Script generated by TTT

Title: Petter: Programmiersprachen (12.11.2014)
Date: Wed Nov 12 14:14:31 CET 2014

Duration: 82:01 min

Pages: 86

]
A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:
@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit
@ validating conflict detection: accessing a modified address aborts
TL2 stores a global version counter and:

@ aread version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction objectin e.g. Java)

@ aredo-log in the transaction descriptor
@ aread- and a write-set in the transaction descriptor
@ a read-version: the version when the transaction started

Concurrency: Transactions Implementation of Software TM

A Software TM Implementation

15/34

A Software TM Implementation T

A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails

@ redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:

@ provides gpacify. zombie transactions do not see inconsistent state

@ uses lazy versioning: writes are stored in a redo-log and done on commit

e validating conflict detection: accessing a modified address aborts
TL2 stores a global version counter and:

@ aread version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction object in e.g. Java)
a

@ a redo-log in the transaction descriptor
@ aread- and a write-set in the transaction descriptor
@ a read-version: the version when the transaction started

18138
Principles of TL2 LY

The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at offset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objl[offset]) in tx.redoLog) {
return tx.redoLog[&obj[offset]];

} else {
atomic { y1 = obj.timestamp; locked = obj.sem<1l; };
e S—
result = obj[offset];

v2 = obj.timestamp;
———

if (locked || v1 '= v2 || v1 > tx.RY) AbortTx(tx);
iy = -
tx.readSet = tx.readSet.add(obj);
return result;
} o
10108

Committing a Transaction
A transaction can succeed if none of the read locations has changed:

committing a transaction

bool CommitTx(TMDesc tx) {
foreach (e in tx.writeSet)
if (ltry_wait(e.obj.sem)) goto Fail;
WV = FetchAndAdd(&globalClock);
foreach (e in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redoLog)
e.obj[e.offset] = e.value;
foreach (e in tx.writeSet) {
e.obj = WV; signal(e.obj.sem);
¥
return true;
Fail:
// signal all acquired semaphores
return false;

Tl |

Committing a Transaction
A transaction can succeed if none of the read locations has changed:

committing a transaction

bool CommitTx(TMDesc tx) {
foreach (e in tx.writeSet)
if (!try_wait(e.obj.sem)) goto Fail;
WV = FetchAndAdd(&globalClock);
foreach (e in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redolog)
e.objle.offset] = e.value;
foreach (e in tx.writeSet) {
e.obj = WV; signal(e.obj.sem);
}
return true,
Fail:
// signal all acquired semaphores
return false;

>
Concurrency: Transactions Implementation of Software TM 17134

Ty

y
Concurrency: Transactions Implementation of Software TM 17134

Principles of TL2 iy

The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at offset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redolog) {
return tx.redoLogl[&obj[offset]];

e
é;{ﬁqduﬁatomlc { v1‘= obj.timestamp; locked = obj.sem<1; };
result = objloffset];
-—‘%}2 = obj.timestamp;
f (locked || v1 != v2 || v1 > tx.RV) AbortTx(tx);
__}-_ e

tx.readSet = tx.readSet.add(obj);

return result;

}
WriteTx is simpler: add or update the location in the redo-log.
L
General Challenges when using TM Ty)

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large

» a TM implementation might impose restrictions:
// Thread 1 // Thread 2

atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
R -l —
}
V int r = ReadTx(&z.0);
} // tx.RV=12/=clock(x)
— —

Concurrency: Transactions Implementation of Software TM 19/34

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:

@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
¥

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention

Concurrency: Transactions Implementation of Software TM 19/34

Tl |

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction

» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed

Concurrency: Transactions Implementation of Software TM 19/34

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:

@ atransaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention

» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction

Concurrency: Transaclions Implementation of Software TM

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
}

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction

if the old object has not changed

» s ide riginal STM proposal

@ TM system should figure out which memory locations must be logged

Concurrency: Transactions Implementation of Software TM

Ty |

» atomically replace a pointer to the old object with a pointer to the new object

Ty |

19/34

19/34

Ty |

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted
» the granularity of what is locked might be too large
» a TM implementation might impose restrictions:

// Thread 1 // Thread 2
atomic { // clock=12
atomic {
WriteTx(&x,0) = 42; // clock=13
¥

int r = ReadTx(&x,0);
} // tx.RV=12/=clock
@ lock-based commits can cause contention
» organize cells that participate in a transaction in one object
» compute a new object as result of a transaction
» atomically replace a pointer to the old object with a pointer to the new object
if the old object has not changed
» -~ idea of the original STM proposal
@ TM system should figure out which memory locations must be logged

@ danger of liye-locks: transaction B might abort A which might abortB ...

19/34

il |

Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:

@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:

@ _Prohibit It. Gertain constructs do not make sense. Use compiler to reject
these programs.

e Execute It. I/O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ _Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

@ Integrate It Re-write code to be transactional: error logging, Mta
to afile,

20 /34

Concurrency: Transactions Implementation of Software TM

[Ty

Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:

@ storage management, condition variables, volatile variables,
Ak - AL L een abl s g e
input/output

@ semantics should be as if atomic implements SLA or TSC semantics

20/34

Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block
poses problems:

@ storage management, condition variables, volatile variables,
input/output
@ semantics should be as if atomic implements SLA or TSC semantics
Usual choice is one of the following:

@ Prohibit It. Certain constructs do not make sense. Use compiler to reject
these programs.

@ Execute It. /O operations may only happen in some runs (e.g. file writes
usually go to a buffer). Abort if I/O happens.

@ Irrevocably Execute It. Universal way to deal with operations that cannot
be undone: enforce that this transaction terminates (possibly before
starting) by making all other transactions conflict.

@ Integrate It. Re-write code to be transactional: error logging, writing data
to afile,

~+ currently best to use TM only for memory; check if TM supports irrevocable
transactions = -

20/34

Concurrency: Transactions Implementation of Software TM

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets

Concurrency: Transactions Hardware Transactional Memory

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
pr——— - e

Concurrency: Transactions Hardware Transactional Memory

Ty |

21/34

Tlly |

21/34

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:

@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:

e ——
Concurrency: Transactions Hardware Transactional Memory

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts

» if a cache-line in the write set must be written-back, the transaction aborts

ee—

Concurrency: Transactions Hardware Transactional Memory

Ty

21/34

Ty |

21/34

Ty |

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~~ limited by fixed hardware resources, a software backup must be provided

Concurrency: Transactions Hardware Transactional Memory

21/34

Tlly |

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions

21/34

Concurrency: Transactions Hardware Transactional Memory

MYy

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~=+ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional

Concurrency: Transaclions Hardware Transactional Memory

21/34

Tl |

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts
~~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
» ~- atransaction has to be translated differently

= & mixing transactional and non-transactional accesses is problematic

21/34

Concurrency: Transactions Hardware Transactional Memory

Hardware Transactional Memory s | Hardware Transactional Memory iy

Transactions of a limited size can also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: @ conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection » additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts » if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts » if a cache-line in the write set must be written-back, the transaction aborts
~~ limited by fixed hardware resources, a software backup must be provided ~=+ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM: Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional @ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx » similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions » requires separate transaction instructions
» -~ a transaction has to be translated differently » ~~ g transaction has to be translated differently
> & mixing transactional and non-transactional accesses is problematic > & mixing transactional and non-transactional accesses is problematic
Q@ Implicit Transactional HTM: only the beginning and end of a transaction © Implicit Transactional HTM: only the beginning and end of a transaction
are marked are marked

» same instructions can be used, hardware interprets them as transactional

2113 2175
Hardware Transactional Memory M) | Hardware Transactional Memory Ty
Transactions of a limited size can also be implemented in hardware: Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets @ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache: o conflict detection is eager using the cache:
» additional hardware makes it cheap to perform conflict detection » additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts » if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts » if a cache-line in the write set must be written-back, the transaction aborts
~ limited by fixed hardware resources, a software backup must be provided ~~ limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM: Two principal implementation of HTM:
@ Explicit Transactional HTM: each access is marked as transactional @ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx » similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions » requires separate transaction instructions
» -~ atransaction has to be translated differently » ~- atransaction has to be translated differently
» N mixing transactional and non-transactional accesses is problematic AN mixing transactional and non-transactional accesses is problematic
©@ Implicit Transactional HTM: only the beginning and end of a transaction Q@ Implicit Transactional HTM: only the beginning and end of a transaction
are marked are marked
» same instructions can be used, hardware interprets them as transactional » same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed » only instructions affecting memory that can be cached can be executed

transactionally

transactionally
» hardware access, OS calls, page table changed, etc. all abort a transaction
3 acLe: _c> Pk kel e

Concurrency: Transactions Hardware Transactional Memory 21/34 Concurrency: Transactions Hardware Transactional Memory 21/34

Ty |

Hardware Transactional Memory

Transactions of a limited size can also be implemented in hardware:
@ additional hardware to track read- and write-sets
@ conflict detection is eager using the cache:

» additional hardware makes it cheap to perform conflict detection
» if a cache-line in the read set is invalidated, the transaction aborts
» if a cache-line in the write set must be written-back, the transaction aborts

~~ limited by fixed hardware resources, a software backup must be provided

Two principal implementation of HTM:

@ Explicit Transactional HTM: each access is marked as transactional
» similar to StartTx, ReadTx, WriteTx, and CommitTx
» requires separate transaction instructions
» -~ a transaction has to be translated differently
> & mixing transactional and non-transactional accesses is problematic
©@ Implicit Transactional HTM: only the beginning and end of a transaction
are marked
» same instructions can be used, hardware interprets them as transactional
» only instructions affecting memory that can be cached can be executed
transactionally

» hardware access, OS calls, page table changed, etc. all abort a transaction
» provides strong isolation

21/34

Example for HTM iy |

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

22/34

Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

Concurrency: Transaclions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
o defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations

Concurrency: Transactions Hardware Transactional Memory

Tl

22/34

Tl |

22/34

Example for HTM Ty

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel’s Haswell microarchitecture (from Sep 2013 to Aug 2014):

Concurrency: Transactions Hardware Transactional Memory

22/34

Example for HTM IS

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations

Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit iransactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines

22/34

Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ /mplicit transactional, can use normal instructions within transactions

Concurrency: Transaclions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
o defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single fransaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
Pubelait LM

Concurrency: Transactions Hardware Transactional Memory

Tl

22/34

]

22/34

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel’s Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions

Concurrency: Transactions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit iransactional, can use normal instructions within transactions
@ tracks read/write set using a single transaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources
@ aborting in an inner transaction means aborting all of them

Concurrency: Transactions Hardware Transactional Memory

Tlly |

22/34

iy]

22/34

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
@ defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single fransaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources

Concurrency: Transaclions Hardware Transactional Memory

Example for HTM

AMD Advanced Synchronization Facilities (ASF):
o defines a logical speculative region

@ LOCK MOV instructions provide explicit data transfer between normal
memory and speculative region

@ aimed to implement larger atomic operations
Intel's Haswell microarchitecture (from Sep 2013 to Aug 2014):
@ implicit transactional, can use normal instructions within transactions
@ tracks read/write set using a single fransaction bit on cache lines
@ provides space for a backup of the whole CPU state (registers, ...)
@ use a simple counter to support nested transactions
@ may abort at any time due to lack of resources
@ aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:

@ Restricted Transactional Memory (RTM)
@ Hardware Lock Elision (HLE)

e

Concurrency: Transactions Hardware Transactional Memory

22/34

1]

22/34

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND XABORT, and XTEST

@ XBEGIN takes an instruction address where executlon continues if the
transaction aborts -

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN
@ XABORT aborts the current transaction with an error code

Concurrency: Transactions Hardware Transactional Memory

1y]

23/34

iy]

23/34

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN

Concurrency: Transactions Hardware Transactional Memory

Restricted Transactional Memory (Intel)

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:

@ XBEGIN takes an instruction address where execution continues if the
transaction aborts

@ XEND commits the transaction started by the last XBEGIN

@ XABORT aborts the current transaction with an error code

@ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a G function:

int datal[100]; // shared
void update(int idx, int val&e) {
if (_xbeginO==-1) {

datalidx] += value;
——

xend()
} else {
// transaction failed
}
}

1|

23/34

1]

23/34

Provides new instructions XBEGIN, XEND, XABORT, and XTEST:
@ XBEGIN takes an instruction address where execution continues if the
transaction aborts
@ XEND commits the transaction started by the last XBEGIN
@ XABORT aborts the current transaction with an error code
@ XTEST checks if the processor is executing transactionally
The instruction XBEGIN can be implemented as a C function:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
data[idx] += value;
_xend();
} else {
// transaction failed
}
T

~ user must provide fall-back code

23/34

Considerations for the Fall-Back Path

Consider executing the following code in parallel with itself:

int datal[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
datal[idx] += value;

_xend();
} else {
data[idx] += value;
}
}
Problem:

@ if the fall-back code is executed, it might be interrupted by the transaction
@ the write in the fall-back path thereby overwrites the value of the

transaction
e —————
24134

Restricted Transactional Memory (Intel) My]

1]

Considerations for the Fall-Back Path iy

Consider executing the following code in parallel with itself:

int data[100]; // shared
void update(int idx, int value) {
if (_xbegin()==-1) {
datal[idx] += value;

_xend();
} else {
datalidx] += value;
}
T
a5/

Protecting the Fall-Back Path iy

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared
int mutex;
e
void update(int idx, int value) {

if (_xbegin(D==-1) {
datalidx] += value;ﬁ

_xend();

} else {
wait (mutex) ;
datalidx += valuel;
signal (mutex) ;

}

o fall-back path may not run in parallel with others v

o /\ transactional region may not run in parallel with fall-back path

Concurrency: Transactions Hardware Transactional Memory

25/34

Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:

int datal[100]; // shared

int mutex;

void update(int idx, int value) {

if(_xbegin(D==-1) {
if (mutex>0) _xabort();
datal[idx] += value;
_xend();
} else {

wait (mutex) ;
data[za;_+= value]
signal (mutex) ;

o fall-back path may not run in parallel with others v
o /N transactional region may not run in parallel with fall-back path

Concurrency: Transactions Hardware Transactional Memory

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’
@ use a nesting counter g_ and a backup register set

Concurrency: Transactions Hardware Transactional Memory

R

25/34

R

26 /34

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit’T

Concurrency: Transactions Hardware Transactional Memory

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’

@ use a nesting counter C' and a backup register set
— ~~ additional transaction logic:

7| [regi
CPUA [Hbank

store
®— puffer

|

cache T
|

invalidate
queue

I—\

Memory

Concurrency: Transactions Hardware Transactional Memory

]

1L

26/34

]

26/34

Implementing RTM using the Cache Y

Transactional operation:
@ augment each cache line with an extra bit T

@ use a nesting counter C' and a backup register set
~- additional transaction logic:

L -— . .
| [register @ XBEGIN increment C' and, if C' = 0, back
CPUA Mlbank [C up registers
store
®— buffer
cache T
[
invalidate|
queue
Memory
26134

Implementing RTM using the Cache)

Transactional operation:
@ augment each cache line with an extra bit I’

@ use a nesting counter C' and a backup register set
~~ additional transaction logic:

register @ XBEGIN increment C and, if C' = 0, back
CPUA Mlbank |C up registers
@ read or write access to a cache line sets
. store TifC >0
buffer, @ applying an invalidate message from
! invalidate queue to a cache line with
cache, T I =1 issues XABORT
[
invaligate|
quelje
Memory
. TED

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit T’

@ use a nesting counter C' and a backup register set
~~ additional transaction logic:

| [register @ XBEGIN increment C' and, if C' = 0, back
CPUA bank | C up registers
1 read or write access to a cache line sets
store TiftC >0
®— buffer
|
cache T
[
invalidate
queue
Memory

Implementing RTM using the Cache

Transactional operation:
@ augment each cache line with an extra bit I’

@ use a nesting counter C' and a backup register set
~~ additional transaction logic:

| [register @ XBEGIN increment C and, if C' = 0, back
CPUA bank | C up registers
@ read or write access to a cache line sets
o store TiHEC >0
buffer e applying an invalidate message from
! invalidate queue to a cache line with
cache T T=1 |§sues XABORT
I @ observing a read message for a
invalidate modified cache line with T" = 1 issues
queue XABORT
Memory

Concurrency: Transactions Hardware Transactional Memory

]

')

26/34

26 /34

Implementing RTM using the Cache 17 | Implementing RTM using the Cache Yy
Transactional operation: Transactional operation:
@ augment each cache line with an extra bit T’ @ augment each cache line with an extra bit T’
@ use a nesting counter C' and a backup register set @ use a nesting counter C' and a backup register set
~~ additional transaction logic: -~ additional transaction logic:
| [register @ XBEGIN increment C' and, if C' = 0, back | [register @ XBEGIN increment C' and, if C' = 0, back
CPUA bank |C up registers CPUA bank | C up registers
@ read or write access to a cache line sets @ read or write access to a cache line sets
®— buffer e applying an invalidate message from ®— buffer e applying an invalidate message from
l invalidate queue to a cache line with | invalidate queue to a cache line with
cache T r=1 ISSUES XABORT cache T T=1 issues XABORT
I @ observing a read message for a I @ observing a read message for a
invalidate modified cache line with T' = 1 issues invalidate modified cache line with T' = 1 issues
queue XABORT queue XABORT
|—\ @ XABORT clears all T flags, sets C' = 0 and 1 @ XABORT clears all T flags, sets C' = 0 and
restores CPU registers restores CPU registers
Memory LR regs Memory 9 .
© XCOMMIT decrement C' and, if C' = 0,
clear all 7 flags -
26/34 Concurrency: Transactions Hardware Transactional Memory 26/34
lllustrating Transactions T Common Code Pattern for Mutexes %]
Augment MESI state with extra bit T" per cache line. CPU A: E5, CPU B: | Using HTM in order to implement mutex:
—_— - void update(int idx, int val) {
Thread A Thread B int data[100]; // shared lock(mutex) ;
: : : : int mutex; data[idx] += val;
int EEP = da_‘ta[_‘:wdx] 3 int t[?lp = datalidx]; void update(int idx, int value) { unlock(mutex) ;
dy:_:_ag._d:;] = tmp+value; data[idx] = tmp+value; if (_xbegin()==-1) { }
):Eld(); _xend(); if (mutex>0) _xabort(); void lock(int mutex) {
tmp=data[idx] data[idx]=tmp+value datalidx] += value; \lf o
o » *~—s _xend(); if (mutex>0) _xabort();
Store‘b o } else { else return;
Sd se wait (mutex) ; 2, wait (mutex) ;
& i3 o data[idx] += valuedy }
il -g Q! signal (mutex) ; void unlock(int mutex) {
= =i & ;
3 S o =2 } signal (mutex) ;
. e 5 £ ‘g } X
£ i i =
{_f,fr’ aT S Mb @ the critical section may be executed without taking the lock (the lock is
store 4 J 5 ; elided)
B I N AN FIEN @ as soon as one thread conflicts, it aborts, takes the lock in the fallback
tmp=data[idx] data[idx]=tmp+value xend () path and thereby aborts all other transactions that have read putex
ERE 25758

Hardware Lock Elision

Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE

@ provides a way to execute a critical section without the overhead of the
atomic updates necessary 10 acquire and release the lock

Concurrency: Transactions Hardware Transactional Memory

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~= provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:
» instruction setting the semaphore to 0 must be prefixed with XACQUIRE

e e

Concurrency: Transactions Hardware Transactional Memory

]

29/34

']

29/34

]

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

Concurrency: Transaclions Hardware Transactional Memory

29/34

]

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~+ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE

29/34

Concurrency: Transactions Hardware Transactional Memory

]

Hardware Lock Elision

Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

Concurrency: Transactions Hardware Transactional Memory

29/34

[

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~= provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated Ve

@ the memory location of the lock is locally visible as & (“taken”)

29/34

Concurrency: Transactions Hardware Transactional Memory

)

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

o for a successful elision, all signal/wait oeerations of a lock must be
annotated

Concurrency: Transaclions Hardware Transactional Memory

29/34

T

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~+ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

o for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)

29/34

Concurrency: Transactions Hardware Transactional Memory

]

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
@ only a finite number of locks can be elided

e e e e e,

Concurrency: Transactions Hardware Transactional Memory

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~= provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
@ only a finite number of locks can be elided

@ all but one elided lock may abort ~~

» progress guarantee since lock is taken on abort
-———-—_________

29/34

Concurrency: Transactions Hardware Transactional Memory

Th]

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE

@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

o for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)

@ only a finite number of locks can be elided7

@ all but one elided lock may abort ~~

Concurrency: Transaclions Hardware Transactional Memory

29/34

T

Hardware Lock Elision
Observation: Using HTM to implement lock elision is a common pattern
~+ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

o for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
o only a finite number of locks can be elided

@ all but one elided lock may abort ~

» progress guarantee since lock is taken on abort
» no back up path is required

Concurrency: Transactions Hardware Transactional Memory

29/34

Hardware Lock Elision Téy]

Observation: Using HTM to implement lock elision is a common pattern
~~ provide special handling in hardware: HLE
@ provides a way to execute a critical section without the overhead of the
atomic updates necessary to acquire and release the lock
@ requires annotations:

» instruction setting the semaphore to 0 must be prefixed with XACQUIRE
» instruction that increments the semaphore must be prefixed with XRELEASE
» these prefixes are ignored on older platforms

@ for a successful elision, all signal/wait operations of a lock must be
annotated

@ the memory location of the lock is locally visible as 0 (“taken”)
@ other processor see the lock as 1 (“not taken”)
@ only a finite number of locks can be elided

@ all but one elided lock may abort ~~
» progress guarantee since lock is taken on abort
» no back up path is required
» avalanche of blocked threads once elision fails

_
Implementing Lock Elision i)

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

e e ————

Concurrency: Transactions Hardware Transactional Memory 30/34

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

Concurrency: Transaclions Hardware Transactional Memory

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory
@ add a buffer for elided locks, similar to store buffer

CPU A —ng}f‘é}@

store | || elided
buffer locks

cache T
1
invalidate

ueue
Memory

]

30/34

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

P J)
cache T
1
invalidate
ueue
Memory

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

message to a cache line with 7" = 1
issues XABORT, analogous for read

cache T message to a modified cache line
|
invalidate
ueue
Memory

Ty

. shared/exclusive cache line state with
CPUA rbeglﬁter C = 1, issues XBEGIN and stores written
an value in elided lock buffer
e —
store| [elided
bufferr* locks

30/34

Ty

. shared/exclusive cache line state with
CPUA rbeglﬁter c T = 1, issues XBEGIN and stores written
an value in elided lock buffer
| @ r/w access to a cache line sets T
Store], | elided o like HLE, applying an invalidate

30/34

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

, shared/exclusive cache line state with
CPUA Leglﬁtef c T = 1, issues XBEGIN and stores written
an value in elided lock buffer
' i @ r/w access to a cache line sets T
store| [elided
buffer* locks

cache T
1
invalidate

queue
Memory

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

. shared/exclusive cache line state with
CPUA {)eglﬁter c T = 1, issues XBEGIN and stores written
an value in elided lock buffer
: ,‘? @ r/w access to a cache line sets T'
Store || eligea o like HLE, applying an invalidate

message to a cache line with 7' =1
issues XABORT, analogous for read

cache T message to a modified cache line
I @ a CPU read to the address of the elided
'”Vggﬂgte lock accesses the buffer (and reads 0 as
I if the lock was taken); cache contains 1
Memory

Concurrency: Transactions Hardware Transactional Memory

T

30/34

T

30/34

Ty

Implementing Lock Elision

Transactional operation:
@ re-uses infrastructure for Restricted Transactional Memory

@ add a buffer for elided locks, similar to store buffer
@ XACQUIRE of lock ensures

. shared/exclusive cache line state with
CPUA rbeglﬁter C T = 1, issues XBEGIN and stores written
an value in elided lock buffer
@ r/w access to a cache line sets T
gt&;gr'- %g:ikesc @ like HLE, applying an invalidate

message to a cache linewith 7' =1

issues XABORT, analogous for read

cache T message to a modified cache line

1 @ a CPU read to the address of the elided

mvl?gﬂgte lock accesses the buffer (and reads 0 as
[if the lock was taken); cache contains 1

@ on XRELEASE on the same lock,
—
Memory

decrement C' and, if C'= 0, clear T’ flags
and elided iocks buffer (thus, all locks
contain the value 1 stored in the cache)

30/34

Ty

Transactional Memory: Summary

Transactional memory aims to provide atomic blocks for general code:

@ frees the user from deciding how to lock data structures

@ compositional way of communicating concurrently

@ can be implemented using software (locks, atomic updates) or hardware
The devil lies in the details:

@ semantics of explicit HTM and STM transactions quite subtle when

mixing with non-TM (weak vs. sfrong isqlation) Cpacity
@ single-lock atomicity and transactional sequential consistency semantics
@ STM not the right tool to synchronize threads without shared variables

@ TM providing oga<ciry (serializability) requires eager conflict detection or
lazy version management

Devils in implicit HTM:
° IiLM requires a fall-back path

@ no progress guarantee
@ HLE can be implemented in software using RTM

———

31/34

Concurrency: Transactions Hardware Transactional Memory

]

Transactional Memory: Summary

Transactional memory aims to provide atomic blocks for general code:
o frees the user from deciding how to lock data structures
@ compositional way of communicating concurrently
@ can be implemented using sqffware (locks, atomic updates) or hardware

31/34

Ty

TM in Practice

Availability of Software TM:
@ converting each read/write access to shared variables is tedious
ﬂ

@ GCC can translate accesses in __transaction_atomic regions into
library calls ————

o the library 1ibitm may provide different STM algorithms

@ GCC implements proposal for STM in C++ using this library http:
//www .open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3341 . pdf

32/34

Concurrency: Transactions Hardware Transactional Memory

TM in Practice

Availability of Software TM:
@ converting each read/write access to shared variables is tedious
@ GCC can translate accesses in __transaction atomic regions into
library calls
@ the library 1ibitm may provide different STM algorithms
@ GCC implements proposal for STM in C++ using this library http:
//www.open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3341 . pdf
Use of Wsion is limited:
@ allows to easily convert existing locks
@ pthread locks in g1i5c USe RTM https://lun.net/Articles/534758/
» allows implementation of l:;;zlgo_f_f mechanisms
» HLE only special case of generallack
@ implementing monitors is challenging

» lock count and thread id may lead to conflicting accesses
» in pthreads: error conditions often not checked anymore

- — -
o
References Teyl

®: D. Dice, O. Shalev, and N. Shavit.
Transactional Locking Il.
In Distributed Coputing, LNCS, pages 194—208. Springer, Sept. 2006.

@ T Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1-263, 2010.

Online blog entries on Intel HTM:

@ http://software.intel.com/en-us/blogs/2013/07/25/
fun-with-intel-transactional-synchronization-extensions

Q http://www.realworldtech. com/haswell-tm/4/

Concurrency: Transactions Hardware Transactional Memory

34/34

Outlook ey

Several other principles exist for concurrent programming:

@ non-blocking message passing (the actor mode

a program consists of gctors that send messages

each actor has a queue of incoming messages

messages can be processed and new messages can be sent
special filtering of incoming messages

example: Erlang, many add-ons to existing languages
© blocking message passing (CSP. 7-calculus, join-calculus)
» aprocess sends a message over a channel and blocks until the recipient
. ’-—___—-—_—____-—_—. ___-___.
accepts it
» channels can be send over channels (x-calculus)
» examples: Occam, Occam-r, Go
Q@ (immediate) priority ceiling
» declare processes with priority and resources that each process may acquire
» each resource has the maximum (ceiling) priority of all processes that may

¥y ¥ yvyy

acquire it
» a process’ priority at run-time increases to the maximum of the priorities of
held resources
» the process with the maximum (run-time) priority executes
—_—
ST

