Why Memory Barriers are not Enough i

Script generated by TTT Often, multiple memory locations may only be modified exclusively by one thread during a
computation.
@ use barriers to implement automata that ensure mutual exclusion

~~ generalize the re-occurring concept of enforcing mutual exclusion

Title: Petter: Programmiersprachen (06.11.2019) eeded: interaction with multiple memory locations within a single step:
Date: Wed Nov 06 12:20:06 CET 2019 A
a
Duration: 89:54 min b
Pages: 26
Atomic Executions I Overview T
A concurrent program consists of several threads that share resources: :Nehwill address the established ways of managing synchronization. The presented
@ resources can be memory locations or memory mapped I/O ec mques.
» a file can be modified through a shared handle, e.g. @ are available on most platforms
@ usually invariants must be retained wrt. resources @ likely to be found in most existing (concurrent) software
> e.g. a head and tail pointer must delimit a linked list @ provide solutions to common concurrency tasks
» an invariant may span multiple resources
» during an update, the invariant may be temporarily locally broken @ are the source of common concurrency problems
~+ multiple resources must be updated together to ensure the invariant The techniques are applicable to C, C++ (pthread), Java, C# and other imperative
languages.

Ideally, a sequence of operations that update shared resources should be atomic
[Harris et al.(2010)Harris, Larus, and Rajwar]. This would ensure that the invariant never
seems to be broken. o

Definition (Atomic Execution)

=
A computation forms an atomic execution if its effect can only be observed as a single
transformation on the memory.

Wait-Free Atomic Executions

[]

—

Wait-Free Bumper-Pointer Allocation T

Garbage collectors often use a bumper pointer to allocated memory:
Bumper Pointer Allocation

char heap[2720];
char* firstFree = &heap[0];

char* alloc(int[size) {
char* start = firstFre94

firstFree = firstFree + size1|

if (start+size>sizeof (heap)) garbage_collect();
return [SEart;)

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Wait-Free Updates T

Which operations on a CPU are atomic? (j,k and tmp are registers)

o . int tmp = i;
it _ i =[g] ’
1= ik} [3]= tmp;
Answer:

@ none by default (even without store and invalidate buffers, why?)

/N The load and store (even i++’s) may be interleaved with a store from another
processor.

All of the programs can be made atomic executions (e.g. on x86):
@ i must be in memory

@ |dea: lock the cache bus for an address for the duration of an instruction

mov eax,reg_k
lock [i [addr_i] lock dd [addr_il, lock] hg [addr_il, _j
[Fock]inc fadar_s :Z_J,e:xr i1,eax xcg addr_i],reg_j
Wait-Free Bumper-Pointer Allocation U

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[2720];
char* firstFree = &heap[0];

char* alloc(int size) {
char* start;
asm("lock; xadd %0, %1" :"=r"(start),"=m"(firstFree):
"0"(size) ,"m" (firstFree) :'"memory");

if (start+size>sizeof (heap)) garbage_collect();
return start;

}

@ firstFree points to the first unused byte

@ each allocation reserves the next size bytes in heap
Thread-safe implementation:

@ alloc’s core functionality matches Program 2: fetch-and-add

~~inlina aceamhlar ((ACCY/ATRT cuntav in tha avamnla)

Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 3

I%

atomic { AT o
atomic { I int tmp = i;
i++; ’ i = 5:
T i= ivk; S
} } j = tmp;
}

The statements in an atomic block execute as atomic execution:

a&:omic { tmp = i; i = j;

@ atomic only translatable when a corresponding atomic CPU instruction exist
@ the notion of requesting atomic execution is a general concept

Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might still be
viable.

Common usage pattern for compare and swap:

@ read the initial value in ¢ into'k (using memory barriers)

@ compute a new value j = f(k)

© update i to j if i = k still holds

@ go to first step if i # k meanwhile (" -~ f (‘B

Wait-Free Synchronization I

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

atomic { atomic { atomic {
(=[5][5 m- (-0
® = 0j b= 15| it [@)][i] =

} } }

Operations update a memory cell and return the previous value.
@ the first two operations can be seen as setting a flag b to v € {0, 1} and returning its
previous state.
» the operation implementing programs 4 and 5 is called set-and-test
@ the third case generalizes this to setting a variable i to the value of j, if i’s old value is
equal to k’s.
» the operation implementing program 6 is called compare-and-swap

~= use as building blocks for algorithms that can fail

Lock-Free Algorithms T

If a wait-free implementation is not possible, a lock-free implementation might still be
viable.

Common usage pattern for compare and swap:

@ read the initial value in i into k (using memory barriers)

@ compute a new value j = f(k)

© update i to j if « = k still holds

@ go to first step if i # k meanwhile

I\ note: i = k must imply that no thread has updated ¢

General recipe for lock-free algorithms

@ given al compare-and-swap operation for n bytes|

@ try to group variables for which an invariant must hold into 4 bytes
o|read these bytes atomically |

@ compute a new value

@ perform a compare-and-swap operation on these n bytes

Locked Atomic Executions

Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
} if (avail) (*s)--;
}
} while ('avail);
}

A counting semaphore can track how many resources are still available.
@ a thread acquiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal () to release
Special case: initializing with|s = 1|gives a binary semaphore:
@ can be used to block and unblock a thread
@ can be used to protect a single resource
~~ in this case the data structure is also called mutex |

Locks i

Definition (Lock) ;

A lock is a data structure that
@ can be acquired and released
@ ensures mutual exclusion: only one thread may hold the lock at a time
@ blocks other threads attempts to acquire while held by a different thread

@ protects a critical section: a piece of code that may produce incorrect results when
entered concurrently from several threads

VAN may deadlock the program

Implementation of Semaphores T
A semaphore does not have to wait busily:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
wake(s); if (avail) (*s)--;
} h

if (lavail) de_schedule(s);
} while ('avail);
}
Busy waiting is avoided:

@ a thread failing to decrease s executes de_schedule ()

@ de_schedule() enters the operating system and inserts the current thread into a queue
of threads that will be woken up when *s becomes non-zero, usually by monitoring
writesto s (~» FUTEX_WAIT)

@ once a thread calls wake (s), the first thread ¢ waiting on s is extracted

@ the operating system lets ¢ return from its call to de_schedule ()

Practical Implementation of Semaphores T

Certain optimisations are possible:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
wake(s); if (avail) (xs)--;
} }

if (lavail) de_schedule(s);
} while (lavail);
¥
In general, the implementation is more complicated
@ wait () may busy wait for a few iterations

» avoids de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

@ wake (s) informs the scheduler that s has been written to
~~ using a semaphore with a single core reduces to

if (*s) (*s)--; /# critical section */ (ks)++;

Implementation of a Basic Monitor T

A monitor contains a semaphore count and the id tid of the occupying thread:
typedef struct monitor mon_t;
struct monitor { int tid; int count; };
void monitor_init(mon_t* m) { memset(m, O, sizeof(mon_t)); }
Define monitor_enter and monitor_leave:
@ ensure mutual exclusion of accesses to mon_t
@ track how many times we called a monitored procedure recursively
void monitor_leave(mon_t *m) {
m->count--;

void monitor_enter(mon_t *m) {
bool mine = false;

7vhile ('min if (m->count==0) {
= {ghread_id ()5=m->tid; atomic {
if (mine) ++; else m->tid=0;

atomic { }

f (m->tid==0) {

i
m->tid =Chread_id()%) }
q:ugne = tru4; E-f?@nt=1; \ }
\/i } D
£
} 3

wake (&m->tid) ;

;1)

I('mine) de_schedule(&m->tid) ;I

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function

Locking each procedure body that accesses a data structure:

@ is a re-occurring pattern, should be generalized

@ becomes problematic in recursive calls: it blocks

E.g. a thread ¢ waits for a data structure to be filled

> ¢ will call pop () and obtain -1
> t then has to call again, until an element is available

~~ tis busy waiting and produces contention on the lock &
Monitor: a mechanism to address these problems:

& ;

@ a procedure associated with a monitor [acquires a lock on entry and|releases|it on exit

@ if that lock is already taken by the current thread, proceed

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
E.g. a thread ¢ waits for a data structure to be filled:
» t will call pop () and obtain -1
» t then has to call again, until an element is available
~~ tis busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; int cond2;... I}

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
E.g. athread t waits for a data structure to be filled:
» ¢ will call pop () and obtain -1
> t then has to call again, until an element is available
~ tis busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting:
struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
@ wait for the condition to become true
» called while being inside the monitor
» temporarily releases the monitor and blocks
» when Signalled, re-acquires the monitor and returns |
@ signal waiting threads that they may be able to proceed
» one/all waiting threads that called wait will be woken up, two possibilities:
signal-and-urgent-wait : the signalling thread suspends and continues once the signalled
thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread enters when the
monitor becomes available

LSighal-And-Continué Semantics
Here, the signal function is usually called

@ a call to wait on condition a adds
thread to the queue a.q

@ acall to notify for a adds one
thread from a.q to e (unless a.q is
empty)

@ if a thread leaves, it wakes up one
thread waiting on e

~> signalled threads compete for the
monitor
@ assuming FIFO ordering on e,
threads who tried to enter between
wait and notify will run first
@ need additional queue s if waiting
threads should have priority

i

Signal-And-Urgent-Wait Semantics

Requires one queue for each condition ¢ and a suspended queue s:

@ a thread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acall to signal for a adds
thread to queue s (suspended)

@ one thread form the a queue is
woken up

@ signal onais ano-op if a.q is
empty

: \@ _ @ if a thread leaves, it wakes up
b 3 one thread waiting on s
\ m @ if s is empty, it wakes up one
thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~= queue s has priority over e

Implementing Condition Variables

We implement the simplerlsi -anad-

~~ a notified thread is simply woken up and competes for the monitor
void cond_wait(mon_t *m) {
assert(m->tid==thread_id())
int old_count = m->count;
m->tid = 0;

wait (&m->cond) ;

bool next_to_enter;

do 1 void cond_notify(mon_t *m) {
atomic { // wake up other threads
next_to_enter = m->tid==0; [signal (&m->cond)]
if (next_to_enter) { }

m->tid = thread_id();
m->count = old_count;

}
¥
if ('next_to_enter) de_schedule(&m->tid);
} while ('nmext_to_enter);}

A Note on Notify

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll]wakes up all threads waiting on a condition variable

N an implementation often becomes easier if notify means notify some

~ programmer should assume that thread is not the only one woken up

Deadlocks

Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#:
class C {
public synchronized void f£() {

// body of £

JEE)

T rotified \ / 1
X :/

)

R O is equivalent to

- - class C {

, public void £() {

q N monitor_enter (this);
// body of f
monitor_leave(this);

< _wait

o - »
with Object containing:

private int mon_var;

private int mon_count;

private int cond_var;

protected void monitor_enter();
source: http://en.wikipedia.org/wiki/Monitor_(synchronization) i K

protected void monitor_leave();

