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The MESI Protocol: States i

Processors (and also: GPUs, intelligent I/0O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M,E, S, I

—
M 2= F I: it is invalid and is ready for re-use
: other caches have an identical copy of this
Hf } % cache ling, it is shared
I 5
S = 1
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Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M, E, S,1I:
I: it is invalid and is ready for re-use

If
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: other caches have an identical copy of this
} cache line, it is shared
E: the content is in no other cache; it is exclusive
/ to this cache and can be overwritten without
I

consulting other caches

M: the content is exclusive to this cache and has
furthermore been modified
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Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memary regions requires
bookkeeping about who has the latest copy
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Each cache line is in one of the states M, E, S, I:

I: it is invalid and is ready for re-use
: other caches have an identical copy of this

E:

cache line, it is shared

the content is in no other cache; it is exclusive
to this cache and can be overwritten without
consulting other caches
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Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memaory regions requires
bookkeeping about who has the latest copy
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Each cache line is in one of the states M, E, S, I:
I: it is invalid and is ready for re-use

E:

: other caches have an identical copy of this

cache line, it is shared

the content is in no other cache; it is exclusive
to this cache and can be overwritten without
consulting other caches

: the content is exclusive to this cache and has

furthermore been modified

~+ the global state of cache lines is kept consistent by sending messages
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The MESI Protocol: Messages )

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an address

ol Read Response]response to a read message,
at the requested address —L—

@ Invalidate: asks others to evict a cache line
@ |Invalidate Acknowledgel reply indicating that an
address has been evicied

@ Read Invalidate: like Read + Invalidate (also
called “read with intend to modify”) S —L“:

@ |Writeback] info on what data has been sent to

main memory

We mostly consider messages between processors. Upon (Read) Invalidate,
a processor replies with Read Response/Writeback before the Invalidate
Acknowledge is sent.

Memory Consistency 2/48
MESI Example (1) [
Thread Th rea
a1 //an while Gi /B
b = 1; [/ A.2 assert(a == 1); // B.2
state- CPUA CPUB || RAM | message
ment a b a| b jla|b
A1 I I ! 00 read invalidate of a from CPU A
b b0 O T date ack. of 2 from CPU B
! I b 0|0 read response of a=0 from RAM
M1 | | | 0,0
B.1 | read of b from CPU B |
M1 I 010 [read response with b=0 from RAM|
B.1 M1 ﬁ__l I |EO]|| 0O
M1 PEL 010 [reag invalidate of b from CPU A
M1 1 I 1EQ) 0|0 =g response of b=0 from CPU 3|
M1 SO T IS0 0| 0 o date ack. of b from CPU B
M1 M1
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MESI Example T

Consider how the following code might execute:

Thread A Thread B
a =1; // A.1l while (b == 0) {}; B.1
b = 1; // A2 assert(a == 1); B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself

@ we write the content of a cache line as

Mx: modified, with value x
Ex: exclusive, with value x
Sx: shared, with value x

I: invalid

yyvy

emry Consiseny 2/a
MESI Example (1l) U
Thread A Thread B
a = 1; // A.1 while%b = 0) {}; B.1
b = 1; [/ A2 assert(a == 1); B.2
state- CPUA CPUB RAM | message
ment a b a b alb
M1 M1 0 01 0 |[read of » from CPU B
Mt ML 0O e Back of b=1]from CPU A
gz M1 :D S 011 | feagpiaomcru
write back of a=1|from CPU A
S1 St 1]1 :
ST ST T o alidate of a from CPU A
:1 1 1 invalidate ack. of a from CPU B

Memory Consistency
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MESI Example [ MESI Example: Happened Before Model T

ldea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Consider how the following code might execute: a=l [——— b-1
Thread A Thread B
a =1; // ALl while (b == 0) {}; // B.1
b = 1; '/ A.2 assert (a == 1); // B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a2 and b reside in different cache lines

@ assume that a cache line is larger than the variable itself

@ we write the content of a cache line as

» Mx: modified, with value x .

» Ex: exclusive, with value x Observations:

» Sx: shared, with value x @ each memory access must complete before executing next instruction
» [:invalid ~ add edge

Memory Consistency 23/48 Memory Consistency 26/48
Summary: MESI cc-Protocol i

Sequential consistency:

® acharacterization of well-behaved programs Introducing Store Buffers: Out-Of-Order-Writes
@ a maodel for different speed of execution

e for fixed paths through the threads and a total order between accesses to
the same variable: executions can be illustrated by happened-before
diagram with one process per variable

@ MESI cache coherence protocol ensures SC for processors with caches

Memory Consistency The MESI Protocol 27148 Memory Consistency ‘Out-of-Order Execution of Stores 28 /48




Out-of-Order Execution
A performance problem: writes always stall

Thread A Thread B
a = 1; ALl while (b == 0) {}; B.1
b = 1; A.2 assert (a == 1);
a=1r— b=1
A g ® pd o P
| ] e by - Py ;1
i A - Iy I
: i : i
= f {
£l 3
& ; %L oi &
+ o 3 e S o
B g e g S
21k e %
o &
<
S a . b
I b 7
B

b==0 b==0 b==0

Memory Consistency Out-of-Order Execution of Stores

Store Buffers and Total Store Ordering

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer
and trigger fetching of cache line
@ once a cache line has arrived,
apply relevant writes
» today, a store buffer is always a
queue [0SS09]

» two writes to the same location
are not merged

CPUA CPUB

store store
®— buffer ®— buffer

cache cache o /N sequential consistency per

CPU is violated unless

» each read checks store buffer
before cache

» on hit, return the youngest value

hat is waiting to be written
-

What about sequential consistency for the whole system?

Memory

Memory Consistency
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Out-of-Order Execution [

VN performance problem: writes always stall

Thread A Thread B

ALl while (b
A2 assert (a

o
|
=
I
Il
Il
o
X
;

date|

~+ GPU A should continue executing after a=1; J
% o gs &g
g =

b==0  b==0 b=—=0

Out-of-Order Execution of Stores

Memory Consistency

Happened-Before Model for Store Buffers T

Thread A Thread B

a =

1;
b =1;

while (b == 0
assert (a 1

Assume cache A containé: a: S0, b: EO, cache ntains: a: SO, b: |

store [yCat3 ~ F . NI
Qa S.? - % eqﬂ
Sb €O M1 R
& )

Memory Consistency

Out-of-Order Execution of Stores 31/48



Explicit Synchronization: Write Barrier i Happened-Before Model for Write Barriers i

Thread A Thread B
—— hile (b == 0 ;
Overtaking of messages is desirable and should not be prohibited in general. sfence () ; WL et : - 1; b
assert (a == A
@ store buffers render programs incorrect that assume sequential b =1;
consistency between different CPUs . .
Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted

@ x86 CPUs provide the|sfence instruction |

@ a write barrier marks all current store operations in the store buffer

@ the next store operation is only executed when all marked stores in the o B
=1 @
buffer have completed _cé o :(c% °
@ a write barrier after each write gives sequentially consistent CPU s 8 o o o
behavior (and is as slow as a CPU without store buffer) =4 ;é o 2
-~ use (write) barriers only when necessary . LE) ;3
fig a @ ] + f et
© b P :
B *b==0 ° a—=1
Memory Conslstency IR
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Invalidate Queue
Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

H H . A CPUA CPUB ~s immediately acknowledge an invali-
Introducing Invalidate Queues: O-0-O Reads dation and apply them later
: : @ put each invalidate message into
store siore invali
& buffor & buffer lan invalidate queue
I I e if a MESI message needs to be
sent regarding a cache line in the
cache cache invalidate queue then wait until
| - the line is invalidated
mc\‘fggggte '”&’Sgﬂg‘te o /N local read and writes do not
I I consult the invalidate queue
@ What about sequential
Memory consistency?

Memory Consistency Out-of-Order Execution of Loads 35/48
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Happened-Before Model for Invalidate Queues ]|

Thread A Thread B

2 = o while (b == 0) {};
sfence();

b - 1; assert(a == 1);

Assume cache A contains: a: S0, b: EQ, cache B contains: a: S0, b: |
a=1

sfence b=1

@ f )
55 a *——+
cp A
13 —
PS
o 2

® o _

2 @ T O
& z o g
= = -
kg i i
S a £ -
F b - X

EARE
B Y ==

Happened-Before Model for Read Barriers

i

T

Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other
processors and local reads

@ insert an explicit read barrier before the read access
@ Intel x86 CPUs provide th nstruction
@ a read barrier marks all entries in the invalidate queue

@ the next read operation is only executed once all marked invalidations
have completed

@ a read barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

b 1fence i

~+ match each write barrier in one process with a read barrier in another
process

36/48
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Summary: Weakly-Ordered Memory Models T[]

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user
many kinds of memory barriers exist with subtle differences

Thread A Thread B
a = 1; while (b == 0) {};
b = 1; assert (a == 1);
b=1

pack

invalidate.....t--
..read

..'ead

lfence a==1

b==0
Out-of-Order Execution of Loads

Memory Consistency

most systems provide a barrier that is both, read and write (e.g.
on x86)

ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

use the|volatile keyword in C/C++

in the latest C++ standard, an access to a velatile variable will
automatically insert a memory barrier

otherwise*, inline assembler has to be used
~ memory barriers are the “lowest-level” of synchronization

38/48
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Using Memory Barriers: the Dekker Algorithm ]|

Mutual exclusion of two processes with busy waiting.

[/f£1agl] is boolean
flag[0] false;
flag[1] false;

I_tﬁ‘n U; // or 1

PO:
flag[0] = true;
while [flag[1l] == true)]|
ifFfturn != 0) |{
£ELlag[0] = false;|
while [turn != 0)]| {
oﬁsg wait

ELICICELYY &

}
|flag[0] = true;l
}

[/ critical section
|turn = 1;
[£lag[0] = false; |

Memory Consistency

The Idea Behind Dekker

Communication via three variables:

The Dekker Algorithm

and turn is an integer

@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter

PO:

flag[0] = true;

while (flag[l] == true)

if (turn != 0) {
flag[0] = false;
while (turn != 0) {
// busy wait

}
flag[0]

true;
}
/ critical section
turn = 1;

flag[0] = false;

Memory Consistency

The Dekker Algorithm

In process P;:

@ if P;_; does not want to enter,
proceed immediately to the critical
section

® ~ flag[i] is a lock and may be
implemented as such

o if P,_; also wants to enter, wait for
turn to be setto i

@ while waiting for turn, reset
flag[1i] to enable P, _; to progress

@ algorithm only works for two
processes

41/48
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Using Memory Barriers: the Dekker Algorithm ]|

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[l] = false;
turn = 0; // or 1
PO: ﬂIl
flag[0] = true; flag[l] = true;
while (flag[l] == true) while (flag[0] == true)
if (turn != 0) { if (turn != 1) {
flag[0] = false; flag[l] = false;
while (turn != 0) { while (turn != 1) {
// busy wait // busy wait
} }
flag[0] = true; flag[l] = true;
} }
critical section ' critical section
turn = 1; turn = 0;
flag[0] = false; flag[l] = false;
Memory Consistency 41748

Dekker’s Algorithm and Weakly-Ordered MMs ]|

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:

flag[0] = true;

sfence () ;

while (lfence (), flag[l] ==
if (lfence(), turn != 0)

flag[0] = false;

sfence() ;

while (lfence (), turn
// busy wait

}

flag[0] = true;

sfence () ;

turn = 1;
sfence () ;

flag[0] = false; sfence();

Memory Consistency

true)

{

1= 0){

The Dekker Algorithm

@ insert a load memory
barrier 1fence () in front
of every read from
common variables

43 /48



Discussion L
Memory barriers reside at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement a automata and

. synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads

@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven

algorithms
@ often synchronization with locks is as fast and easier
@ too many fences are costly if storefinvalidate buffers are bottleneck

Discussion [

Memory barriers reside at the lowest level of synchronization primitives.

aias
Summary T
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Discussion m

Memory barriers reside at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement a automata and

. synchronization means coordinating transitions of these automata

@ when blocking should not de-schedule threads

@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven

algorithms

@ often synchronization with locks is as fast and easier

@ too many fences are costly if store/invalidate buffers are bottleneck
What do compilers do about barriers?

@ C/C++: it's up to the programmer, use volatile for all thread-common
variables to avoid optimizations which are only correct for sequential

programs
@ C++11: use of atomic variables will insert memory barriers
@ Java, Go, ...: the runtime system must guarantee this

Memory Consistency

Wrapping Up 44 /48

Memory consistency models:
@ strict consistency
@ sequential consistency
@ weak consistency
llustrating consistency:
@ happened-before relation
@ happened-before process diagrams
Intricacy of cache coherence protocols:
@ the effect of store buffers
@ the effect of invalidate buffers
@ the use of memory barriers
Use of barriers in synchronization algorithms:
@ Dekker’s algorithm
@ stream processing, avoidance of busy waiting
@ inserting fences

Wrapping Up

Memory Consistency
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Future Many-Core Systems: NUMA T Overhead of NUMA Systems [

Communication overhead in a NUMA system. .
Many-Core Machines’ Read Responses congest the bus ’ @ Processors in a NUMA system

I may be fully or partially
In that case: Intel's MES/F (Forward) to reduce communication overhead.

..... connected.
e @ The directory of who stores an
VAN But in general, Symmetric multi-processing (SMP) has its limits: L L address is partitioned amongst
@ a memory-intensive computation may cause contention on the bus v Y processors.
-— - ™ emory g
@ the speed of the bus is limited since the electrical signal has to travel to w4 | processor [ pocemer | §_ mene A cache miss that cannot be satisfied
all participants r r i by the local memory at A:
@ point-to-point connections are faster than a bus, but do not provide vl 4 W | @ A sends a retrieve request to
possibility of forming consensus Homor T | oasen e S D N processor B owning the directory

@ Btells the processor C who holds
H the content
Logan @ C sends data (or status) to A and

~4—P Bi-directional bus

:t t —— ueaea . SENAS acknowledge to B

@ B completes transmission by an
acknowledge to A

source: [Int09]
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