Script generated by TTT

Title: Petter: Programmiersprachen (21.10.2015) Introducing Caches: The MESI Protocol

Date: Wed Oct 21 14:20:20 CEST 2015

Duration: 91:39 min

Pages: 35
Memory Consistency 22/54
The MESI Protocol: States TUTI | The MESI Protocol: States L
Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access. costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack) @ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires @ keeping a local mirror image of certain memaory regions requires
bookkeeping about who has the latest copy bookkeeping about who has the latest copy
Each cache line is in one of the states M, E, S,1I: Each cache line is in one of the states M, E, S, I:

I: it is invalid and is ready for re-use

K K
S = 1 S &=

Memory Consistency The MESI Protocol 23/54 Memory Consistency The MESI Protocol 23/54

The MESI Protocol: States T The MESI Protocol: States T

Processors (and also: GPUs, intelligent I/0O devices) use caches to avoid a Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access. costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack) @ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires @ keeping a local mirror image of certain memary regions requires
bookkeeping about who has the latest copy bookkeeping about who has the latest copy
Each cache line is in one of the states M,E, S, I l Each cache line is in one of the states M, E, S, I:
M b E I: itis invalid and is ready for re-use M I: itis invalid and is ready for re-use

cache line, it is shared cache line, it is shared

| F
: other caches have an identical copy of this
'F k E: the content is in no other cache; it is exclusive
/ to this cache and can be overwritten without
-k I

% : other caches have an identical copy of this va
S consulting other caches

i

i
Exy

Memory Consistency s Memory Consiziency 25
The MESI Protocol: States UUTH | The MESI Protocol: States L
Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access. costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack) @ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires @ keeping a local mirror image of certain memaory regions requires
bookkeeping about who has the latest copy bookkeeping about who has the latest copy
Each cache line is in one of the states M, E, S, I: Each cache line is in one of the states M. E. S.I:
M| &= E I: itis invalid and is ready for re-use M = FE I: itis invalid and is ready for re-use
: other caches have an identical copy of this . other caches have an identical copy of this
}f } cache line, it is shared F cache line, it is shared
E: the content is in no other cache; it is exclusive E: the content is in no other cache; it is exclusive
/ to this cache and can be overwritten without to this cache and can be overwritten without
S —k [consulting other caches S «—k consulting other caches
M: the content is exclusive to this cache and has M: the content is exclusive to this cache and has
furthermore been modified furthermore been modified

~+ the global state of cache lines is kept consistent by sending messages

Memory Consistency The MESI Protocol 23/54 Memory Consistency The MESI Protocol 23/54

The MESI Protocol: Messages

i

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an address
@ Read Response: response to a read message,

carries the data at the requested address
@ Invalidate: asks others to evict a cache line

MESI Example

Consider how the following code might execute:

Thread A
a =1;
b = 1;

Thread B

while (b =
assert (a ==

0) (};
1)

r

@ Invalidate Acknowledge: reply indicating that an
address has been evicted
o| Read Invalidate]like Read + Invalidate (also
called "read with intend to modify”) S
@ Writeback: info on what data has been sent to
main memory

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself

@ we write the content of a cache line as

» [Mx{ modified, with value x
» Ex: exclusive, with value x
» Sx: shared, with value x

> Valid

We mostly consider messages between processors. Upon (Read) Invalidate,
a processor replies with Read Response/Writeback before the Invalidate
Acknowledge is sent.

a5/

150

Memory Consistency

Memory Consistency

MESI Example () MESI Example (Il)

Thread A

Thread B

Thread A Thread B
a = 1; A.1l while (b == 0) {}; B.1 .. ._ - . ;
| b =1; A.Z assert (a == 1); B.2 a =1; h - while {}; s
b = 1; A.2 assert(a == 1); B.2
state- CPUA CPUB || RAM | message
ment a b a| b |alb state- CPUA CPUB RAM | message
Pl 91 01 read invaligate of = from CPU A LIS Mb1 2 Ib 2 '3
: 01 01 invalidate ack. of 2 from CPU B B.1 M1 | a]| 1 | olo regd of b from CPU B J
0|0 read response of a=0 from RAM -5 -1 0 write back of b=1 from CPU A |
| 0|0 B.2 ' A read of a from CPU B
read of b from CPU B M1 | S1 | s1lo0l1 '
I 010 oag response with b=0 from RAM silsillisilst!li] write back of a=1 from CPU A
EO| OO i i)
EO 010 [read invalidate of b from CPU A | s1ls1lls1lstl1l1].
01l 010 | [ad response of b=0 from CPU B] A1 s1ls1ll1 |s1ll1]1 invalidate of a from CPU A
ﬁOl g 8 |invalidate 20k of b from CPU B | RS | s1ll1]1 invalidate ack. of a from CPU B
Memory Consistency 26154 Memory Consistency 27/54

MESI Example (1l) [MESI Example: Happened Before Model T

ldea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Thread A Thread B
a = 1; // A.l while (b == 0) {}; B.1 A
b = 1; // A.2 assert (a == 1); // B.2 :
state- | CPUA CPUB || RAM | message '
ment a b a b ||a|b ‘ g
gy | MTIMEE T T 010 oadof b from CPU B g
M1 M1 I 01 01 write back of b=1 from CPU A 2 3 ,_5'4
gz (MU ST T ISTHOITT oadofafrom CPUB & g '
M1 S1 | S110 111 yrite back of a=1 from CPU A & SN .
S1,S1|S1 /St 1]1 B b==0| [b==0 °
: : : 5 : S| Observations:
A S1)S11S1]1S81 111 invalidate of a from CPU A @ each memory access must complete before executing next instruction
S1IStT T 1St alidate ack. of a from CPU B - add edge
M1 | S1]| I S1 1]

Memory Consistency 77154 Memory Consistency /54
Can MESI Messages Collide? T Can MESI Messages Collide? T
If two processors emit a message at the same time, the protocol might break. If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter: Access to common bus is coordinated by an arbiter.

CPUA .
arbiter memory

Snape. Snape, Severus Snape

syurce: YouTube “The Mysterious Ticking Maise”
Memory Consistency

Memory Consistency The MESI Protocal 29/54

29/54

Can MESI Messages Collide? T Can MESI Messages Collide? i

If two processors emit a message at the same time, the protocol might break. If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter: Access to common bus is coordinated by an arbiter.
CPU A CPUA

Dumbledore!

arbiter memory —— arbiter

Hermione!

memary

Hermione!

29/54

Can MESI Messages Collide? T Summary: MESI cc-Protocol i

If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter:

CPUA

29/54

arbiter memory

Snape. Snape, Severus Snape

Sequential consistency:
@ a characterization of well-behaved programs
@ a model for different speed of execution

o for fixed paths through the threads and a total order between accesses to
the same variable: executions can be illustrated by happened-before
diagram with one process per variable

@ MESI |cache coherence brotocol ensures or processors with caches

ouTube sterio
Memory Consistency

g Noise”
The MESI Protocal 29/54 Memory Consistency The MESI Protocol 30/54

Out-of-Order Execution [

VN performance problem: writes always stall

Thread A Thread B
a = 1; // AL while (b == 0) {}; // B.1l
b = 1; // A2 assert(a == 1); // B.2
Introducing Store Buffers: Out-Of-Order-Writes Ao a=1 . b=l
<
O
&

b==0 b==0
Memory Consistency Out-of-Order Execution of Stores 31/54 Memory Consistency Out-of-Order Execution of Stores 32/54

Out-of-Order Execution i Store Buffers T

A performance problem: writes always stall
Goal: continue execution after cache-miss write operation

Ll e Ll @ put each write into a store buffer
a = 1; // ALl while (b == 0) {}; // B.1 and trigger fetching of cache line
b =1; /A2 assert(a == 1); // B.2 CPUA CPUB @ once a cache line has arrived,
-1 b1 apply relevant writes
A & a"& a- ® .- — e SToe STo7E » today, a store buffer is always a
cgé’ 3 § o bY ; ®— puffer ®— puffer q”e“e,[ossog])
T T e ® I'd re > two writes to the same location
= D ol ! Gl l l
T O il | P are not merged
e H Cim Poay H - H H H i
~+ CPU A should continue executing after a=1; | cache cache o A\ sequential consistency per

[| | CPU is violated unless

i

» each read checks store buffer
Memory before cache
» on hit, return the youngest value
that is waiting to be written

__write ba¢

What about sequential consistency for the whole system?

Memory Consistency Out-of-Order Execution of Stores 32/54 Memory Consistency ‘Out-of-Order Execution of Stores 33/54

Happened-Before Model for Store Buffers T Explicit Synchronization: Write Barrier i

Thread A Thread B
a=1; while (b == 0) {}; . . . - .
b = 1; assert (a == 1); Overtaking of messages is desirable and should not be prohibited in general.
@ store buffers render programs incorrect that assume sequential
Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: | consistency between different CPUs
Ezl b=1 @ whenever two stores in one CPU must appear in sequence at a different
stére "\ g =g A4 asq1 CPU, an explicil write barrier has to be inserted
0q S8 % M @ x86 CPUs provide the|sfence]instruction
ShH&EC AL , : o
6{; i @ a write barrier marks all current store operations in the store buffer
% fﬂé @ the next store operation is only executed when all marked stores in the
=3 2 o buffer have completed
o/]! ©: @ . . L) :
Il FAN=] @ a write barrier after each write gives sequentially consistent CPU
e g behavior (and is as slow as a CPU without store buffer)
= =
& S0 LE - ~ use (write) barriers only when necessary
§ a i e
[<) { - X A |
P e,
B o ‘e :
b==0 [a==1] g

34/54 Memory Consistency Out-of-Order Execution of Stores 35/54

Happened-Before Model for Write Fences [T

Thread A Thread B
a = 1; while (b == 0) (};
e U assert(a == 1);
b =1; !
Assume cache A contains: a: S0, b: E(. cache B contains: a: S0, b: | . .
Introducing Invalidate Queues: O-O-O Reads

La=1—) |s§enca“2b:l_

e
=
]
®

..lread
write back |~

Jnvalidate act

Memory Consistency Out-of-Order Execution of Loads 37/54

Memory Consistency Out-of-Order Execution of Stores 36/54

Happened-Before Model for Write Fences [

Thread A Thread B
b o= 1 ! assert (a == 1);

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

i1 sfonce bel Introducing Invalidate Queues: O-O-O Reads
A T et e
store‘zJ — %o »
[4] ’
S b
& ixt
]
o O
o 3o
[8 bl
2, =
< ;
S a ; .]_.
& b T ¥y
Iy Y - b
B Tph==0 T a=21 ”
Memory Consistency %154 Memory Consistency 37754
Invalidate Queue i Happened-Before Model for Invalidate Queues]|
Invalidation of cache lines is costly: Thread A Thread B
@ all CPUs in the system need to send an acknowledge a =1;
L . . while (b == 0) {};
@ invalidating a cache line competes with CPU accesses sfence () ; I g—
@ a cache-intense computation can fill up store buffers in other CPUs b =1;
CPU A CPUB -+ immediately acknowledge an invali- Assume cache A contains: a: SO, b: EQ, cache B contains: a: S0, b: |
dation and apply them later A Ja:l| Efence;l |b ll.
@ put each invalidate message into gg‘z’ ‘- A 5 ,
sfore sfore inval 52 3?0 Hna
®— buffer @ buffer an invalidate queue &g b2 _J *J'?i S 1
I I o if a MESI message needs to be g
sent regarding a cache line in the o) o i
cache cache invalidate queue then wait until 3
T — T the line is invalidated O §§
'“&’Sgﬂgte '”&’Sgﬂgte e /A local read and writes do not ,‘;@5’ S T L=
I : I consult the invalidate queue So <% o= —
@ What about sequential g ¢ 30 T (%A
Memory consistency? ARG
B *To=—=0 *
Memory Consistency 3154 Memory Consistency 30754

Explicit Synchronization: Read Barriers [Happened-Before Model for Read Barriers [

) , Thread A Thread B
Read accesses do not consult the invalidate queue.
. a = 1; while (b == 0) {};
@ might read an out-of-date value
. . . . sfence () ; lfence();
@ need a way to establish sequential consistency between writes of other b = 1; assert(a == 1);
processors and local reads
@ insert an explicit read barrier before the read access A , 42=1 sfegce b=l
@ Intel x86 CPUs provide the 1 fence instruction sé\grefg‘ M _.45;-1 1 7
@ aread barrier marks all entries in the invalidate queue I LEo0 | 1 i S &
: —ge

@ the next read operation is only executed once all marked invalidations
have completed

@ a read barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

~+ match each write barrier in one process with a read barrier in another
process

.- 4

AR 5 \/

& o
b== |lfencel a==
Memory Consistency Out-ot-Order Execution of Loads 40 /54 Memory Consistency Out-of-Order Execution of Loads a1 /54

Summary: Weakly-Ordered Memory Models T[T

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide a barrier that is both, read and write (e.g Exam p|e: The Dekker A|gorithm on SMP Systems
on x86)

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

@ use the volatile keyword in C/C++

@ in the latest C++ standard, an access to 4 volatile|variable will
automatically insert a memory barrier

@ otherwise, inline assembler has to be used
~» memory barriers are the “lowest-level” of synchronization

Memory Consistency ‘Out-of-Order Execution of Loads 42 /54 Memory Consistency The Dekker Algorithm 43 /54

