Script generated by TTT

Title: Petter: Programmiersprachen (26.10.2016) Introducing Caches: The MESI Protocol

Date: Wed Oct 26 14:16:52 CEST 2016

Duration: 95:18 min

Pages: 38
Memory Consistency 20/48
Thel MESI Protocol:|States TUTI | The MESI Protocol: States L
Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access. costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack) @ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires @ keeping a local mirror image of certain memaory regions requires
bookkeeping about who has the latest copy bookkeeping about who has the latest copy
Each cache line is in one of the states M, E, S,1I: Each cache line is in one of the states M, E, S, I:

I: it is invalid and is ready for re-use

K K
S = 1 S &=

Memory Consistency The MESI Protocol 21/48 Memory Consistency The MESI Protocol 21/48

The MESI Protocol: States i

Processors (and also: GPUs, intelligent I/0O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M,E, S, I

—
M 2= F I: it is invalid and is ready for re-use
: other caches have an identical copy of this
Hf } % cache ling, it is shared
I 5
S = 1

Memory Consistency The MESI Protocol 21/48

The MESI Protocol: States [

Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M, E, S,1I:
I: it is invalid and is ready for re-use

If

!

S

o3 E
: other caches have an identical copy of this
} cache line, it is shared
E: the content is in no other cache; it is exclusive
/ to this cache and can be overwritten without
I

consulting other caches

M: the content is exclusive to this cache and has
furthermore been modified

Memory Consistency The MESI Protocal 21/48

The MESI Protocol: States

Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memary regions requires
bookkeeping about who has the latest copy

M

H

| F
;
sl

Memory Consistency

The MESI Protocol: States

|

Each cache line is in one of the states M, E, S, I:

I: it is invalid and is ready for re-use
: other caches have an identical copy of this

E:

cache line, it is shared

the content is in no other cache; it is exclusive
to this cache and can be overwritten without
consulting other caches

The MESI Protocol

Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memaory regions requires
bookkeeping about who has the latest copy

K
S =

I

Each cache line is in one of the states M, E, S, I:
I: it is invalid and is ready for re-use

E:

: other caches have an identical copy of this

cache line, it is shared

the content is in no other cache; it is exclusive
to this cache and can be overwritten without
consulting other caches

: the content is exclusive to this cache and has

furthermore been modified

~+ the global state of cache lines is kept consistent by sending messages

Memory Consistency

The MESI Protocol

T

21/48

i

21/48

The MESI Protocol: Messages)

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an address

ol Read Response]response to a read message,
at the requested address —L—

@ Invalidate: asks others to evict a cache line
@ |Invalidate Acknowledgel reply indicating that an
address has been evicied

@ Read Invalidate: like Read + Invalidate (also
called “read with intend to modify”) S —L“:

@ |Writeback] info on what data has been sent to

main memory

We mostly consider messages between processors. Upon (Read) Invalidate,
a processor replies with Read Response/Writeback before the Invalidate
Acknowledge is sent.

Memory Consistency 2/48
MESI Example (1) [
Thread Th rea
a1 //an while Gi /B
b = 1; [/ A.2 assert(a == 1); // B.2
state- CPUA CPUB || RAM | message
ment a b a| b jla|b
A1 I I ! 00 read invalidate of a from CPU A
b b0 O T date ack. of 2 from CPU B
! I b 0|0 read response of a=0 from RAM
M1 | | | 0,0
B.1 | read of b from CPU B |
M1 I 010 [read response with b=0 from RAM|
B.1 M1 ﬁ__l I |EO]|| 0O
M1 PEL 010 [reag invalidate of b from CPU A
M1 1 I 1EQ) 0|0 =g response of b=0 from CPU 3|
M1 SO T IS0 0| 0 o date ack. of b from CPU B
M1 M1

24/48

o

MESI Example T

Consider how the following code might execute:

Thread A Thread B
a =1; // A.1l while (b == 0) {}; B.1
b = 1; // A2 assert(a == 1); B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself

@ we write the content of a cache line as

Mx: modified, with value x
Ex: exclusive, with value x
Sx: shared, with value x

I: invalid

yyvy

emry Consiseny 2/a
MESI Example (1l) U
Thread A Thread B
a = 1; // A.1 while%b = 0) {}; B.1
b = 1; [/ A2 assert(a == 1); B.2
state- CPUA CPUB RAM | message
ment a b a b alb
M1 M1 0 01 0 |[read of » from CPU B
Mt ML 0O e Back of b=1]from CPU A
gz M1 :D S 011 | feagpiaomcru
write back of a=1|from CPU A
S1 St 1]1 :
ST ST T o alidate of a from CPU A
:1 1 1 invalidate ack. of a from CPU B

Memory Consistency

The MESI Protocol 25/48

MESI Example [MESI Example: Happened Before Model T

ldea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Consider how the following code might execute: a=l [——— b-1
Thread A Thread B
a =1; // ALl while (b == 0) {}; // B.1
b = 1; '/ A.2 assert (a == 1); // B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a2 and b reside in different cache lines

@ assume that a cache line is larger than the variable itself

@ we write the content of a cache line as

» Mx: modified, with value x .

» Ex: exclusive, with value x Observations:

» Sx: shared, with value x @ each memory access must complete before executing next instruction
» [:invalid ~ add edge

Memory Consistency 23/48 Memory Consistency 26/48
Summary: MESI cc-Protocol i

Sequential consistency:

® acharacterization of well-behaved programs Introducing Store Buffers: Out-Of-Order-Writes
@ a maodel for different speed of execution

e for fixed paths through the threads and a total order between accesses to
the same variable: executions can be illustrated by happened-before
diagram with one process per variable

@ MESI cache coherence protocol ensures SC for processors with caches

Memory Consistency The MESI Protocol 27148 Memory Consistency ‘Out-of-Order Execution of Stores 28 /48

Out-of-Order Execution
A performance problem: writes always stall

Thread A Thread B
a = 1; ALl while (b == 0) {}; B.1
b = 1; A.2 assert (a == 1);
a=1r— b=1
A g ® pd o P
|] e by - Py ;1
i A - Iy I
: i : i
= f {
£l 3
& ; %L oi &
+ o 3 e S o
B g e g S
21k e %
o &
<
S a . b
I b 7
B

b==0 b==0 b==0

Memory Consistency Out-of-Order Execution of Stores

Store Buffers and Total Store Ordering

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer
and trigger fetching of cache line
@ once a cache line has arrived,
apply relevant writes
» today, a store buffer is always a
queue [0SS09]

» two writes to the same location
are not merged

CPUA CPUB

store store
®— buffer ®— buffer

cache cache o /N sequential consistency per

CPU is violated unless

» each read checks store buffer
before cache

» on hit, return the youngest value

hat is waiting to be written
-

What about sequential consistency for the whole system?

Memory

Memory Consistency

Out-of-Order Execution of Stores

29/48

30/48

Out-of-Order Execution [

VN performance problem: writes always stall

Thread A Thread B

ALl while (b
A2 assert (a

o
|
=
I
Il
Il
o
X
;

date|

~+ GPU A should continue executing after a=1; J
% o gs &g
g =

b==0 b==0 b=—=0

Out-of-Order Execution of Stores

Memory Consistency

Happened-Before Model for Store Buffers T

Thread A Thread B

a =

1;
b =1;

while (b == 0
assert (a 1

Assume cache A containé: a: S0, b: EO, cache ntains: a: SO, b: |

store [yCat3 ~ F . NI
Qa S.? - % eqﬂ
Sb €O M1 R
&)

Memory Consistency

Out-of-Order Execution of Stores 31/48

Explicit Synchronization: Write Barrier i Happened-Before Model for Write Barriers i

Thread A Thread B
—— hile (b == 0 ;
Overtaking of messages is desirable and should not be prohibited in general. sfence () ; WL et : - 1; b
assert (a == A
@ store buffers render programs incorrect that assume sequential b =1;
consistency between different CPUs . .
Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted

@ x86 CPUs provide the|sfence instruction |

@ a write barrier marks all current store operations in the store buffer

@ the next store operation is only executed when all marked stores in the o B
=1 @
buffer have completed _cé o :(c% °
@ a write barrier after each write gives sequentially consistent CPU s 8 o o o
behavior (and is as slow as a CPU without store buffer) =4 ;é o 2
-~ use (write) barriers only when necessary . LE) ;3
fig a @] + f et
© b P :
B *b==0 ° a—=1
Memory Conslstency IR

Memory Consistency Out-of-Order Execution of Stores 32/48

Invalidate Queue
Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

H H . A CPUA CPUB ~s immediately acknowledge an invali-
Introducing Invalidate Queues: O-0-O Reads dation and apply them later
: : @ put each invalidate message into
store siore invali
& buffor & buffer lan invalidate queue
I I e if a MESI message needs to be
sent regarding a cache line in the
cache cache invalidate queue then wait until
| - the line is invalidated
mc\‘fggggte '”&’Sgﬂg‘te o /N local read and writes do not
I I consult the invalidate queue
@ What about sequential
Memory consistency?

Memory Consistency Out-of-Order Execution of Loads 35/48

Memory Consistency ‘Out-of-Order Execution of Loads 34/48

Happened-Before Model for Invalidate Queues]|

Thread A Thread B

2 = o while (b == 0) {};
sfence();

b - 1; assert(a == 1);

Assume cache A contains: a: S0, b: EQ, cache B contains: a: S0, b: |
a=1

sfence b=1

@ f)
55 a *——+
cp A
13 —
PS
o 2

® o _

2 @ T O
& z o g
= = -
kg i i
S a £ -
F b - X

EARE
B Y ==

Happened-Before Model for Read Barriers

i

T

Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other
processors and local reads

@ insert an explicit read barrier before the read access
@ Intel x86 CPUs provide th nstruction
@ a read barrier marks all entries in the invalidate queue

@ the next read operation is only executed once all marked invalidations
have completed

@ a read barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

b 1fence i

~+ match each write barrier in one process with a read barrier in another
process

36/48

Memory Consistency

Out-of-Order Execution of Loads

37/48

Summary: Weakly-Ordered Memory Models T[]

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user
many kinds of memory barriers exist with subtle differences

Thread A Thread B
a = 1; while (b == 0) {};
b = 1; assert (a == 1);
b=1

pack

invalidate.....t--
..read

..'ead

lfence a==1

b==0
Out-of-Order Execution of Loads

Memory Consistency

most systems provide a barrier that is both, read and write (e.g.
on x86)

ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

use the|volatile keyword in C/C++

in the latest C++ standard, an access to a velatile variable will
automatically insert a memory barrier

otherwise*, inline assembler has to be used
~ memory barriers are the “lowest-level” of synchronization

38/48

Memory Consistency

Out-of-Order Execution of Loads

39/48

Using Memory Barriers: the Dekker Algorithm]|

Mutual exclusion of two processes with busy waiting.

[/f£1agl] is boolean
flag[0] false;
flag[1] false;

I_tﬁ‘n U; // or 1

PO:
flag[0] = true;
while [flag[1l] == true)]|
ifFfturn != 0) |{
£ELlag[0] = false;|
while [turn != 0)]| {
oﬁsg wait

ELICICELYY &

}
|flag[0] = true;l
}

[/ critical section
|turn = 1;
[£lag[0] = false; |

Memory Consistency

The Idea Behind Dekker

Communication via three variables:

The Dekker Algorithm

and turn is an integer

@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter

PO:

flag[0] = true;

while (flag[l] == true)

if (turn != 0) {
flag[0] = false;
while (turn != 0) {
// busy wait

}
flag[0]

true;
}
/ critical section
turn = 1;

flag[0] = false;

Memory Consistency

The Dekker Algorithm

In process P;:

@ if P;_; does not want to enter,
proceed immediately to the critical
section

® ~ flag[i] is a lock and may be
implemented as such

o if P,_; also wants to enter, wait for
turn to be setto i

@ while waiting for turn, reset
flag[1i] to enable P, _; to progress

@ algorithm only works for two
processes

41/48

42/48

Using Memory Barriers: the Dekker Algorithm]|

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[l] = false;
turn = 0; // or 1
PO: ﬂIl
flag[0] = true; flag[l] = true;
while (flag[l] == true) while (flag[0] == true)
if (turn != 0) { if (turn != 1) {
flag[0] = false; flag[l] = false;
while (turn != 0) { while (turn != 1) {
// busy wait // busy wait
} }
flag[0] = true; flag[l] = true;
} }
critical section ' critical section
turn = 1; turn = 0;
flag[0] = false; flag[l] = false;
Memory Consistency 41748

Dekker’s Algorithm and Weakly-Ordered MMs]|

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:

flag[0] = true;

sfence () ;

while (lfence (), flag[l] ==
if (lfence(), turn != 0)

flag[0] = false;

sfence() ;

while (lfence (), turn
// busy wait

}

flag[0] = true;

sfence () ;

turn = 1;
sfence () ;

flag[0] = false; sfence();

Memory Consistency

true)

{

1= 0){

The Dekker Algorithm

@ insert a load memory
barrier 1fence () in front
of every read from
common variables

43 /48

Discussion L
Memory barriers reside at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement a automata and

. synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads

@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven

algorithms
@ often synchronization with locks is as fast and easier
@ too many fences are costly if storefinvalidate buffers are bottleneck

Discussion [

Memory barriers reside at the lowest level of synchronization primitives.

aias
Summary T

Memory Consistency

Wrapping Up 44 /48

Memory Consistency

Discussion m

Memory barriers reside at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement a automata and

. synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads

@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven

algorithms

@ often synchronization with locks is as fast and easier

@ too many fences are costly if store/invalidate buffers are bottleneck
What do compilers do about barriers?

@ C/C++: it's up to the programmer, use volatile for all thread-common
variables to avoid optimizations which are only correct for sequential

programs
@ C++11: use of atomic variables will insert memory barriers
@ Java, Go, ...: the runtime system must guarantee this

Memory Consistency

Wrapping Up 44 /48

Memory consistency models:
@ strict consistency
@ sequential consistency
@ weak consistency
llustrating consistency:
@ happened-before relation
@ happened-before process diagrams
Intricacy of cache coherence protocols:
@ the effect of store buffers
@ the effect of invalidate buffers
@ the use of memory barriers
Use of barriers in synchronization algorithms:
@ Dekker’s algorithm
@ stream processing, avoidance of busy waiting
@ inserting fences

Wrapping Up

Memory Consistency

45/ 48

Future Many-Core Systems: NUMA T Overhead of NUMA Systems [

Communication overhead in a NUMA system. .
Many-Core Machines’ Read Responses congest the bus ’ @ Processors in a NUMA system

I may be fully or partially
In that case: Intel's MES/F (Forward) to reduce communication overhead.

..... connected.
e @ The directory of who stores an
VAN But in general, Symmetric multi-processing (SMP) has its limits: L L address is partitioned amongst
@ a memory-intensive computation may cause contention on the bus v Y processors.
-— - ™ emory g
@ the speed of the bus is limited since the electrical signal has to travel to w4 | processor [pocemer | §_ mene A cache miss that cannot be satisfied
all participants r r i by the local memory at A:
@ point-to-point connections are faster than a bus, but do not provide vl 4 W | @ A sends a retrieve request to
possibility of forming consensus Homor T | oasen e S D N processor B owning the directory

@ Btells the processor C who holds
H the content
Logan @ C sends data (or status) to A and

~4—P Bi-directional bus

:t t —— ueaea . SENAS acknowledge to B

@ B completes transmission by an
acknowledge to A

source: [Int09]

Memary Consistency 4148 Memory Consistency a7 a8
References m
D> Intel.

An introduction to the intel quickpath interconnect.
Technical Report 320412, 2009.

¥ Leslie Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558-565, July 1978.

¥ Paul E. McKenny.
Memory Barriers: a Hardware View for Software Hackers.
Technical report, Linux Technology Center, IBM Beaverton, June 2010.

¥ Scott Owens, Susmit Sarkar, and Peter Sewell.
A better x86 memory model: x86-TSO.
Technical Report UCAM-CL-TR-745, University of Cambridge, Computer
Laboratory, March 2009.

Memory Consistency Wrapping Up 48 /48

