Script generated by TTT

Title: Petter: Programmiersprachen (20.11.2019)
Date: Wed Nov 20 12:21:28 CET 2019
Duration: 90:55 min

Pages: 17

Integrating Non-TM Resources [

Allowing access to other resources than memory inside an atomic block poses problems:
@ storage management, condition variables, volatile variables, input/output
@ semantics should be as if atomic implements SLA or TSC semantics

General Challenges when using STM T

Executing atomic blocks by repeatedly trying to execute them non-atomically creates new
problems:
@ a transaction might unnecessarily be aborted
» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:
// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}
int r = ReadTx(&x,0);
} // tx.RV==12 != clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
> compute a new object as result of a transaction
> atomically replace a pointer to the old object with a pointer to the new object if the old object has not
changed
~~ idea of the original STM proposal

@ TM system should figure out which memory locations must be logged
@ danger of live-locks: transaction B might abort A which might abortB ...

Integrating Non-TM Resources T

Allowing access to other resources than memory inside an atomic block poses problems:
@ storage management, condition variables, volatile variables, input/output
@ semantics should be as if atomic implements SLA or TSC semantics

Usual choice is one of the following:

@ | Prohibit It.|Certain constructs do not make sense. Use compiler to reject these
programs.

@ |[Execute It.|1/0O operations may only happen in some runs (e.g. file writes usually go to
a buffer). Abort if I/O happens.

o| Irrevocably Execute It.|UniversaI way to deal with operations that cannot be undone:
enforce that this transaction terminates (possibly before starting) by making all other
transactions conflict.

o|Integrate It.|Re-write code to be transactional: error logging, writing data to afile, .. ..
~~ currently best to use TM only for memory; check if TM supports irrevocable transactions




Hardware Transactional Memory

Transactions of a limited kize lcan also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:

» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts

» if a cache-line in the write set must be written-back, the transaction aborts
~~ limited by fixed hardware resources, a software backup must be provided

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal memory and
speculative region

@ aimed to implement larger atomic operations

Intel's TSX in Broadwell/Skylake microarchitecture (since Aug 2014):
@ implicitely transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources
@ aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory (RTM)

@ Hardware Lock Elision (HLE)

Hardware Transactional Memory i

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
> additional hardware makes it cheap to perform conflict detection
> if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts

~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:

@ Explicit Transactional Memory: each access is marked as transactional
> similar to StartTx, ReadTx, WriteTx, and CommitTx
> requires separate transaction instructions
~~ a transaction has to be translated differently

mixing transactional and non-transactional accesses is problematic

@ Implicit Transactional Memory: only the beginning|and end of a transaction are marked
> same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed transactionally
» hardware access, OS calls, page table changes, etc. all abort a transaction
~ provides strong isolation

Implementing RTM using the Cache (Intel) U

Supporting Transactional operations:
@ augment each cache line with an extra bit T
@ introduce a nesting counter C' and a backup register set




Implementing RTM using the Cache (Intel)

Supporting Transactional operations:
@ augment each cache line with an extra bit T
@ introduce a nesting counter C' and a backup register set

CPU L%gniﬁter || ~ additional transaction logic:

@ xbegin increments C and, if C' = 0, backs up registers

and fiushes buffer
> subsequent read or write access to a cache line sets TifC >0
applying an invalidate message to a cache line with T flag

v

issues xabort

v

xabort

@ xabort clears all T flags and the store buffer,
invalidates the former TM lines, sets C = 0 and
restores CPU registers

Memory flushes store buffer

Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:
int datal[100]; // shared
int mutex;
void update(int idx, int value) {
if (_xbegin()==_XBEGIN_STARTED) {

datal[idx] += value;
_xend () ;

} else {
wait (mutex) ;
datal[idx] += value;
signal (mutex) ;

}

}

@ the fall-back code does not execute racing itself v

observing a read for a modified cache line with T flag issues

@ xend decrements C and, if C' = 0, clears all T flags,

Restricted Transactional Memory

Provides new instructions xbegin, xend, xabort, and xtest:
@ xbegin on transaction start skips to the next instruction or on abort
» continues at the given address
> implicitely stores an error code in eax

@ xend commits the transaction started by the most recent xbegin
@ xabort aborts the whole transaction with an error code
@ xtest checks if the processor is executing transactionally

The instruction xbegin is made accessible via library function _xbegin():

-xbegin () if (_xbegin()==_XBEGIN_STARTED) {

// transaction code
move eax, OxFFFFFFFF

_xend();
xbegin _txnL1 } else {
_txnL1: // non-transactional fall-back
move retval, eax ¥

Considerations for the Fall-Back Path

Consider executing the following code concurrently with itself:

int datal[100]; // shared
void update(int idx, int value) {
if (_xbegin()==_XBEGIN_STARTED) {
datal[idx] += value;
_xend () ;
} else {
datal[idx] += value;

}




Restricted Transactional Memory

Provides new instructions xbegin, xend, xabort, and xtest:
@ xbegin on transaction start skips to the next instruction or on abort
» continues at the given address
» implicitely stores an error code in eax

@ xend commits the transaction started by the most recent xbegin
@ xabort aborts the whole transaction with an error code
@ xtest checks if the processor is executing transactionally

The instruction xbegin is made accessible via library function xbegin():

_xbegin () if (_xbegin()==_XBEGIN_STARTED) {
// transaction code

move eax, OxFFFFFFFF xend() ;

xbegin _txnL1 e_zlse {

_txnL1: // non-transactional fall-back

move retval, eax

~~ user must provide fall-back code

Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {

if (_xbegin()==_XBEGIN_STARTED) {
if ( _xabort () ;
datal[idx] += value;
_xend () ;
} else {

wait (mutex) ;
datal[idx] += value;
signal (mutex) ;

}

@ the fall-back code does not execute racing itself v
@ the fall-back code is now isolated from the transaction v

Considerations for the Fall-Back Path I

Consider executing the following code concurrently with itself:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==_XBEGIN_STARTED) {
datal[idx] += value;
_xend();
} else {
datal[idx] += value;
}
}

I\ Several problems:
@ the fall-back code may execute racing itself
@ the fall-back code is not isolated from the transaction

Happened Before Diagram for Transactions
Augment MESI states with extra bit 7. CPU A: d:E5 t:E0, CPU B: d:l, tmp/value registers

Thread A Thread B

int t = _xbegin(); _xbegin();
int tmp = datalidx]; int tmp = datalidx];
datal[idx] = tmp + value; data[idx] = tmp + value;
_xend(); _xend();
int t=_xbegin() tmp=datal[idx] datal[idx]=tmp+value
xbegin  St[t] Ld[d] St [d] St[t]
store - sfa } »:'r TN D "‘«,‘Eﬂp
P 4 v:rséng— ! -
tE0o WM i
o8
mem gL
f o H
%ﬂ
dL J SyTSE
store i .
; C - Y
B Xbegin T Ldld]™ “Stld] xend

_xbegin() tmp=datalidx] data[idx]=tmp+value _xend()

[




Common Code Pattern for Mutexes

Using HTM in order to implement mutex:

int datal[100]; // shared

int mutex;
int wal) {

vpid update(int idx,
if (_xbegin()==_XBEGIN_STARTED) {
if (!mutex>0) _xabort();

datal[idx] += val;

datal[idx] += val;
signal (mutex) ;
¥
}

void update(int idx, int val) {
data[idx] += val;
[[unIock Gmutex) ;]|

void lock(int* mutex) {

i

if (_xbegin()==_XBEGIN_STARTED)
{ if (!*mutex>0) _xabort();

else return;

wait (mutex) ;

}

vaid nnlock (int* mntex) {
if (!*mutex>0) signal(mutex);|

else _xend();
¥

@ critical section may be executed without taking the lock (the lock is elided)
@ as soon as one thread conflicts, it aborts, takes the lock in the fallback path and
thereby aborts all other transactions that have read mutex

Hardware Lock Elision




