SCTIPL - generated by TTT Is Multiple Inheritance the Ultimate Principle in

Reusability?
Title: Petter: Programmiersprachen (17.12.2014)
Date: Wed Dec 17 14:22:03 CET 2014 :
Learning outcomes
Duration: 41:24 min @ |ldentify problems|of composition and decomposition
© nderstand semantics of traits
Pages: 24 © Separate funcfion provision, object generation and class relations
@ Traits and existing program languages
2/2
Reusability = Inheritance? T Duplication T
ﬁziIeStream\ (SynchRW (SocketStreamw
D B S
r'ea_d(?
'\ . write()
@ Codesharing in Object Oriented Systems is mostly inheritance-centric. mixin ‘

@ Inheritance itself comes in different flavours:
» single inheritance
» multiple inheritance
» mixin inheritance

ﬁ;ynchedFileStream] ﬁ;ynchedSocketStreanq

@ All flavours of inheritance tackle problems of decomposition and L J L J
composition

VN Duplication

@ Convenient implementation needs second order types, only available with
~+ Mixins or ~+ Templates

Problems with Inheritance and Composability 3/27

Problems with Inheritance and Composability Decomposition Problems 427

Duplication [

ﬁ=| leStrea m\ (Synch RW (SocketStrea m\

read(e cqulreLock read(e
write() reIeaseLock write()

(SynchedFileStream\ (ynchedSocketStreanq

read(read(
Lwﬂteg) J Lwrlte J

N\ Duplication

@ Convenient implementation needs second order types, only available with
~+ Mixins or ~~ Templates

@ With multiple inheritance, read/write Code is essentially identical but
duplicated

Problems with Inheritance and Composability

Decompaosition Problems 4/27

Lack of Control T

PrecisionGun
shoot()

(MountablePlane)

fuel
equipment

SpyCamera
shoot()

equipmen

equipment,

CombatPlane
reload(Ammunition)

CameraPlane

download():pics

& Control

@ Common base classes are shared or duplicated at class level
@ Linearization overrides all identically named ancestor methods in parallel

Problems with Inheritance and Composability

Decomposition Problems 5/27

Lack of Control i

SpyCamera MountablePlane
shoot()

fuel
equipment
equipmen

PrecisionGun
shoot()

equipment

CombatPlane
reload(Ammunition)

CameraPlane

download():pics

A Control

@ Common base classes are shared or duplicated at class level

Problems with Inheritance and Composability

Decomposition Problems 5/27

Lack of Control i
m PrecisionGun
shoot()

fuel shoot()
equipment
equipmen

equipment,

CombatPlane
reload(Ammunition)

CameraPlane

download():pics

& Control

@ Common base classes are shared or duplicated at class level
@ Linearization overrides all identically named ancestor methods in parallel
@ super as ancestor reference vs. qualified specification

~~ No fine-grained specification of duplication or sharing

Problems with Inheritance and Composability

Decomposition Problems 5/27

Fragility) Fragility T

acquireLock()
releaselLock()

LinkedList

add(int, Object)

remove(int)
clear()

(SocketStream]
Lﬁtde(()) J Stack
E stackpointer: int

push{Object)
ﬁynchedFNeStrea rﬂ (SynchedSocketStrear‘rn pushMany(Object...)

()) _,

FileStream

read()
write()

N Inappropriate Hierarchies
@ Implemented methods (acquireLock/releaseLock) fo high

@ High up specified methods turn obsolete, but there is no statically safe
way to remove them

N\ Inappropriate Hierarchies
@ Implemented methods (acquireLock/releaseLock) to high

Problems with Inheritance and Composability Decomposition Problems 6/27

Docomposition Probiems 6127
Fragility [T

LinkedList

add(int, Object)
remove(int)
clear()

Is Implementation Inheritance even an

Stack }
Anti-Pattern?

stackpointer: int
push(Object)
pushMany(Object...)
pop()
e/

VA Inappropriate Hierarchies
@ Implemented methods (acquirelock/releaseLock) to high
@ High up specified methods turn obsolete, but there is no statically safe
way to remove them /N Liskov Substitution Principle!

Problems with Inheritance and Compaosability Decompeosition Problems 6/27 Problems with Inheritance and Composability Decomposition Problems Ti27

Excerpt from the Java 8 APl documentation for class Properties:
“Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. Their use is
strongly discouraged as they allow the caller to insert eniries whose
keys or values are not Strings. The setProperty method should be
used instead. If the store or save method is called on a
‘compromised” Properties object that contains a non-String key or
value, the call will fail.. . ”

Problems with Inheritance and Composability

Decompaosition Problems B/27

i

(De-)Composition problems

All l{hg problems of
Duplication

o| Fragility |
@|Lack of fine-grained control
are centered around the question

“How do | distribute functionality over a hierarchy”

~ functional (de-)composition

Problems with Inheritance and Composability

Decomposition Problems 9/27

Excerpt from the Java 8 APl documentation for class Properties:

“Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. Their use is
strongly discouraged as they allow the caller to insert entries whose
keys or values are not Strings. The setProperty method should be
used instead. If the store or save method is called on a
“compromised” Properties object that contains a non-String key or
value, the call will fail...”

& Misuse of inheritance

Implementation Inheritance itself as a pattern for code reusage is often
misused!
~ All that is possible will once be done!

Problems with Inheritance and Composability

Decomposition Problems 8/27

The idea behind Traits U]

@ A lot of the problems originate from the coupling of implementation and
modelling

o| Interfaces seem to be hierarchical |
o|FunctionaIity seems to be modular |

& Central idea

Separate Object creation from|modelling hierarchies|and|assembling
functionality.

~ Use interfaces to design hierarchical signature propagation
~+ Use traits as modules for assembling functionality
~ Use classes as frames for entities, which can create objects

A formal model for traits 10/27

Classes and Methods — again [T

The building blocks for classes are
@ a countable set of method names A/
@ a countable set of method bodies B
Classes map names to elements from the flat lattice B (called bindings),
consisting of:
@ attribute offsets € N+
@ method bodies € B or classes € C
@ | (yet) undefined
@ T in conflict
and the partial order L. C m C T foreach m € B

Definition (Abstract Class < ()
A partial function|c : A" — Blis called abstract class.

Definition (Interface and Class)
An abstract class cis called
interface ifflV,,cpra(c) - ¢(n) = L.
(concrete) class iff V,,cpre(e) { L T c(n) C T.

(with pre beeing the preimage)

Trait composition principles

Flat ordering All traits have the same precedence under
“F explicit disambiguation with aliasing and exclusion |
Precedence Under asymmetric join ‘L, class methods take precedence
over trait methods

Flattening After asymmetric join L: Non-overridden trait methods have
the same semantics as class methods

Traits — Concepts U

A Conflicts ...
arise if composed traits map methods with identical names to different bodies

Conflict treatment
v Methods can be aliased (—)
v Methods can be excluded (-)
V" Class methods override trait methods and sort out conflicts (1)

A formal model for traits 13727

Traits — Composition

Definition (Trait = 7)

An abstract class ¢ is called trait iff V,,cpre(r) - tH(n) € Nﬂ (i.e. without attributes)l

T

The trait sum+ : T x T + T is the componentwise least upper bound:

by ifby = LVn&pre(c)
by ifby=_1Vné&pre(c)
by ifby =0y

T otherwise

(e1 +e2)(n)=bUby =

Trait-Expressions also comprise:

undef ifa=n
t(n) otherwise
t(n) ifn+#a
tb) ifn=a
Traits ¢ can be connected to classes ¢ by the asymmetric join:

c¢(n) ifnepre(c) |

~Ut)(n)|=
i) t(n) otherwise
0 ‘model for traits

@ exclusion —: T x N — T: (t—a)(n) = {

@ aliasing [=]: T XN x N —T: tla — bl(n) = {

Disambiguation

Traits vs.vs. Class-Inheritance

All different kinds of type expressions:
@ Definition of curried second order type operators + Linearization

with b; = ¢;(n)

12/27

Explicitly: Traits differ from Mixins
@ Traits are applied to a class in parallel, Mixins sequentially
@ Trait composition is unordered, avoiding linearization effects
@ Traits do nof contain attributes, avoiding state conflicts
@ With traits, glue code is concentrated in single classes

A formal model for traits

14/27

Disambiguation i Disambiguation [

Traits vs. Mixins vs. Class-Inheritance Traits vs. Mixins vs. Class-Inheritance
All different kinds of type expressions: All different kinds of type expressions:
@ Definition of curried second order type operators + Linearization @ Definition of curried second order type operators + Linearization
@ Finegrained flat-ordered composition of modules @ Finegrained flat-ordered composition of modules
@ Definition of (local) partial order on precedence of types wrt. MRO

Explicitly: Traits differ from Mixins Explicitly: Traits differ from Mixins
@ Traits are applied to a class in parallel, Mixins sequentially @ Traits are applied to a class in parallel, Mixins sequentially
@ Trait composition is unordered, avoiding linearization effects @ Trait composition is unordered, avoiding linearization effects
@ Traits do not contain attributes, avoiding state conflicts @ Traits do not contain attributes, avoiding state conflicts
e With traits, glue code is concentrated in single classes @ With traits, glue code is concentrated in single classes

Disambiguation T Traits in the Context of Modularity Problems U]
Traits vs. Mixins vs. Class-Inheritance Decomposition Problems

All different kinds of type expressions:

. . o v’ Duplicated Features ... can easily be factored out into unique traits.
@ Definition of curried second order type operators + Linearization

v’ Inappropriate Hierarchies — Trait composition for reusable code

® Finegrained flat-ordered composition of modules concentrates inheritance on shaping interface relations.
@ Definition of (local) partial order on precedence of types wrt. MRO ’
@ Combination of principles Composition Problems

V' Conlflicting Features — Traits have no state, other conflicts resolved via

exclusion, aliasing or overriding.
Explicitly: Traits differ from Mixins

@ Traits are applied to a class in parallel, Mixins sequentially
e Trait composition is unordered, avoiding linearization effects
@ Traits do not contain aftributes, avoiding state conflicts

@ With traits, glue code is concentrated in single classes

v’ Lack of Control - During trait composition precedence is chosen
seperately for each feature.

v Dispersal of Glue Code ... deferred to and concentrated in the final class.
V' Fragile Hierarchies — Trait details are hideable due to missing hierarchy.

A formal model for traits 14/27

Traits against the identified problems Decomposition 15/27

Can we augment classical languages by traits?

e Extnsion ethods 1627

