?46% TECHNISCHE UNIVERSITAT MUNCHEN
%?%3 FAKULTAT FUR INFORMATIK |U||

Script generated by TTT

Programming Languages

Title: Petter: Programmiersprachen (10.12.2014) Vi
IXins
Date: Wed Dec 10 14:28:09 CET 2014
Duration: 75:57 min
Dr. Michael Petter
Pages: 31 Winter 2014

1/30

Outline T

Weak implementation inheritance

@ Decorator Problem
© Wrapper Problem

“What advanced techiques are there besides

multiple implementation inheritance?” Inheritance in Detail

@ Models for single inheritance
© |Introducing Mixins
© Modelling Mixins

Mixins in the wild

@ Mixins as C++-Pattern
© Native Mixins

Introduction 2/30

Introduction 3/30

The Adventure Game

—

(ShortDoor |

(LockedDoor |

| canPass(Person p) l

?
(ShortLockedDooﬂ

canOpen(Person p)
canPass(Person p)

Introduction

The Wrapper

l canOpen(Person p) |

The Adventure Game

i

(FileStream)

(SocketStream)

l read() |
write()
'

l read() l
write()

(SynchRwW)

acquireLock()
releaselock()

/N Cannot inherit from both seperately

A Creating new wrapping Classes duplicates code

The Wrapper

4/30

6/30

The Adventure Game

(<interface> Doorlike] |......

canPass(Person p)
canOpen(Person p) k|

Door]

..... s ™
Short
canPass(Person p)
e "
Locked
canOpen(Person p)

(ShortLockedDooﬁ /N Door implements empty methods

canOpen(Person p) /N Doorlike must anticipate wrappers
canPass(Person p)

Introduction

The Wrapper

The Adventure Game 5/30

i

FileStream | |[(SocketStream)
read() read()
write() write()
\d

(SynchRW)

read()

write()
acquireLock()
releaselLock()

/N Undoes specialization
/N Needs common ancestor

The Wrapper T/30

Classes and Methods

The building blocks for classes are
@ a countable set of method names A/
@ a countable set of method bodies B
Classes map names to elements from the flat lattice B (called bindings),
consisting of:
@ method bodies € B or classes € C
@ attribute offsets € N+
@ | (yet) undefined
@ T in conflict
and the partial order L. C m C T foreach m € B

Definition (Abstract Class < ()
A partial function ¢ : A" — B is called abstract class.

Definition (Interface and Class)
An abstract class cis called
interface iff V,,epre(c) - ¢(n) = L.
(concrete) class iff Vy,cpre(e) - L C c(n) T T.

(with pre beeing the preimage)

Classes and Methods

The building blocks for classes are
@ a countable set of method names A
@ a countable set of method bodies B
Classes map names to elements from the flaf laftice B (called bindings),
consisting of:
@ method bodies € B or classes € C
@ attribute offsets ¢ N*
@ | (yet) undefined
@ T in conflict
and the partial order | C m C T foreach m € B

Definition (Abstract Class < C)
A partial function ¢ : ' — B is called abstract class.

Modelling Inheritance

Definition (Interface and Class)
An abstract class c is called
interface iff V,,cpre(c) - ¢(n) = L.
(concrete) class iff V,,cpra(e) - L T c(n) T T.

(with pre beeing the preimage)

Modelling Inheritance

Computing with Classes and Methods

Definition (Family of classes C)

We call the set of all maps from names to bindings the family of abstract
classes C := N — B.

T

Several possibilites for composing maps ¢ U C:
@ the symmetric join L, defined componentwise:

bz if bl =1
by ifba= L
(erUeg)(n) =by Uby = & . 2 where b; = ¢;(n)
bg if bl = (1)2
T otherwise

@ in contrast, the asymmetric join ‘L, defined componentwise:

{cl{n) if n € pre(e;)

(L Uea)(n) =
(@ Ue)(m) =13) otherwise

<q ("‘\ =L
_ Mns

Computing with Classes and Methods

Definition (Family of classes C)

We call the set of all maps from names to bindings the family of abstract
classes C := N — B.

Modelling Inheritance

10/30

i

Several possibilites for composing maps C O C:
@ the symmetric join LI, defined componentwise:

by ifby=_L
by ifba= L
by ifby = by
T otherwise

(e1Ueg)(n) =by Uby = where b; = ¢;(n)

@ in contrast, the asymmetric join 1, defined componentwise:

ci(n) ifn € pre(e;)
ca(n) otherwise

(e1 Uer)(n) = {
<, ("f) =L

Modelling Inheritance

10/30

Example: Smalltalk-Inheritance [Excursion: Beta-Inheritance i

In Beta-style inheritance

Smalltalk inheritance @ the design goal is to provide security from replacement of a method by a
@ is the archetype for inheritance in mainstream languages like Java or C# different method.
@ inheriting smalltalk-style establishes a reference to the parent @ methods in parents dominate methods in subclass

@ the k d i licitely delegat trol to the subcl
Definition (Smalltalk inheritance (>)) e keyword inner explicitely delegates control to the subclass

Smalltalk jnheritance is the binary operator > : C x C + C, definied by Definition (Beta inheritance (<))
¢1 >z = {super — c3JU(c1 Ucy)) Beta inheritance is the binary operator < : C x C + C, definied by
¢y ey = {inner — ¢; P U (2 Uey)

Example: Doors
Example (equivalent syntax):

Door = {canPass — L, canOpen — L} class Person {

LockedDoor = {canOpen — 024204711} > Door String name ="Axel Simon";
public String toString(){ return namefinner |toString();l};
=|{super — Door | ({canOpen — 024204711} U Door }:

— - . - lass Graduate extends Person {
= [super — Door JcanOpen — 0xd204711||canPass — L &
k h " 4 publ:i.c String toString(){ return ", Ph.D."; };

};

S e Moseing nnertance

S e Modeting nnerance 11/30

Extension: Attributes m

Remark: Modelling attributes is not in our main focus. Anyway, most
mainstream languages nowadays are designed so that attributes are not
overwritten:

Definition (Mainstream inheritance (>')) “So what do we rea"y want?”
The extended mainstream inheritance -’ : C x C — C binds attributes statically:

2 if n = super

[T] ifnecpre(c) A ca(n) e N*
ci(n) ifn € pre(e)

ca(n) otherwise

(e10 e2)(n) = ¢

Modalingnhetancs 13130 e iroduing s

12/30

14/30

Adventure Game with Code Duplication [

(ShortDoor || (LockedDoor |

Introducing Mixins 15/30

Adventure Game with Mixins T

class Door {
boolean canOpen(Person p) { return true; };
boolean canPass(Person p) { return p.size() < 210; 1};
¥
mixin Locked {
boolean canOpen(Person p){
if (!p.hasTtem(key)) return false; else return super.canOpen(p);

}

}
mixin Short {

boolean canPass(Person p){

if (p.height()>1) return false; else return super.canPass(p);

}
}
class ShortDoor = Short (Door) ;
class LockedDoor = Locked(Door);
mixin ShortLocked = Short o Locked:
class ShortLockedDoor = Short(Locked(Door));
class ShortLockedDoor2 = ShortLocked(Door) ;

Introducing Mixins 17 /30

Adventure Game with Mixins [

(
<mixin>Locked

(Door |

canOpen(Person p) -

canOpen(Person p)
canPass(Person p)

e
<mixin>Short

canPass(Person p)

compose
(<mixin >ShortLocked
~ Mins] Introducing Mixins 16/30
Abstract model for Mixins i

A Mixin is a unary second order type expression. In principle it is a curried
version of the Smalltalk-style inheritance operator. In certain languages,
programmers can create such mixin operators:

Definition (Mixin)

The mixin constructor mixin : C — (C — C) is a unary class function, creating
a unary class operator, defined by:

mizin(c) = A\x . cb x

/N Note: Mixins can also be composed o:
Example: Doors
Locked = {canOpen — 011234}
Short = {canPass — 0x4711}
Composed = mizin(Short) bl mizin(Locked)) = M. Short » (Locked >
=M. super — Locked U ({canOpen — 021234, canPass — 04711} 1> @

Modelling Mixins 19/30

Wrapper with Mixins T Mixins on Implementation Level i

class Door {

boolean canOpen(Person p)...
boolean canPass(Person p)...
1

mixin Locked {

boolean canOpen(Person p)...
}

mixin Short {

boolean canPass(Person p)...

(FileStream) (SocketStream)

read()
write()

(<mixin>SynchRWw

acquireLock() |. | }
releaselock() T class ShortDoor
' = Short(Door) ;
class ShortLockedDoor
ﬁynched FiIeStreanﬂﬁynched SocketStreara = Short(Locked (Door));

| read() Il read() I o '
write() write() e € I\ non-static super-References
— v CheriieEe T sme) o ~» dynamic dispatching without

precomputed virtual table
“ Modelling Mixins 21/30

Simulating Mixins in C++ I

e o s 20120

template <class Super>
class SyncRW : publicISuperl{
public: virtual int read(){
acquireLock() ;
int result = Super: read();

“Surely multiple inheritance is powerful enough to releaseLock()

simulate mixins?” return result;
e
virtual void write(int n){
acquireLock() ;
Super::write(n);
releaselLock();

// ... acquirelLock & releaseLock

Simulating Mixins in C++ 22/30

I s nces /30

Simulating Mixins in C++

template <class Super>

class LogOpenClose : public Super {

public: virtual void open(){

Super: :open() ;
log("opened");
5
virtual void close(){
Super: :close();

log("closed");

g

protected: virtual void log(charx*s) { ... };

s

class MyDocument : public SyncRW<LogOpenClose<Document:>> {};

True Mixins vs. C++ Mixins

True Mixins
@ super natively supported

@ Mixins as Template do not
offer composite mixins

@ C++ Type system not modular

@ - Mixins have to stay source
code

@ Hassle-free simplified version
of multiple inheritance

C++ Mixins
@ Mixins reduced to templated
superclasses

@ Can be seen as coding
pattern

Simulating Mixins in C++

Common properties of Mixins
@ Linearization is necessary
@ -~ Exact sequence of Mixins is relevant

Simulating Mixins in C++

Simulating Mixins in C++

template <class Super>

class LogOpenClose : public Super {
public: virtual void open(){
Super: :open() ;

log("opened");

};

virtual void close(){

Super::close();

log("closed");

};

protected: virtual void log(char*s) { ...

I

s

class MyDocument : public SyngRW<LogOpenClose<Document>> {};
|

Simulating Mixins in C++

24/30

“Ok, ok, show me a language with native mixins!”

Native Mixins in Python

2630

Ruby

class Person
attr_accessor :size
def initialize
@size = 160
end
def hasKey
true
end
end

i

module Short
def -anPass(p)

p.size < 160 |and|super (p)
end

end
module Locked
def canOpen(p)
p-hasKey() and super(p)
end
end

class Door
def canOpen (p)
true
end

def canPass(person)
person.size < 210
end

class ShortLockedDoor

include Short
include Locked

end

end

Lessons Learned

p = Person.new
d = ShortlockedDoor.new
puts |d.canPass (p)

Native Mixins in Python 27/30

i

Ruby

class Door
def canOpen (p)
true
end
def canPass(person)
person.size < 210
end
end
module Short
def canPass(p)
p-size < 160 and super (p)
end
end
module Locked
def canOpen(p)
p-hasKey() and super(p)
end

end

Further reading...

module ShortLocked
include Short
include Locked
end

class Person
attr_accessor :size
def initialize
@size = 160
end
def hasKey
true
end
end

p = Person.new
d = Door new

d.extend||ShortLocked

puts d.canPass(p)

Native Mixins in Python

28/30

i

Gilad Bracha and William Cook.
Mixin-based inheritance.

Lessons Learned European conference on object-oriented programming on Object-oriented

programming systems, languages, and applications (OOPSLA/ECOOP), 1990.

@ [Formalisms to model inheritance
@ | Mixins|provide soft multiple inheritance ¥ James Britt.

@ Multiple inheritance can not compensate the lack of|super reference Ruby 2.1.5 core reference, December 2014.

© Full extent of mixins only when mixins are 1st class language citizens URL https://ww . ruby-lang. org/en/documentation/.

¥ Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins.
Principles of Programming Languages (POPL), 1998.

Native Mixins in Python 29/30

Further materials 30/30

