SN TECHNISCHE ~ UNIVERSITAT ~ MUNCHEN m
g?gg FAKULTAT FUR INFORMATIK

Script generated by TTT
Programming Languages

Title: Petter: Programmiersprachen (28.01.2015) Aspect Oriented P :
spec rente rogramming

Date: Wed Jan 28 14:36:02 CET 2015

Duration: 77:22 min

Dr. Michael Petter
Pages: 38 Winter 2014

Aspect Oriented Programming 1/34

Motivation m

“Is modularity the key principle to organizing
software?”
@ Traditional modules directly correspond to code blocks

@ Aspects can be thought of seperately but are smeared over modules
~ Tangling of aspects

@ Focus on Aspects of Concern
Learning outcomes

@ AOP Motivation and Weaving basics

@ Bundling aspects with static crosscutting
© Join points, Pointcuts and Advice

© Composing Pointcut Designators

@ Implementation of Advices and Pointcuts

~+ Aspect Oriented Programming

Aspect Oriented Programming Introduction 2134 Aspect Oriented Programming Intreduction 3/34

Motivation i

@ Traditional modules directly correspond to code blocks

@ Aspects can be thought of seperately but are smeared over modules
~ Tangling of aspects

@ Focus on Aspects of Concern
~+ Aspect Oriented Programming

Aspect Oriented Programming
@ Express a system’s aspects of concerns cross-cutting modules
@ Automatically combine separate Aspects with a Weaver into a program

Aspect Oriented Programming Introduction 3/34

Functional decomposition Aspect oriented decompaosition

\t/ i)

Compiler

Aspect
Weaver

Functional decompasition

Compiler

{7

Aspect Oriented Programming

Introduction

System Decomposition in Aspects

Example co

ncerns:

@ Security
@ Logging

@ ErrorH
@ Validati

andling
on

@ Profiling

Aspect Oriented Programming

434

5/34

System Decomposition in Aspects)

Example concerns:
@ Security
Logging Static|Crosscutting
Error Handling
Validation

Profiling

~ | Aspectd

Aspect Oriented Programming 5/34 Aspect Oriented Programming 6/34
Adding External Defintions [T

inter-type declaration equivalent code
class Expr {} // aspectj-patched code
class Const extends Expr { abstract class Expr {

public int val; abstract int eval();

public Const(int val) { }

this.val=val; class Const extends Expr { - .

} 3 public int val: Dynamlc Crosscuttlng
class Add extends Expr { [public int eval(){ return val; };]

public Expr 1,r; # public Const(int val) {

public Add(Expr 1, Expr r) { this.val=val;

this.1l=1;this.r=r; }}
}} class Add extends Expr {

public Expr 1,r;

aspect ExprEval { public int eval() { return 1.eval()

abstract int Expr.eval(); + r.eval(); }

int [Const|eval(){ return val; }; PUbIic RAACEXpT I, EXPT IJ 1

int M eval() { return l.eval() this.l=1;this.r=r;

r.eval(); } }}

Aspect Oriented Programming Static Crosscutting 7/34 Aspect Oriented Programming Dynamic Crosscutting 8/34

Join Points

Well defined points in the control flow of a program

method/constr. call | executing a statement, invoking a call
method/constr. execution | an individual method is invoked

field get a field is read

field set a field is set

exception handler execution an exception handler is invoked
classimitiatization static initializers are run

object initialization dynamic initializers are run

Aspect Oriented Programming Dynamic Crosscutting

Advice

... are method-like constructs, used to define additional behaviour at
joinpoints:

@ before(formal)

@ after(formal)

@ after(formal) returning (formal)

@ after(formal) throwing (formal)
For example:

aspect Doubler {
before(): call(int C.foo(int)) {
System.out .println("About to call foo");
T}

Aspect Oriented Programming Dynamic Crosscutting

9/34

11/34

Pointcuts and Designators

Definition (Pointcut)

T

A pointcut is a set of join points and optionally some of the runtime values

when program execution reaches a refered join point.

Pointcut designators can be defined and named by the programmer:

{(userdef) ::= ‘pointcut’ {(id) ‘[’ (idfist)? Y expr)|ty
{idlist) == {id) (*," {id})*
{expr) ::= "V {expr)

| (expr) '&& {(expr)
| (expr) ‘||’ {expr)
| “C (expr)")’

| (primitive)

Example:

pointcut [dfs ()} execution (void Tree) IEI
Jdfs Q) ;

execution (void
Aspect Oriented Programming Dynamic Crosscutting

Binding Pointcut Parameters in Advices

Certain pointcut primitives add dependencies on the context:
@ args(arglist)
This binds identifiers to parameter values for use in in advices.

aspect Doubler {
before(int i): call(int C.foo(int)) && args(i) {
i = i%2;
Y
arglist actually is a flexible expression:
(arglist) = ({arg) (", (arg))")’

(arg) ::= (identifier) , i -
| (typename) pmds a valug to this identifier
| filters only this type
| matches all types
matches several arguments

Aspect Oriented Programming Dynamic Crosscutling

10/34

i

12/34

Around Advice) Method Related Designators T

Unusual treatment is necessary for @ call(signature)

® type around(formal) @ execution(signature)

/N Here, we need to pinpoint, where the advice is wrapped around the join
point —this is achieved via proceed ():

aspact Dlanbler { = . _) _] Matches call/execution join points at which the method or constructor called
int areund{int 1) call(int ek fog (Objects Mntl)igs args (441 matches the given signature. The syntax of a method/constructor signature is:
int newi =[proceed){i*2
return newi/2; ResultTypeName RecvrTypeName.meth id(ParamTypeName, ...)
1} NewObjectTypeName.new(ParamTypeName, ...)

Aspect Oriented Programming 13/34 Aspect Oriented Programming 15/34
Method Related Designators T Method Related Designators I
class MyClass{ class MyClass{

public String toString() { public String toString() {

return "silly me "; return "silly me ";
} }
public static void main(String[] args){ public static void main(String[] args){
MyClass c = new MyClass(); g:%(n{b MyClass c¢ = new MyClass();
System.out.println h; a/ System.out.println(c + c.toString());
}} / }}
aspect CallAspect { aspect CallAspect {

pointcut calltostring()l: call ifivt) MyClass.toString()}; pointcut calltostring() : call (int MyClass.toString());

pointcut exectostring() : execution(rhit|MyClass.toString()); pointcut exectostring() : execution(int MyClass.toString());

before() : calltostring() || exectostring() { before() : calltostring() || exectostring() {
System.out .println("advice!"); System.out.println("advice!");
T} T}

advice!

advice!

advice!
silly me silly me

Aspect Oriented Programming 16/ 34 Aspect Oriented Programming 16/34

Field Related Designators [

® get(fieldqualifier)
@ set(fieldqualifier)

Matches field get/set join points at which the field accessed matches the
signature. The syntax of a field qualifier is:

FieldTypelName ObjectTypeName.field id

AN However, set has an argument which is bound via args:

aspect GuardedSetter {
before(int newval): set(static int MyClass.x) &% args(newval) {

if (Math.abs(newval - MyClass.x) > 100)
throw new RuntimeException() ;

1

Pointcut Designatars 17/34

Aspect Oriented Programming

Flow and State Based

Matches join points of any kindthat occur strictly between entry and exit of
each join point matched by arbitrary_pointcut.

® cflow(arbitrary_ pointcut)

® if(boolean expression)

Picks join points based on a dynamic property:

aspect GuardedSetter {
foefore O} if (phisJoinPoint.getKind().equals("call™)] {

System.out .println("What an inefficient way to match calls");

T}

Aspect Oriented Programming

Type based T

@ target (typeorid)
@ within(typepattern)
@ withincode(methodpattern)
Matches join points of any kind which
@ are refering to the receiver of type typeorid
@ is contained in the class body of type typepattern
@ is contained within the method defined by methodpattern

Pointcut Designators 18/34

Aspect Oriented Programming

Which advice is served first? I

Advices are defined in different aspects
@ If statement declare precedence:A, B; exists, then advice in aspect A
has precedence over advice in aspect B for the same join point.
@ Otherwise, if aspect A is a subaspect of aspect B, then advice defined in A
has precedence over advice defined in B.
@ Otherwise, (i.e. if two pieces of advice are defined in two different
aspects), it is undefined which one has precedence.

Advices are defined in the same aspect
@ If either are after advice, then the one that appears /ater in the aspect has
precedence over the one that appears earlier.
@ Otherwise, then the one that appears earlier in the aspect has
precedence over the one that appears later.

/5

Aspect Oriented Programming

Implementation [

Aspect Weaving:

Pre-processor

During compilation
Post-compile-processor

During Runtime in the Virtual Machine
A combination of the above methods

Implementation

Aspect Oriented Programming 21/34 Aspect Oriented Programming 22/34

Woven JVM Code i Woven JVM Code U

aspect MyAspect { aspect MyAspect {

Expr one = new Const(1); pointcut settingconst(): Expr one = new Const(1); pointcut callingtostring():
one.val = 42; set (int Const.val); Expr e = new Add(one,one) ; call (String Object.toString())
before () : settingconst() { String s = e.toString(); && target (Expr) ;
System.out.println("setter"); System.out.println(s); before () : callingtostring() {

13 System.out.println("calling");

T3

: aload_1 72: aload_2

8: iconst_1 73: instanceof #1 // class Expr
: dup_x1
: invokestatic #73 // Method MyAspect.aspect0f: ()LMyAs

:|invokevirtual #79 // Method MyAspect.ajc$beforefMyAspect$28704a2754:)V

: putfield #54 // Field Const.val:I 85:] aload_2
86:| invokevirtual #33 // Method java/lang/Object.toString:()Ljava/lang/String;
89

89:| astore_3

Aspect Oriented Programming Aspect Oriented Programming 24/34

Poincut Parameters and Around/Proceed T

Around clauses often refer to parameters and proceed () — sometimes across
different contexts!
class C {
int foo(int i) { return 42+i; }
}
aspect Doubler 1
int around(int i): call(int *.foo Object, int)) && args(i) {
int newi = proceed(i*2)
return newi/2;

T}

VAN Now, imagine code like:

public static void main(String[] args){
new C().foo(42);
¥

Aspect Oriented Programming

25150

Around/Proceed — via Procedures T

V' inlining advices in main — all of it in JVM, disassembled to equivalent:
// aspectj patched code
public static void main(String[] args){
C ¢ = new C();
foo_aroundBodylAdvice(c,42,Doubler.aspect0f (),42,null);
1
private static final int foo_aroundBodyO(C c, int i){
return s.foo(i);
}
private static final int foo_aroundBodylAdvice
(C ¢, int i, Doubler d, int j, AroundClosure a){
int temp = 2%i;
int ret = foo_aroundBody"(c,temp) ;
return ret / 2;

Aspect Oriented Programming

210

Around/Proceed — via Procedures T

v inlining advices in main — all of it in JVM, disassembled to equivalent:
// aspectj patched code
public static void main(String[] args){
C c = new CQ;
foo_aroundBodylAdvice(c,42,Doubler.aspect0f (),42,null) ;
)
private static final int foo_aroundBodyO(C ¢, int i){
return c.foo(i);
1
private static final int foo_aroundBodylAdvice
(C ¢, int i, Doubler d, int j, AroundClosure a){
int temp = 2*i;
int ret = foo_aroundBodyO(c,temp) ;
return ret / 2;

Aspect Oriented Programming

12
Escaping the Calling Context T

/N However, instead of beeing used for a
direct call, proceed () and its parameters
may escape the calling context:

advice()

Aspect Oriented Programming

Pointcut parameters and Scope [

A proceed() might not even be in the same scope as the original method!
A even worse, the scope of the exposed parameters might have expired!
class C {

int EooGnt 3 { return 42+i; }

public static void main(String[] str){ new] C(O) .foo(42);

==

}
aspect Doubler {
Executor executor;
Future<Integer> f;
intlaround(int i)Llcall(int *_foo(Object, int)i && args(i) {
Callable<Integer> c = () —>|proceed(i*2)/2;|
f = executor.submit(c; ;
return i/2;

}
public int getCachedValue() throws Exception {
return f.get();

1o

Aspect Oriented Programming 28/34
Shadow Classes and Closures T
// aspectj patched code

class Doubler { // shadow class, holding the fields for the advice
Future<Integer> f;
ExecutorService executor;

public int ajc$around$Doubler$1$9158ff14(int i, AroundClosure c){
Callable<Integer> c = lambda$0(i,c);
f = executor.submit(c);
return i/2;
+
public static int Fjc$around$Doubler$1$9158ff 14proceedtint i, AroundClosure
throws Throwable{
Object[] = new Object[] { Conversions.intObject(i) I};
return Conversions.intValue params)) 3
}
static Integer lambda$0(int i, AroundClosure c) throws Exception{
return Integer.valueOf (ajc$around$Doubler$1$9158£ff14proceed(i*2, c)/2);

+}

class C_AjcClosurel extends|AroundClosure{ // closure class for poincut params
C_AjcClosurel(Object[] params){ super(params); }

Object| ruf (Object (] params) {
C ¢ =(C) params[0];

int i = Conversions.intValue(params[1]):
return Conversions.intObject|C.foo_aroundBody0O(c, i))l;

Implementation 30/34

+}

Aspect Oriented Programming

Shadow Classes and Closures T

v’ creates a shadow, carrying the advice
v’ creates a closure, carrying the context/parameters

// aspect] patched code
public static void main(String[] str){
int itemp = 42;
Doubler shadow = Doubler.aspect0f();
Object[] params = new Object[]
{ new C(,Conversions.intObject(itemp) };
C_AjcClosurel [closure] = new C_AjcClosurel {params) ;
shadow.ajc$around$Doubler$1$9158ff14(itemp -

Aspect Oriented Programming

2154

Property Based Crosscutting

after(int i) : Lall(void h())l&&

cflow(|call(void f(int)] &&
args ()]

{...2};

Idea 1: Stack based

@ At each call-match, check
runtime stack for cf1low-match

° wlNaive implementation |
@ -~ Poor runtime performance

Idea 2: State based
@ Keep seperate stack of states

@ ~~ Only modify stack at
cflow-relevant pointcuts

@ - Check stack for emptyness

Even more optimizations in practice
~- state-sharing, ~~ counters,
~- static analysis

Aspect Oriented Programming

Implementation — Summary i

Translation scheme implications:

before/after Advice ... ranges from inlined code to distribution into
several methods and closures
Joinpoints ... in the original program that have advices may
get explicitely dispatching wrappers
Dynamic dispatching ... can require a runtime fest to correctly interpret

certain joinpoint designators

Flow sensitive pointcuts ... runtime penalty for the naive implementation,
optimized version still costly

Aspect Oriented Programming 32/34
Further reading... [

®> Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhotak, Ondfej Lhotak, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble.
Optimising aspectj.
SIGPLAN Not., 40(6):117-128, June 2005.

¥ Gregor Kiczales.
Aspect-oriented programming.
ACM Comput. Surv., 28(4es), 1996.
ISSN 0360-0300.

¥ Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and WilliamG. Griswold.
An overview of aspect.
ECOOP 2001 — Object-Oriented Programming, 2072:327-354, 2001.

¥ H. Masuhara, G. Kiczales, and C. Dutchyn.
A compilation and optimization model for aspect-oriented programs.
Compiler Construction, 2622:46—-60, 2003.

Aspect Oriented Programming Further materials 34/34

Aspect Orientation

Pro
@ Un-tangling of concerns
@ Late extension across
boundaries of hierarchies

@ Aspects provide another level
of abstraction

Aspect Oriented Programming

Contra

@ Weaving generates runtime
overhead

@ nontransparent control flow and
interactions between aspects

@ Debugging and Development
needs IDE Support

33/34

