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A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:
@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit
@ validating conflict detection: accessing a modified address aborts
TL2 stores a global version counter and:

@ aread version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction objectin e.g. Java)

@ aredo-log in the transaction descriptor
@ aread- and a write-set in the transaction descriptor
@ a read-version: the version when the transaction started
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A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails

@ redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:

@ provides gpacify. zombie transactions do not see inconsistent state

@ uses lazy versioning: writes are stored in a redo-log and done on commit

e validating conflict detection: accessing a modified address aborts
TL2 stores a global version counter and:

@ aread version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction object in e.g. Java)
a

@ a redo-log in the transaction descriptor
@ aread- and a write-set in the transaction descriptor
@ a read-version: the version when the transaction started
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The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at offset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objl[offset]) in tx.redoLog) {
return tx.redoLog[&obj[offset]];

} else {
atomic { y1 = obj.timestamp; locked = obj.sem<1l; };
e S—
result = obj[offset];

v2 = obj.timestamp;
———

if (locked || v1 '= v2 || v1 > tx.RY) AbortTx(tx);
iy = -
tx.readSet = tx.readSet.add(obj);
return result;
} o
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Committing a Transaction
A transaction can succeed if none of the read locations has changed:

committing a transaction

bool CommitTx(TMDesc tx) {
foreach (e in tx.writeSet)
if (ltry_wait(e.obj.sem)) goto Fail;
WV = FetchAndAdd(&globalClock);
foreach (e in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redoLog)
e.obj[e.offset] = e.value;
foreach (e in tx.writeSet) {
e.obj = WV; signal(e.obj.sem);
¥
return true;
Fail:
// signal all acquired semaphores
return false;
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Committing a Transaction
A transaction can succeed if none of the read locations has changed:

committing a transaction

bool CommitTx(TMDesc tx) {
foreach (e in tx.writeSet)
if (!try_wait(e.obj.sem)) goto Fail;
WV = FetchAndAdd(&globalClock);
foreach (e in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redolog)
e.objle.offset] = e.value;
foreach (e in tx.writeSet) {
e.obj = WV; signal(e.obj.sem);
}
return true,
Fail:
// signal all acquired semaphores
return false;
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Principles of TL2 iy

The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at offset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redolog) {
return tx.redoLogl[&obj[offset]];

e
é;{ﬁqduﬁatomlc { v1‘= obj.timestamp; locked = obj.sem<1; };
result = objloffset];
-—‘%}2 = obj.timestamp;
f (locked || v1 != v2 || v1 > tx.RV) AbortTx(tx);
\__}-_ e

tx.readSet = tx.readSet.add(obj);

return result;

}
WriteTx is simpler: add or update the location in the redo-log.
L
General Challenges when using TM Ty )

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large

» a TM implementation might impose restrictions:
// Thread 1 // Thread 2

atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
R -l —
}
V int r = ReadTx(&z.0);
} // tx.RV=12/=clock( x )
— —
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» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction

» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
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Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction

if the old object has not changed

» s ide riginal STM proposal

@ TM system should figure out which memory locations must be logged
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General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted
» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
¥

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
» -~ idea of the original STM proposal
@ TM system should figure out which memory locations must be logged

@ danger of liye-locks: transaction B might abort A which might abortB ...
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Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:

@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:

@ _Prohibit It. Gertain constructs do not make sense. Use compiler to reject
these programs.

e Execute It. I/O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ _Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

@ Integrate It Re-write code to be transactional: error logging, Mta
to afile, . ...

20 /34
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Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:

@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:

@ Prohibit It. Certain constructs do not make sense. Use compiler to reject
these programs.

@ Execute It. /O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

@ Integrate It. Re-write code to be transactional: error logging, writing data
to afile, .. ..

~+ currently best to use TM only for memory; check if TM supports irrevocable
transactions = -
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Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
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@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
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Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts

» if a cache-line in the write set must be written-back, the transaction aborts

ee—
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Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~~ limited by fixed hardware resources, a software backup must be provided
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Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
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@ conflict detection is eager using the cache:
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~=+ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
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transactionally
» hardware access, OS calls, page table changed, etc. all abort a transaction
3 acLe: _c> Pk kel e

Concurrency: Transactions Hardware Transactional Memory 21/34 Concurrency: Transactions Hardware Transactional Memory 21/34



Ty |

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:

» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts

~~ limited by fixed hardware resources, a software backup must be provided

Two principal implementation of HTM:

@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
» -~ a transaction has to be translated differently
> & mixing transactional and non-transactional accesses is problematic
©@ Implicit Transactional HTM: only the beginning and end of a transaction
are marked
» same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed
transactionally

» hardware access, OS calls, page table changed, etc. all abort a transaction
» provides strong isolation
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AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region
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@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel’s Haswell microarchitecture (from Sep 2013 to Aug 2014):
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AMD Advanced Synchronization Facilities (ASF):
o defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single fransaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
Pubelait LM

Concurrency: Transactions Hardware Transactional Memory

Tl

22/34

]

22/34




Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel’s Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions

Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
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AMD Advanced Synchronization Facilities (ASF):
o defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single fransaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources
@ aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory (RTM)
@ Hardware Lock Elision (HLE)

e
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Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND XABORT, and XTEST

@ XBEGIN takes an instruction address where executlon continues if the
transaction aborts -
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Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN
@ XABORT aborts the current transaction with an error code
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Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN
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Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN

@ XABORT aborts the current transaction with an error code

@ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a G function:

int datal[100]; // shared
void update(int idx, int val&e) {
if (_xbeginO==-1) {

datalidx] += value;
——

xend()
} else {
// transaction failed
}
}
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Provides new instructions XBEGIN, XEND, XABORT, and XTEST:
@ XBEGIN takes an instruction address where execution continues if the
transaction aborts
@ XEND commits the transaction started by the last XBEGIN
@ XABORT aborts the current transaction with an error code
@ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a C function:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
data[idx] += value;
_xend();
} else {
// transaction failed
}
T

~ user must provide fall-back code
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Considerations for the Fall-Back Path

Consider executing the following code in parallel with itself:

int datal[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
datal[idx] += value;

_xend();
} else {
data[idx] += value;
}
}
Problem:

@ if the fall-back code is executed, it might be interrupted by the transaction
@ the write in the fall-back path thereby overwrites the value of the

transaction
e —————
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Considerations for the Fall-Back Path iy

Consider executing the following code in parallel with itself:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
datal[idx] += value;

_xend();
} else {
datalidx] += value;
}
T
a5/

Protecting the Fall-Back Path iy

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared
int mutex;
e
void update(int idx, int value) {

if (_xbegin(D==-1) {
datalidx] += value;ﬁ

_xend();

} else {
wait (mutex) ;
datalidx += valuel;
signal (mutex) ;

}

o fall-back path may not run in parallel with others v

o /\ transactional region may not run in parallel with fall-back path
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Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {

if(_xbegin(D==-1) {
if (mutex>0) _xabort();
datal[idx] += value;
_xend();
} else {

wait (mutex) ;
data[za;_+= value]
signal (mutex) ;

o fall-back path may not run in parallel with others v
o /N transactional region may not run in parallel with fall-back path
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Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’
@ use a nesting counter g_ and a backup register set
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Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit’T
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Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’

@ use a nesting counter C' and a backup register set
— ~~ additional transaction logic:

7| [regi
CPUA  [Hbank

store
®— puffer

|

cache T
|

invalidate
queue

I—\

Memory
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Implementing RTM using the Cache Y

Transactional operation:
@ augment each cache line with an extra bit T

@ use a nesting counter C' and a backup register set
~- additional transaction logic:

L -— . .
| [register @ XBEGIN increment C' and, if C' = 0, back
CPUA  Mlbank [C up registers
store
®— buffer
cache T
[
invalidate|
queue
Memory
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@ use a nesting counter C' and a backup register set
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CPUA bank | C up registers
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store TiftC >0
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Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’

@ use a nesting counter C' and a backup register set
~~ additional transaction logic:

| [register @ XBEGIN increment C and, if C' = 0, back
CPUA bank | C up registers
@ read or write access to a cache line sets
o store TiHEC >0
buffer e applying an invalidate message from
! invalidate queue to a cache line with
cache T T=1 |§sues XABORT
I @ observing a read message for a
invalidate modified cache line with T" = 1 issues
queue XABORT
Memory
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Implementing RTM using the Cache 17 | Implementing RTM using the Cache Yy
Transactional operation: Transactional operation:
@ augment each cache line with an extra bit T’ @ augment each cache line with an extra bit T’
@ use a nesting counter C' and a backup register set @ use a nesting counter C' and a backup register set
~~ additional transaction logic: -~ additional transaction logic:
| [register @ XBEGIN increment C' and, if C' = 0, back | [register @ XBEGIN increment C' and, if C' = 0, back
CPUA bank |C up registers CPUA bank | C up registers
@ read or write access to a cache line sets @ read or write access to a cache line sets
®— buffer e applying an invalidate message from ®— buffer e applying an invalidate message from
l invalidate queue to a cache line with | invalidate queue to a cache line with
cache T r=1 ISSUES XABORT cache T T=1 issues XABORT
I @ observing a read message for a I @ observing a read message for a
invalidate modified cache line with T' = 1 issues invalidate modified cache line with T' = 1 issues
queue XABORT queue XABORT
|—\ @ XABORT clears all T flags, sets C' = 0 and 1 @ XABORT clears all T flags, sets C' = 0 and
restores CPU registers restores CPU registers
Memory LR regs Memory 9 .
© XCOMMIT decrement C' and, if C' = 0,
clear all 7 flags -
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lllustrating Transactions T Common Code Pattern for Mutexes %]
Augment MESI state with extra bit T" per cache line. CPU A: E5, CPU B: | Using HTM in order to implement mutex:
—_— - void update(int idx, int val) {
Thread A Thread B int data[100]; // shared lock(mutex) ;
: : : : int mutex; data[idx] += val;
int EEP = da_‘ta[_‘:wdx] 3 int t[?lp = datalidx]; void update(int idx, int value) { unlock(mutex) ;
dy:_:_ag._d:;] = tmp+value; data[idx] = tmp+value; if (_xbegin()==-1) { }
_)_:Eld(); _xend(); if (mutex>0) _xabort(); void lock(int mutex) {
tmp=data[idx]  data[idx]=tmp+value datalidx] += value; \lf o
o » *~—s _xend(); if (mutex>0) _xabort();
Store‘b o } else { else return;
Sd se wait (mutex) ; 2, wait (mutex) ;
& i3 o data[idx] += valuedy }
il -g Q! signal (mutex) ; void unlock(int mutex) {
= =i & ;
3 S o =2 } signal (mutex) ;
. e 5 £ ‘g } X
£ i i =
{_f,fr’ aT S Mb @ the critical section may be executed without taking the lock (the lock is
store 4 J 5 ; elided)
B I N AN FIEN @ as soon as one thread conflicts, it aborts, takes the lock in the fallback
tmp=data[idx] data[idx]=tmp+value xend () path and thereby aborts all other transactions that have read putex
ERE 25758




Hardware Lock Elision

Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE

@ provides a way to execute a critical section without the overhead of the
atomic updates necessary 10 acquire and release the lock
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atomic updates necessary to acquire and release the lock
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» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
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Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
@ only a finite number of locks can be elided
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Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~= provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
@ only a finite number of locks can be elided

@ all but one elided lock may abort ~~

» progress guarantee since lock is taken on abort
-———-—_________
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Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE

@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

o for a successful elision, all signal/wait operations of a lock must be
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@ only a finite number of locks can be elided7

@ all but one elided lock may abort ~~
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Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~+ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

o for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
o only a finite number of locks can be elided

@ all but one elided lock may abort ~

» progress guarantee since lock is taken on abort
» no back up path is required
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Hardware Lock Elision Téy]

Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
@ only a finite number of locks can be elided

@ all but one elided lock may abort ~~
» progress guarantee since lock is taken on abort
» no back up path is required
» avalanche of blocked threads once elision fails

_
Implementing Lock Elision i)

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

e e ————
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Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

CPU A —ng}f‘é}@

store | || elided
buffer locks

cache T
1
invalidate

ueue
Memory
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Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures
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1
invalidate
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Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

message to a cache line with 7" = 1
issues XABORT, analogous for read

cache T message to a modified cache line
|
invalidate
ueue
Memory

Ty

. shared/exclusive cache line state with
CPUA rbeglﬁter C = 1, issues XBEGIN and stores written
an value in elided lock buffer
e —
store| [elided
bufferr* locks
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1
invalidate

queue
Memory

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

. shared/exclusive cache line state with
CPUA {)eglﬁter c T = 1, issues XBEGIN and stores written
an value in elided lock buffer
: ,‘? @ r/w access to a cache line sets T'
Store || eligea o like HLE, applying an invalidate

message to a cache line with 7' =1
issues XABORT, analogous for read

cache T message to a modified cache line
I @ a CPU read to the address of the elided
'”Vggﬂgte lock accesses the buffer (and reads 0 as
I if the lock was taken); cache contains 1
Memory
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Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

. shared/exclusive cache line state with
CPUA rbeglﬁter C T = 1, issues XBEGIN and stores written
an value in elided lock buffer
@ r/w access to a cache line sets T
gt&;gr'- %g:ikesc @ like HLE, applying an invalidate

message to a cache linewith 7' =1

issues XABORT, analogous for read

cache T message to a modified cache line

1 @ a CPU read to the address of the elided

mvl?gﬂgte lock accesses the buffer (and reads 0 as
[ if the lock was taken); cache contains 1

@ on XRELEASE on the same lock,
—
Memory

decrement C' and, if C'= 0, clear T’ flags
and elided iocks buffer (thus, all locks
contain the value 1 stored in the cache)
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Transactional Memory: Summary

Transactional memory aims to provide atomic blocks for general code:

@ frees the user from deciding how to lock data structures

@ compositional way of communicating concurrently

@ can be implemented using software (locks, atomic updates) or hardware
The devil lies in the details:

@ semantics of explicit HTM and STM transactions quite subtle when

mixing with non-TM (weak vs. sfrong isqlation)  Cpacity
@ single-lock atomicity and transactional sequential consistency semantics
@ STM not the right tool to synchronize threads without shared variables

@ TM providing oga<ciry (serializability) requires eager conflict detection or
lazy version management

Devils in implicit HTM:
° IiLM requires a fall-back path

@ no progress guarantee
@ HLE can be implemented in software using RTM

———
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Transactional memory aims to provide atomic blocks for general code:
o frees the user from deciding how to lock data structures
@ compositional way of communicating concurrently
@ can be implemented using sqffware (locks, atomic updates) or hardware
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TM in Practice

Availability of Software TM:
@ converting each read/write access to shared variables is tedious
ﬂ

@ GCC can translate accesses in __transaction_atomic regions into
library calls ————

o the library 1ibitm may provide different STM algorithms

@ GCC implements proposal for STM in C++ using this library http:
//www .open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3341 . pdf
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TM in Practice

Availability of Software TM:
@ converting each read/write access to shared variables is tedious
@ GCC can translate accesses in __transaction atomic regions into
library calls
@ the library 1ibitm may provide different STM algorithms
@ GCC implements proposal for STM in C++ using this library http:
//www.open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3341 . pdf
Use of Wsion is limited:
@ allows to easily convert existing locks
@ pthread locks in g1i5c USe RTM https://lun.net/Articles/534758/
» allows implementation of l:;;zlgo_f_f mechanisms
» HLE only special case of generallack
@ implementing monitors is challenging

» lock count and thread id may lead to conflicting accesses
» in pthreads: error conditions often not checked anymore

- — -
o
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Outlook ey

Several other principles exist for concurrent programming:

@ non-blocking message passing (the actor mode

a program consists of gctors that send messages

each actor has a queue of incoming messages

messages can be processed and new messages can be sent
special filtering of incoming messages

example: Erlang, many add-ons to existing languages
© blocking message passing (CSP. 7-calculus, join-calculus)
» aprocess sends a message over a channel and blocks until the recipient
. ’-—___—-—_—____-—_—. ___-___.
accepts it
» channels can be send over channels (x-calculus)
» examples: Occam, Occam-r, Go
Q@ (immediate) priority ceiling
» declare processes with priority and resources that each process may acquire
» each resource has the maximum (ceiling) priority of all processes that may

¥y ¥ yvyy

acquire it
» a process’ priority at run-time increases to the maximum of the priorities of
held resources
» the process with the maximum (run-time) priority executes
—_—
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