42+i; }
public static void main(String[] str){ new C().foo(42); }
}
aspect Doubler {
Executor executor;
Future<Integer> f;
int around(int i): call(int *.foo(Object, int)) && args(i) {
Callable<Integer> ¢ = () -> proceed(i*2)/2;
f = executor.submit(c);
return i/2;
}
public int getCachedValue() throws Exception {
return f.get();
o}

Property Based Crosscutting

after(int i) : [call(void h())|&&

cflow(call(void f(int)) &&
args(i))
{...};

Idea 1: Stack based Idea 2: State based

@ At each call-match, check
runtime stack for cf1ow-match

@ ~~ Naive implementation
@ ~~ Poor runtime performance

@ Keep seperate stack of states
@ ~~ Only modify stack at cflow-relevant pointcuts
@ ~~ Check stack for emptyness

Even more optimizations in practice
~ state-sharing, ~~ counters,
~~ static analysis

Shadow Classes and Closures I

// aspectj patched code

class Doubler { // shadow class, holding the fields for the advice
Future<Integer> f;
ExecutorService executor;

public int ajc$around$Doubler$1$9158ff14(int i, AroundClosure c){

Callable<Integer> ¢ = lambda$0(i,c);

f = executor.submit(c);

return i/2;

}
public static int ajc$around$Doubler$1$9158ffidproceed(int i, AroundClosure c)
throws Throwable{

i s = new Object[] { Conversions.intObject(i) };

Object param
ntValue (c.run(params));

statilc Integer lgmbda$0(int i, AroundClosure c) eption{
return Integer.valueOf(ajc$around$Doubler$1$9158ffidproceed(i*2, c)/2);
}}
class C_AjcClosurel extends AroundClosure{ // closure class for poincut params
C_AjcClosurel(Object[] params){ super (params); }
Object run(Object[] params) {
C ¢ = (C) params[0];
int i = Conversions.intValue(params[1]);
return Conversions.intObject(C.foo_aroundBodyO(c, i));

T}

Property Based Crosscutting

after(int i) : call(void h()) &&
cflow(call(void f(int)) &&
args(i))
{...};

Idea 1: Stack based Idea 2: State based

@ At each call-match, check
runtime stack for cf1ow-match

@ ~~ Naive implementation
@ ~~ Poor runtime performance

@ Keep seperate stack of states
@ ~ Only modify stack at cflow-relevant pointcuts
@ ~~ Check stack for emptyness

Even more optimizations in practice
~~ state-sharing, ~» counters,
~~ static analysis

Implementation — Summary T

Translation scheme implications:
before/after Advice ... ranges from inlined code to distribution into several methods
and closures
Joinpoints ... in the original program that have advices may get explicitely
dispatching wrappers
Dynamic dispatching ... can require a runtime test to correctly interpret certain
joinpoint designators
Flow sensitive pointcuts ... runtime penalty for the naive implementation, optimized
version still costly

Further reading... U

[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Optimising aspect;.
SIGPLAN Not., 40(6):117—128, June 2005.

[2] G. Kiczales.

Aspect-oriented programming.
ACM Comput. Surv., 28(4es), 1996.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
An overview of aspectj.
ECOOP 2001 — Object-Oriented Programming, 2072:327-354, 2001.

[4] H. Masuhara, G. Kiczales, and C. Dutchyn.
A compilation and optimization model for aspect-oriented programs.
Compiler Construction, 2622:46—60, 2003.

Aspect Orientation T

Pro

@ Un-tangling of concerns @ Weaving generates runtime overhead

@ Late extension across boundaries of @ nontransparent control flow and
hierarchies interactions between aspects

@ Aspects provide another level of @ Debugging and Development needs IDE
abstraction Support

