Implementation of a Basic Monitor [

A monitor contains a mutex count and the id of the thread tid occupying it:

Script  generated by TTT typedef struct monitor mon_t;
struct monitor { int tid; int count; };
void monitor_init(mon_t* m) { memset(m, O, sizeof(mon_t)); }

Define monitor_enter and monitor_leave:

Title: Petter: Programmiersprachen (09.11.2016) @ ensure mutual exclusion of accesses to mon._t
@ track how many times we called a monitored procedure recursively
Date: Wed Nov 09 14:16:05 CET 2016 void monitor_enter(mon_t *m) { void monitor_leave(mon_t *m) {
bool mine = false; atomic {
. . while ('mine) { m->count--;
Duration: 88:44 min atomic { if (m->count==0) {
mine = thread_id()==m->tid; // wake up threads
Pages: 40 if (mine) m->count++; else m->tid=0;
if (m->tid==0) { ¥
mine = true; m->count=1; }
m->tid = thread_id(); }
}
};
if ('mine) de_schedule(&m->tid);}}
Atomic Executions, Locks and Monitors. 21/39
Condition Variables T Condition Variables i
v Monitors simplify the construction of thread-safe resources. v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize: Still: Efficiency problem when using resource to synchronize:
e if a thread t waits for a data structure to be filled: @ if a thread ¢ waits for a data structure to be filled:
» t will call e.g. pop() and obtain -1 » t will call e.g. pop() and obtain -1
» t then has to call again, until an element is available » t then has to call again, until an element is available
A t is busy waiting and produces contention on the lock & t is busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; int cond2;... };
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Condition Variables i

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. pop() and obtain -1
» ¢ then has to call again, until an element is available
A t is busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
@ [waitfor the condition to become true
» called while being inside the monitor
» temporarily releases the monitor and blocks
» when signalled, re-acquires the monitor and returns
@ [signal]waiting threads that they may be able to proceed
» onef/all waiting threads that called wait will be woken up, two possibilities:
|signa!—and—urgent-wait|: the signalling thread suspends and continues once
the signalled thread has released the monitor
| signal-and-continue| the signalling thread continues, any signalled thread
enters when the monitor becomes available
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Signal-And-Continue Semantics [T
Here, the signal function is usually called notify.
g
3 @ acall to wait on condition « adds
T | thread to the queue a.q
Cl
, @ acallto notify for a adds one
] notified thread from a.q to e (unless a.g is
, e empty)
b.q Y @ if a thread leaves, it wakes up one
a.q thread waiting on e
i
-
L wait b
—-
o]
<
v @

source: http://en.wikipedia. org/wiki/Monitor_(synchronization)
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Signal-And-Urgent-Wait Semantics [

Requires one gueues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
! the monitor is occupied

@ a call to wait on condition a
adds thread to the queue a.q

@ acall to signal for a adds

— . thread to queue s (suspended)
24 wata @ one thread form the « queue is
% a
1 s alled (| woken up
J/]%\Q @ signalonais ano-opifa.qis
b.q " waitb empty
=== signalled | @ if a thread leaves, it wakes up
T8 one thread waiting on s
I e e if s is empty, it wakes up one

thread from e

source: http://en.wikipedia.org/wiki/Monitor (synchronization)
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Signal-And-Continue Semantics I
Here, the signal function is usually called notify.
3
3 @ a call to wait on condition « adds
— " thread to the queue a.g
notified )
, - @ acall to notify for a« adds one
| notified thread from a.g to e (unless a.q is
" empty)
F e
bg e o if a thread leaves, it wakes up one
aq thread waiting on e
wait a ~+ signalled threads compete for the
i monitor
| b notify @ assuming FIFO ordering on e,
al threads who tried to enter
fl _ " between wait and notify will run
B first
e @ need additional queue s if waiting

threads should have priority

source: http://en.wikipedia. org/wiki/Monitor_(synchronization)
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Implementing Condition Variables T A Note on Notify L

We implement the simpler signal-and-continue semantics:
@ a notified thread is simply woken up and competes for the monitor

With signal-and-continue semantics, two notify functions exist:

void cond wait(mon_ t #m) { @ |notify:{wakes up exactly one thread waiting on condition variable
assert(m->tid==thread_id Q) ; @ |notifyA1l| wakes up all threads waiting on a condition variable
int old_count = m->count;
m->tid = 0;

wait(m->cond) ;
bool next_to_enter;

do { void cond_notify(mon_t *m) {
Atomic { // wake up other threads
next_to_enter = m->tid==0; |signal(m—>cond);|

if (next_to_enter) {
m->tid = thread_id();
m->count = old_count;
}
T
if k!next_to_enter) de_scheduld(&m—>tid)u
} while ('next_to_enter);}
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A Note on Notify i A Note on Notify i
With signal-and-continue semantics, two notify functions exist: With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable @ notify: wakes up exactly one thread waiting on condition variable

© notifyAll: wakes up all threads waiting on a condition variable © notifyAll: wakes up all threads waiting on a condition variable
AN an implementation often becomes easier if notify means notify some N an implementation often becomes easier if notify means notify some

~+ programmer should assume that thread is not the only one woken up ~~ programmer should assume that thread is not the only one woken up

What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid
@ -~ notified threads compete for the monitor with other threads

@ if OS implements FIFO order: notified threads will run after threads that
tried to enter since wait was called

@ giving priority to waiting threads requires more complex implementation
(queue data structure for signaled threads)
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Monitors with a Single Condition Variable T

Monitors with a single condition variable are built into Java and C#:

< HCC‘ s class C {
yadkrouite (O)} public synchronized void £() {
0. efl)

// body of f to @i ()
notified h&(.) 11 (40{\;7();
) - ¢ Wv b )
' is equivalent to
class C {

public void £() {
q monitor_enter();
5 wait // body of f

nY% monitor_leave();

1}
with Object containing:

lajua

private int mon_var;

private int mon_count;

private int cond_var;
protected void monitor_enter();
protected void monitor_leave();
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_ aneg

source: http://en.wikipedia. org/wiki/Monitor_(synchronization)

Deadlocks with Monitors [

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
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Deadlocks
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Deadlocks with Monitors U

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:
class Foo { @ threads A and B execute a.bar()
public Foo other = null; and b.bar ()
public synchronized void bar() { @ a.bar() acquires the monitor of a
_ if (#) other.bar(); ... ¢y 1.1() acquires the monitor of b

} @ A happens to execute
other.bar ()

A blocks on the monitor of b

B happens to execute
other.bar ()

~~ both block indefinitely

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo b = new Foo();
|a.other = bl |b.0ther = a;l
// in parallel:

|a.bar()| | ||b.bar() ;l
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Deadlocks with Monitors [

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Consider this Java class: Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar()
public Foo other = null; andb.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
, . if (%) other.bar(); @ b.bar () acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b

@ B happens to execute
other.bar ()

@ -~ both block indefinitely
How can this situation be avoided?
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and two instances:

Foo a = new Foo();
Foo b = new Foo();

a.other = b; b.other = a;
// in parallel:
a.bar() || b.bar();

Treatment of Deadlocks [

Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:

@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
© circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ Jignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

© awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock
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Treatment of Deadlocks i
Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:

@ | mutual exclusion]processes require exclusive access

9| wait for:|a process holds resources while waiting for more

@ no preempiion] resources cannot be taken away form processes
@ [circular walt] waiting processes form a cycle
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Treatment of Deadlocks i
Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
© circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ defection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

@ avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~+ prevention is the only safe approach on standard operating systems
@ can be achieved using lock-free algorithms
@ but what about algorithms that require locking?
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Deadlock Prevention through Partial Order [ Treatment of Deadlocks [

Observation: A cycle cannot occur if locks can be partially ordered. Observation: Deadlocks occur if the following four conditions hold
o [Coffman et al.(1971)Coffman, Elphick, and Shoshani):
Definition (lock sets)

, @ mutual exclusion: processes require exclusive access
Let L denote the set of locks. We call A\(p) C L the lock set at p, that is, the set o it for- hold hil iting f
of locks that may be in the “acquired” state at program point p. wailfor. a process nolds resources while warting for more
@ no preemption: resources cannot be taken away form processes

@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
@ prevention: design programs to be deadlock-free

@ awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~~ prevention is the only safe approach on standard operating systems
@ can be achieved using lock-free algorithms
@ but what about algorithms that require locking?
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Deadlock Prevention through Partial Order U] Deadlock Prevention through Partial Order ]|

Observation: A cycle cannot occur if locks can be partially ordered. Observation: A cycle cannot occur if locks can be partially ordered.
Definition (lock sets) Definition (lock sets)
Let L denote the set of locks. We call A\(p) C L the lock set at p, that is, the set Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p. of locks that may be in the “acquired” state at program point p.

We require the transitive closure o™ of a relation o:

X, .{'—*— O x==p Definition (transitive closure)
Let o C X x X be arelation. Its transitive CWN o' where
O’D = a '(/
o't = {fxy,x3)| € X (;r:l, €at /\,1’3‘% €'}
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Deadlock Prevention through Partial Order [

Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A\(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o of a relation o

Definition (transitive closure)
Let o C X x X be a relation. Its transitive closure is o™ = |, o' where

0'0 = a

O’i+1 {(.11,.1'3) | E|IL’2 EX.(Il,.’Eg) EO’i/\<I’2,.’E3) EO’i}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define < C L x L such that|l <1 iff|l_|e A(p) and the statement atp|is of the
form frait (17)]or honitor enter(1°)| Define the strict lock order <= <.

4
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Freedom of Deadlock T

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors L,
such that L = U

Theorem (freedom of deadlock for monitors)

Ifva € .and‘v@e,beL a<bAb<al={a=

is free of deadlocks.

i~

then the program J
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Freedom of Deadlock L
The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with[a < d| then the program is free of deadlocks. J
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Freedom of Deadlock T
The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly
suchthat L = Lg U Lyy.

lfVa € Ls.a 4 aandVa € Ly,be L.a<bAb=<a= a=bthenthe program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. J

Note: the set L containg instances of a lock.
@ the set of lock instances can vary at runtime

@ if we statically want to ensure that deadlocks cannot occur:

» summarize every lock/monitor that may have several instances into one
> a sumrfick/monitor a € Ly represents several concrete ones

» thus, iffa < a fhen this might not be a self-cycle
~ requireThat a # a for all summarized monitors a € L
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Avoiding Deadlocks in Practice [ Avoiding Deadlocks in Practice [

How can we verify that a program contains no deadlocks? How can we verify that a program contains no deadlocks?
@ identify mutex locks Ls and summarized monitor locks L3, € Ly @ identify mutex locks Lg and summarized monitor locks L3, C Ly
© identify non-summary monitor locks L7, = Ly \ L3, @ identify non-summary monitor locks L, = Ly, \ L3,
© sort locks into ascending order according to lock sets © sort locks into ascending order according to lock sets
© check that no cycles exist except for self-cycles of non-summary monitors @ check that no cycles exist except for self-cycles of non-summary monitors

/\ What to do when the lock order contains a cycle?

@| determining which locks may be acquired at each program point is
undecidable -~ lock sets are an approximation

@ an array of locks in Lg: lock in increasing array index sequence
@ if | € A(P) exists I’ < [ is to be acquired ~ change program: release [,
acquire I’, then acquire [ again ~- inefficient

@ if a lock set contains a summarized Iockis to be acquired, we're
stuck
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Avoiding Deadlocks in Practice [T

How can we verify that a program contains no deadlocks?

@ identify mutex locks Ls and summarized monitor locks L, € Ly

@ identify non-summary monitor locks L%, = Ly \ L},

© sort locks into ascending order according to lock sets

© check that no cycles exist except for self-cycles of non-summary monitors Locks Roundup
/N What to do when the lock order contains a cycle?

@ determining which locks may be acquired at each program point is
undecidable -~ lock sets are an approximation

@ an array of locks in Lg: lock in increasing array index sequence

@ ifl € A(P) exists I’ < [ is to be acquired ~~ change program: release [,
acquire I’, then acquire [ again -~ inefficient

@ if a lock set contains a summarized lock @ and a is to be acquired, we're
stuck

an example for the latter is the Foo class: two instances of the same class call
each other
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Atomic Execution and Locks [T Atomic Execution and Locks T

Consider replacing the specific locks with atomic annotations: Consider replacing the specific locks with atomic annotations:
stack: removal stack: removal
void pop() { void pop() {
wait(gq->t); wait(g->t);
if (*) { signal(gq->t); return; } if (%) { signal(gq—>t); return; }
if (¢) wait(g->s); if H wait(q->s);
if (¢) signal(qg->s); if E signal(qg->s);
signal(gq—>t); signal(q->t);
¥ }

® nested atomic blocks still describe one atomic execution
~ locks convey additional information over atomic
@ locks cannot easily be recovered from atomic declarations
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Outlook [0 Outlook U]
Writing atomic annotations around sequences of statements is a convenient Writing atomic annotations around sequences of statements is a convenient
way of programming. way of programming.

Idea of mutexes: Implement atomic sections with locks:

@ g single lock could be used to protect all atomic blocks

® more concurrency is possible by using several locks

@ some statements might modify variables that are never read by other
threads ~~ no lock required

@ statements in one atomic block might access variables|in a different order
to another atomic block ~~ deadlock possible with Tocks implementation

@ creating too many locks can decrease the performance, especially when
required to release locks in A(l) when acquiring [

Atomic Executions, Locks and Monitors 36/39 Atomic Executions, Locks and Monitors 36/39




Concurrency across Languages ) Concurrency across Languages T

In most systems programming languages (C,C++) we have In most systems programming languages (C,C++) we have
@ the ability to use atomic operations @ the ability to use afomic operations
~> Wwe can implement wait-free algorithms ~+ We can implement wait-free algorithms

In Java, C# and other higher-level languages
@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems
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Concurrency across Languages T Summary T
In most systems pragramming languages (C,C++) we have Classification of concurrency algorithms:

@ the ability to use atomic operations @ wait-free, lock-free, locked
~+ we can implement wait-free algorithms @ next on the agenda
In Java, C# and other higher-level languages Wait-free algorithms:

@ provide monitors and possibly other concepts @ never block, always succeed, never deadlock, no starvation

@ often simplify the programming but incur the same problems @ very limited in expressivity

Lock-free algorithms:
@ never block, may fail, never deadlock, may starve

[ language || barriers | wait-/lock-free | semaphore | mutex | monitor |

C.C++ v v v v | @] e invariant may only span a few bytes (8 on Intel)
Java,Git - (b) (©) v v Locking algorithms:
(a) some pthread implementations allow a reentrant attribute @ can guard arbitrary code
(b) _newer AP| extensions ( java.util.concurrent.atomic. *|and @ can use several locks to enable more fine grained concurrency
System.Threading. Interlocked tlesp.) @ may deadlock
(c) sirrmla;e semaphores using an object with two synchronized @ semaphores are monitors are
methods

w1 use algorithm that is best fit |
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