Script generated by TTT

Title: Petter: Programmiersprachen (23.10.2019)
Date: Wed Oct 23 12:30:52 CEST 2019
Duration: 76:13 min

Pages: 27

MESI Example

Consider how the following code might execute:

Thread A Thread B

//

while (b == 0) {}; // B.1
assert(a == 1); // B.2

a = A.

1; /
b =1; //

[N

(55

@ in all examples, the initial values of variables are assumed to

@ suppose that reside in different cache lines

@ assume that a cache line is larger than the variable itself
@ we write the content of a cache line as

» Mx: modified, with value x

» Ex: exclusive, with value x

» Sux: shared, with value x

> |:invalid

MESI Example

Consider how the following code might execute:

Thread A Thread B

a // A.
b =

/] I

/1

while (b == 0) {}; //
assert (a == 1); //

W w

>
N
N

1;
g 3.
@ in all examples, the initial values of variables are assumed to be 0

@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself
@ we write the content of a cache line as

> Mx: modified, with value x

» Ex: exclusive, with value x

» Sx: shared, with value x

> |:invalid

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an address

@ Read Response: when in state E or S, response to a Read
message, carries the data for the requested address

—_—
@ /nvalidate: asks others to evict a cache line M - E
@ Invalidate Acknowledge: reply indicating that a cache line has
been evicted I l \ l

@ Read Invalidate:|like Read + Invalidate (also called “read with
ntend to modify”) - I
@ Writeback: Read Response when in state M, as a side effect

noticing main memory about modifications to the cacheline,

changing sender’s state to S

We mostly consider messages between processors. Upon Read Invalidate, a processor
replies with Read Response/ Writeback before the Invalidate Acknowledge is sent.

MESI Example

Consider how the following code might execute:

Thread A Thread B

a=1; // while (b == 0) {}; // B.

1
b =1; // A. assert(a == 1); // B.2

b
N =

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself
@ we write the content of a cache line as

Mx| modified, with value x

Ex:| exclusive, with value x

Sx:| shared, with value x

|: invalid

MESI Example

Consider how the following code might execute:

Thread A Thread B

) {}y; // B.1
)2 // B.2

a =1; // A.1l while (b == 0
b =1; // A.2 assert(a == 1

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines
o
o

assume that a cache line is larger than the variable itself
we write the content of a cache line as

» Mx: modified, with value x

» Ex: exclusive, with value x

» Sux: shared, with value x

> |:invalid

MESI Example (I)

Thread A

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

 —
statement CPUA CPUB RAM message
a b a b a|b
[Ad]] I ! 010) read invalidate of a from CPU A
I ! ! 0 0 \) invalidate ack. of a from CPU B
I I ! 0|0) read response of a=0 from RAM
B.1 M1 ! ! oo) read of b from CPU B
M1 ! ! oo Q read response with b=0 from RAM
B.1 M1 | EO 0 0
A2 | M1 ! EO 0o \) read invalidate of b from CPU A
M1 I EO oo) read response of b=0 from CPU B
M1 | S0 SO0 | ©) invalidate ack. of b from CPU B
M1 M1 | 0 0

MESI Example (I)

Thread A

Thread B

a =1; // A.1l while {}; // B.1l
b =1; // A.2 assert(a == 1); // B.2
statement CPUA CPUB RAM message
a b a b a|b
Al ! ! ! oo \) read invalidate of a from CPU A
! ! ! oo) invalidate ack. of a from CPU B
! ! ! oo \) read response of a=0 from RAM
B.1 M1 I ! oo) read of b from CPU B
M1 ! ! ,}" 0) read response with b=0 from RAM
B.1 | M1 | EO [fOo| O
A2 | M1 I EO 010) read invalidate of b from CPU A
M1 ! E0 010 \) read response of b=0 from CPU B
M1 50 S0 0 0) invalidate ack. of b from CPU B
M1 M1 | 0 0

MESI Example (I)

Thread B

a =1; // A.1l while (b == 0) {}; //
b =1; // A.2 assert(a == 1); //
statement CPUA CPUB RAM message
a b a b a|b
Al I ! I ! 010) read invalidate of a from CPU A
I ! ! ! 0|0) invalidate ack. of a from CPU B
I ! I ! 010) read response of a=0 from RAM
B.1 M1 ! ! ! 0|0) read of b from CPU B
M1 ! I ! 010) read response with b=0 from RAM
B.1 M1 | | EO 0|0
A2 | M1 ! I EO0 0|0) read invalidate of b from CPU A
1) ! EO 0|0) read response of b=0 from CPU B
M1 S0 I S0 0|0) invalidate ack. of b from CPU B
M1 M1 | | [

MESI Example (Il)

Thread B

a =1; // A.1l while (b == 0) {}; // B.1
b =1; // A.2 assert(a == 1); // B.2
statement CPUA CPUB RAM message
a b a b a|b
B.1 M1 M1 I ! 0o) read of b from CPU B
M1 M O | 9| write back of b=1 from GPU A
B2 [M1 S1) §1 0|1) read of a from CPU B
MU P STHE ST T Y write back of 2=1 from CPU A
S1 S1 St S1 1 1
Al St S1 St §1 1 1) invalidate of a from CPU A
§1 §1 I §1 1 1) invalidate ack. of a from CPU B
M1 S1 | S1 1 1

MESI Example (I)

Thread A Thread B

a =1; // A.1l while (b == 0) {}; // B.1l
b =1; // A.2 assert(a == 1); // B.2
statement CPUA CPUB RAM message
a b a b a|b
Al ! I I ! 010) read invalidate of a from CPU A
! ! ! ! 0 0 \) invalidate ack. of a from CPU B
! ! ! ! 0]0) read response of a=0 from RAM
B.1 M1 ! ! ! oo \) read of b from CPU B
M1 ! ! ! 010 \} read response with b=0 from RAM
B.1 M1 | | EO 0 0
A2 | M1 ! ! EO oo \) read invalidate of b from CPU A
M1 ! ! EO oo) read response of b=0 from CPU B
MI | SOt SO0 0 invaiidate ack. of b from CPU B
M1 M1 | | 0 0

MESI Example (ll)

Thread A Thread B

a =1; // A.1l while (b == 0) {}; // B.1l
b =1; // A.2 assert(a == 1); // B.2
statement CPUA CPUB RAM message
a b a b a|b
B.1 M1 M1 ! I oo) read of b from CPU B
M1 M1 ! ! 0|0 \) write back of b=1 from CPU A
B2 | M1 51 ! s1 01) read of a from CPU B
M1 1 ! S1 o1) write back of a=1 from CPU A

Al | 81 | S1 || 81 |81 |11 invalidate of a from CPU A
S1 S1 | S1 1 1

e e

invalidate ack. of a from CPU B
M1 S1 | S1 1 1

MESI Example (lI) T MESI Example: Happened Before Model i
Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

a =1; // A.l while (b == 0) {}; // B.1l
b =1; // A.2 assert (a == 1); // B.2
statement CPUA CPUB RAM message
a b a b a|b
B.1 M1 M1 I I 0o) read of b from CPU B
MM 0| O 1) write back of =1 from CPU A
B2 | M1 s1 I §1 0|1) read of a from CPU B
M1 §1 ! s1 011) write back of a=1 from CPU A

S1 | St SH S1 1 1

Observations:

AA1. S.1 S'1 S.1 S‘1 1 1 . : .
silsilly Tsillals nvalidate of 2 from CPU A @ each memory access must complete before executing next instruction ~ add edge

M1 S1 | S1 1 1

invalidate ack. of a from CPU B

e e

Out-of-Order Execution i

A performance problem: writes always stall

Thread A Thread B

a=1; // A.l while (b == 0) {}; // B.1
b =1; // A.2 assert(a == 1); // B.2

Introducing Store Buffers: Out-Of-Order Stores

~~» CPU A should continue executing after a

o o 2

o
i
o

Store Buffers

I\ Abstract Machine Model: defines semantics of memory accesses

CPUB

store

| cache ‘

Store Buffers

@ put each store into a store buffer and continue
execution
@ Store buffers apply stores in various orders:

| FIFO|(Spardx86]TSO)
»['unordered |Sparc PSO)

A4

o /N program order still needs to be observed locally

» store buffer snoops read channel and
> on matching address, returns the youngest value in buffer

I\ Abstract Machine Model: defines semantics of memory accesses

CPUA CPUB

store store
buffer ®—buffer

| cache ‘ | cache ‘

Memory

@ put each store into a store buffer and continue
execution

@ Store buffers apply stores in various orders:
> FIFO (Sparc/x86- TSO)
> unordered (Sparc PSO)

PWAN program order still needs to be observed locally

» store buffer snoops read channel and
» on matching address, returns the youngest value in buffer

Store Buffers i

/N Abstract Machine Model: defines semantics of memory accesses

CPUA CPUB .)
@ put each store into a store buffer and continue
execution
store store i i :
Sore Dore] @ Store buffers apply stores in various orders:

» FIFO (Sparc/x86-TSO)
» unordered (Sparc PSO)

‘ cache | ‘ cache | o /\ program order still needs to be observed locally

|—|—' » store buffer snoops read channel and

» on matching address, returns the youngest value in buffer

Memory

TSO Model: Formal Spec [S192] U

Definition (Total Store Order)

@ The store order wrt. memory (C) is total

Va,b € addr iyj ecru (Stila) T St;[b]) V (St;[b] C Sti[a])
@ Stores in program order (<) are embedded into the memory order (C)

Stifa] < St;[b] = Sti[a] C st;[b]
© Loads preceding an other operation (wrt. program order <) are embedded into the memory order (C)

Ldi[a] < Op;[b] = Ldi[d] C Op;[b]
© A load's value is determined by the latest write as observed by the local CPU

=St,[a] | St,[a] =max ({Stx[d] |‘sm[a} C 14, [a}} U‘{St,[a] | stlal < L(ﬁa]}k)

Particularly, one ordering property is not guaranteed:

Stila] < Ldi[b] # stila] C Ldi[b]

& Local stores may be observed earlier by local loads then from somewhere else!

Store Buffers

I\ Abstract Machine Model: defines semantics of memory accesses

CPUA CPUB
store store
buffer

| cache ‘ | cache ‘

I—I—I

Memory

Happened-Before Model for TSO

Thread B

@ put each store into a store buffer and continue
execution
@ Store buffers apply stores in various orders:

> FIFO (Sparc/x86- TSO)
> unordered (Sparc PSO)

o N\ program order still needs to be observed locally

» store buffer snoops read channel and
> on matching address, returns the youngest value in buffer

Thread A

a =

printf ("%d",b);

1;

b =1;

printf ("%d",a);

Assume cache A contains: a: SO, b: S0, cache B contains: a: S0, b: SO
printf("sd", 5"
e

a=1

“a A1
store _%"La=13
s6

()
Sa

S b Se
&

..!if":‘“.:’a”d?te ack

SN
printf ("%d",a)="

TSO Model: Formal Spec [S192]

Definition (Total Store Order)

@ The store order wrt. memory (C) is total
Vb € adarij ecru (Stila] T st;[b]) V (st;[b] C sti[a])
@ Stores in program order (<) are embedded into the memory order (C)

Stila] < Sti[b] = sti[a] C st,[b]
© Loads preceding an other operation (wrt. program order <) are embedded into the memory order (C)

Ldi[a] < Op;[b] = Ldi[d] C Op;[b]
© A load’s value is determined by the latest write as observed by the local CPU

val(Laifa) = val(st] | st,la] =max ({Stula] | Stula] C eifal} U {stila] | St.fa] < Lafa]})

Particularly, one ordering property is not guaranteed:

stgld] qu] #st;[a] C Lai[b]

& Local stores may be observed earlier by local loads then from somewhere else!

TSO in the Wild: x86

The x86 CPU, powering desktops and servers around the world is a common
representative of a TSO Memory Model based CPU.

@ FIFO store buffers keep quite strong consistency properties

@ The major obstacle to Sequential Consistency is

Stila] < Ldi[b] | # | Sti[d] C Ldi[b]

» modern x86 CPUs provide thinstruction

» mfence orders all memory instructions:

Op; < mfence() < 0p," | = | op; C Op;’

@ a fence between write and loads gives sequentially consistent CPU behavior (and is as
slow as a CPU without store buffer)
~~ use fences only when necessary

Happened-Before Model for TSO T

Thread A Thread B

a=1; b =1;
printf ("%d",b); printf ("sd",a);

Assume cache A contains: a: SO, b: S0, cache B contains: a: S0, b: SO
a=1 _printf ("$d",b)
4

e~

invalidate

PSO Model: Formal Spec [SI92] U

@ The store order wrt. memory (C) is total

Va,b € adir ij ecru (Stila] E st;[b]) V (St;[b] E stifa])
@ Fenced stores in program order (<) are embedded into the memory order (C)

Sti[a] < sfence () < St;[b] = St;[a] C St;[b]
© Stores to the same address in program order (<) are embedded into the memory order (C)
St;[a] < St;[a]' = St;[a] C St,'[(l]/
@ Loads preceding another operation (wrt. program order <) are embedded into the memory order (C)
Ldi[a] < 0p;[b] = Ldi[a] C Op;[B]
© A load's value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[a] | St;[a] s ({st«la] | stila] C Ldi[a]} U {sti[a] | sti[a] < Ldi[a]}))

& Now also stores are not guaranteed to be in order any more:

Stila] < sti[b] # sti[a] C st;[b]

~~ What about sequential consistency for the whole system?

TSO in the Wild: x86 i

The x86 CPU, powering desktops and servers around the world is a common
representative of a TSO Memory Model based CPU.

@ FIFO store buffers keep quite strong consistency properties
@ The major obstacle to Sequential Consistency is

Stila] < Ldi[b] # Sti[a] C Ldi[p]
» modern x86 CPUs provide the mfence instruction
» mfence orders all memory instructions:
op; < mfence() < op,/ = Op; Cop,

@ a fence between write and loads gives sequentially consistent CPU behavior (and is as
slow as a CPU without store buffer)

~~ use fences only when necessary

Explicit Synchronization: Write Barrier T

Overtaking of messages may be desirable and does not need to be prohibited in general.
@ generalized store buffers render programs incorrect that assume sequential
consistency between different CPUs
@ whenever a store in front of another operation in one CPU must be observable in this
order by a different CPU, an explicit write barrier has to be inserted

» a write barrier marks all current store operations in the store buffer
» the next store operation is only executed when all marked stores in the buffer have completed

