Need for Concurrency T

Script generated by TTT Consider two processors:
@ in 1997 the Pentium P55C had 4.5M transistors
@ in 2006 the ltanium 2 had 1700M transistors
~ Intel could have built a processor with 256 Pentium cores in 2006

Title: Petter: Programmiersprachen (19.10.2016)
Date: Wed Oct 19 14:48:05 CEST 2016

Duration: 67:19 min

Pages: 31

Need for Concurrency [The free lunch is over i

Single processors cannot be made much faster due to physical limitations.
Consider two processors:

@ in 1997 the Pentium P55C had 4.5M transistors
@ in 2006 the /tanium 2 had 1700M transistors 2000 Roeep
~+ Intel could have built a processor with 256 Pentium cores in 2006

IT Roadmap Semiconductors

/N However:
@ [most programs are not inherently parallel
— parallelizing a program 15 between amicunt and impossible 5/ [pime] Sty Chre
° |correctly communicating between different cores is challenging
~ correctness of concurrent communication is very hard
» low-level aspects: locking algorithms must be correct
» high-level aspects: program may deadlock
o| a program on n cores runs m < n times faster
~ all effort is voided if program runs no faster
= distributing work load is application specific

Clock Rate (GHz)

2007 Roadmap

2003 2005 2007 2009 2011 2013
Year

Source: D. Patterson, UC-Berkeley

The free lunch is over

i

Single processors cannot be made much faster due to physical limitations.

IT Roadmap Semiconductors

Roadmap

[T}
=
o
@
=
=
=}
o
=}

2007 Roadmap
Intel Single Core
Intel Multicore

2003 2005 2007 2009 2011
Year

Source: D. Patterson, UC—Berkelsy

But Moore’s law still holds for the number of transistors:
@ they double every 18 months for the foreseeable future
@ may translate into doubling the number of cores

~+ programs have to become parallel

Memory Consistency

Concurrency for the Programmer

How is concurrency exposed in a programming language?
@ spawning of new concurrent computations
@ communication between threads
Communication can happen in many ways:
@ communication via shared memory (this lecture)
@ atomic transactions on shared memory
@ message passing

Learning Outcomes

@ Happened-before Partial Order
@ Sequential Consistency

© The MESI Cache Model

© Weak Consistency

© Memory Barriers

2013

3/51

Memory Consistency

4/51

Concurrency for the Programmer

How is concurrency exposed in a programming language?
@ |spawning of new concurrent computations
@ [communication between threads |

Memory Consistency

Communication between Cores
We consider the concurrent execution of these functions:

Thread A Thread B

void foo(wvoid) ({ void bar (void) {

a = 1; while (b == 0) {};

b =1;
} }

assert(a == 1);

4/51

@ initial state of 2 and b is 0

@ A writes a before it writes b

@ B should see b go to 1 before executing the assert statement
@ the assert statement should always hold

@ here the code is correct if the assert holds

~~ correctness means: writing a 1 to a happens before readinga 1 inb

Definition (Strict consistency)

Read operations from location / return values, written by the most recent write

operation to /.

Memory Consistency

Memory Consistency

5/51

Strict Consistency [Strict Consistency T

Assuming foo and bar are started on two cores operating in lock-step. Assuming foo and bar are started on two cores operating in lock-step.
Then one of the following may happen: Then one of the following may happen:
fbg] foo foo R fog . foo R foo ~
= I. i £ L u J' T_ Eil memd’ ‘ A L 4% 4 mem 4 4 4 !‘ me rnL £ I‘.‘r‘:ﬁ 4 memd’ ‘.‘!.’; [y !‘ £ i
bar|/ ./ [| bar W bar, \/ V[bar | /] /[bar [\ [[barf Ll WloNL A

A unigue order between memory accesses is unrealistic in reality:

@ each conditional (and loop iteration) doubles the number of possible
lock-step executions

@ processors use caches ~ lock-step assumption is violated since cache
behavior depends on data

Memory Consistency 6/51 Memory Consistency 6/51
Strict Consistency T Events in a Distributed System i

A process as a series of events [Lam78]: Given a distributed system of

Assuming foo and bar are started on two cores operating in lock-step. :
processes P,Q.R...., each process P consists of events ep,, ep,,

Then one of the following may happen:

fog ~_ foo . foo)

&=t b1 a=f b=f =1 =T
memL Iy s -+ :a.‘-;. me rn!- + ‘l:‘!-';; T memr " T ...‘!‘: it r
bar / [/ . bar /| / ./ ‘bar/ ./ v/ A/

A unique order between memory accesses is unrealistic in reality:
@ each conditional (and loop iteration) doubles the number of possible
lock-step executions
@ processors use caches ~~ lock-step assumption is violated since cache
behavior depends on data

~~ strict consistency is too strong to be realistic
Idea: state correctness in terms of what event may happen before another one

Memory Consistency 6/51 Memory Consistency Happened-Before Relation 8/51

Events in a Distributed System i The Happened-Before Relation i

A process as a series of events [Lam78]: Given a distributed system of
processes P.Q.R, ..., each process P consists of events ep;, ep,,

Example:
k=4

q?mc.‘ P 491 }P? e & Definition
If an event p happened before an event g then p— q. J

Wn b, O g d1d2 43 lg4 o5 o1t .

R T . 5

@ event ep; in process P happened before ep;.
@ [if ep; is an event that sends a message to Q then there is some event eg;
in Q that receives this message and ep; happened before eg;

9/51

Happened-Before Relation 8/51 Memory Consistency Happened-Before Relation

Memory Consistency

The Happened-Before Relation T Concurrency in Process Diagrams i

Let a / b abbreviate —(a — b).

Definition
Two distinct events p and ¢ are said to be concurrentif p /: g and g -/ p. ’

Definition
If an event p happened before an event ¢ then p — g. J

Observe:
@ — is partial (neither p — g or ¢ — p may hold)

@ — isirreflexive (p — p never holds) >< &7
@ — istransitive (p >gAg—>rthenp—r) -
@ — is asymmetric (if p — g then —(g — p))
~+the — relation is a strict partial order
e ts

L

@ p, —ryinthe example
@ p3 and g3 are, in fact, concurrent since p; /4 g3 and ¢; 4 ps3

Memory Consistency Happened-Before Relation 9/51 Memory Consistency Happened-Before Relation 10/51

Ordering i

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition) —
Function C satisfies the clock condition if for any events p, ¢ “

p—q| = C(p)<C(q)

Memory Consistency

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition) =
Function C satisfies the clock condition if for any events p, ¢ “

p—q = Clp)<C(q)

st
Ordering i

For a distributed system the clock condition holds iff:
@ p: and p; are events of P and p; — p; then C(p;) < C(p))
@ pis the sending of a message by process P and ¢ is the reception of this
message by process Q then C(p) < C(q)

~- a logical clock C that satisfies the clock condition describes a fotal order
a < b (with C(a) < C(b)) that embeds the strict partial order —

Memory Consistency

Happened-Before Relation 11/51

Ordering i

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition) -
Function C satisfies the clock condition if for any events p, ¢ 0

p—q = C(p)<C(q)

For a distributed system the clock condition holds iff:
@ p: and p; are events of P and p; — p; then C(p;) < C(p;)
© p is the sending of a message by process P and g is the reception of this
message by process Q then C(p) < C(g)

st
Ordering T

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition) —
Function C satisfies the clock condition if for any events p. g 0

p—+q = Clp)<C(q)

Memory Consistency

For a distributed system the clock condition holds iff:
@ p: and p; are events of P and p; — p; then C(p,) < C(p))
© pis the sending of a message by process P and g is the reception of this
message by process Q then C(p) < Cl(q)

~- a logical clock C that satisfies the clock condition describes a total order
a < b (with C(a) < C(b)) that embeds the strict partial order —

The set defined by all C that satisfy the clock condition is exactly the set of
executions possible in the system.
~~ use the process model and — to define better consistency model

Memory Consistency

Happened-Before Relation 11/51

Defining C Satisfying the Clock Condition T Defining C Satisfying the Clock Condition T

Given: Given:

P L 5{72 3 L4
4

e P1 | P2 | P3| P4
Cle) 1 4 |7 |12
€ q1 | 42 | 93 | 44 | 45 | 46 | 47
Cle) 2 3 5 6 |11 |13 | 14
e r L) I3 Fg
Cle) [89 [1015

Memory Consistency Happened-Before Relation 12/51 Memory Consistency 12/51

Summing up Happened-Before Relations T

We can model concurrency using processes and events:

@ there is a happened-before relation between the events of each process Sequential Consistency on Multi-Processor Machines
@ there is a happened-before relation between communicating events
@ happened-beforeis a strict partial order

@ aclock is a total strict order that embeds the happened-before partial
order

Memory Consistency Happened-Before Relation 13/51 Memory Consistency Sequential Consistency 14 /51

Moving Away from Strict Consistency [

|dea: use process diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
@ consider the actions of each thread as events of a process |
® use more|processes|to model memory
» here: one|process per variable in memory |
@ -~ concisely represent some interleavings

Sequential Consistency 15/51

Memory Consistency

Definition: Sequential Consistency

Definition (Sequential Consistency Condition [Lam78])
The result of any execution is the same as if

@ the operations of all the processors were executed in some sequential
order and

@ the operations of each individual processor appear in this sequence in

Moving Away from Strict Consistency

Idea: use process diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
@ consider the actions of each thread as events of a process
@ use more processes to model memory
» here: one process per variable in memory

@ -~ concisely represent some interleavings

We obtain a model for sequential consistency.

Memory Consistency

Disproving Sequential Consistency

15 /51

the order specified by its program.

Sequential Consisten lied fo Multiprocessor Programs:
Given a program with » threads,

@ for fixed operation sequenceg p}.p!. .. .|ancl p2.p,. .. |and|p;;’,ﬂ, . |
[keeping the program|order

0| executions obey the clock condition on the pj’ |

@ all executions have the same result
Yet, in other words:
o @ defines the execution path of each thread
@ each execution mentioned in @ is one interleaving of processes
@ © declares that the result of running the threads with these interleavings
is always the same.

Sequential Consistency 16/ 51

Memory Consistency

Sequential Consistency in Multiprocessor Programs:
Given a program with n threads,

@ for fixed operation sequences pj,p;,... and pj.pi,... and pj,pl,. ..

keeping the program order
@ executions obey the clock condition on the p;

@ all executions have the same result

Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system
®| pick an execution @ and a fotal ordering of all operations 6_|
E| add extra processes to model other system components
o [the original order @ becomes a parfial order — |
@ show that total orderings ¢’ exist for — for which the result differs

Sequential Consistency

Memory Consistency

17151

Weakening the Model [

There is no observable change if calculations on different memory locations
can happen in parallel.
Idea: model each memory location as a different process

foo_ . . , f00 = 4
. s » - — .
mem Lt’; . - > “

Sequential consistency still obeyed:
@ the accesses of foo to a occurs before b
@ the first two read accesses to b are in parallel to a=1

Memory Consistency

10751
Benefits of Sequential Consistency [

Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommon for software
~+ a good model for correct behaviors of concurrent programs
~+ programs results besides SC results are undesirable (they contain races)

It is a realistic model for older hardware:

@ seguential consistency model suitable for concurrent processors that
acquire exclusive access to memory

@ processors can speed up computation by using caches gnd still maintain
sequential consistency

Memory Consistency

Sequential Consistency 19/51

Benefits of Sequential Consistency T

Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommon for software
~+ a good model for correct behaviors of concurrent program
~ programs results besides SC results are undesirable (they| contain races)

Memory Consistency

Sequential Consistency 19/51

BenefitsAof Sequential Consistency T

Benefits of the sequential consistency model:
° concis‘éﬁrep@me due to variations in speed

@ synchrqnizatign-ustrg-tirme TS UMcommorn for software

~ a good model for correct behavitxs of concurrent programs
~+ programs results besides SC resulis are undesirable (they contain races)

It is a realistic model for older hardwarg:
° sequenti%onsistency model stitable for concurrent processors that

acquire eiclusive acce oy

@ processorgcanspeed up computation by-using-eaches and still maintain
sequential %Jnsistency

Not a realistic model for modern hardware with out-of-order execution:
@ what other processors see is determined by complex optimizations to

cachin aQ
~» need to %Btwmmk

Memory Consistency

Sequential Consistency 19/51

