Script generated by TTT

Title: Petter: Programmiersprachen (05.11.2014)
Date: Wed Nov 05 14:16:18 CET 2014

Duration: 89:20 min

Pages: 94

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.

Concurrency: Transactions Motivation

TR

2/34

TECHNISCHE
FAKULTAT

MUNCHEN
INFORMATIK

UNIVERSITAT
FUR

Programming Languages

Concurrency: Transactions

Dr. Axel Simon and Dr. Michael Petter
Winter term 2014

Concurrency: Transactions

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and prov@@_@_rja_in
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.

—— e ———

Concurrency: Transactions Motivation

T

1/34

i

2/34

TG

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list struciure, such as PushLeft and ForAll =
@ a setobject may intern‘aﬁ? the list object and expose a set of
operations, including PushlLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.

Concurrency: Transactions Motivation 2/34

T

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ alinked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ ~~ wrap the two calls in Insert in a mutex

Concurrency: Transactions Motivation 2/34

T

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
o a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.

—

Concurrency: Transactions Motivation 2/34

i

Abstraction and Concurrency

Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain
functionality may be used without reference to its internals
composition : several objects can be combined to a new object without
interference
Both, abstraction and composition are closely related, since the ability to
compose hinges on the ability to abstract from details.
Consider an example:
@ a linked list data structure exposes a fixed set of operations to modify the
list structure, such as PushLeft and ForAll
@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ -~ wrap the two calls in Insert in @ mutex
@ but other list operations can still be called ~~ use the same mutex

Concurrency: Transactions Motivation 2/34

Abstraction and Concurrency T | Transactional Memory [2] [T

Two fundamental concepts to build larger software are: Idea: automatically convert atomic blocks into code that ensures atomic
abstraction : an object storing certain data and providing certain execution of the statements. e
functionality may be used without reference to its internals atomic {
composition : several objects can be combined to a new object without // code
|rnterference - . - if (cond) retry;
Both, abstraction and composition are closely related, since the ability to atemic—
compose hinges on the ability to abstract from details. // more code
Consider an example: Y
@ a linked list data structure exposes a fixed set of operations to modify the // code
list structure, such as PushLeft and ForAll }

@ a set object may internally use the list object and expose a set of
operations, including PushLeft
The Insert operations uses the ForAll operation to check if the element
already exists and uses PushLeft if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
@ ~~ wrap the two calls in Insert in a mutex
@ but other list operations can still be called ~~ use the same mutex
~ unlike sequential algorithms, thread-safe algorithms cannot always be
composed to give new thread-safe algorithms

Execute code as fransaction:

2/34 334
Transactional Memory [2] M | Transactional Memory [2] L
Idea: automatically convert atomic blocks into code that ensures atomic Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements. execution of the statements.
atomic { atomic {
// code // code
if (cond) retry; if (cond) retry;
atomic { atomic {
// more code // more code
T }
// code // code
} }
Execute code as transaction: Execute code as transaction:
@ execute the code of an atomic block @ execute the code of an atomic block

@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread

——

Concurrency: Transactions Motivation 3/34 Concurrency: Transactions Motivation 3/34

Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code
if (cond) retry;
atomic {
// more code

¥
// code
¥

Execute code as transaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:

Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.

atomic {
// code

if (cond) retry;
H ”—nzz
atomic {
// more code

T
// code
}

Execute code as transaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:

» undo the computation done so far
» re-start the transaction

@ provide a retry keyword similar to the gait, of monitors

Concurrency: Transactions Motivation

TG

Tl

3/34

T

Transactional Memory [2]

Idea: automatically convert atomic blocks into code that ensures atomic
execution of the statements.
g

atomic {
// code
if (cond) retry;
atomic {
// more code

}
// code
T

Execute code as transaction:
@ execute the code of an atomic block
@ nested atomic blocks act like a single atomic block
@ check that it runs without conflicts due to accesses from another thread
@ if another thread interferes through conflicting updates:

» undo the computation done so far
» re-start the transaction

3/34

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is reso/ved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

3/34

Concurrency: Transactions Transaction Semantics

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:
@ optimistic vs. pessimistic concurrency control.

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

4/34

Tl

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once
* resolution here is usually delaying one transaction
T ——

Concurrency: Transactions Transaction Semantics

4/34

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:
@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using locks: deadlock problem

Concurrency: Transactions Transaction Semantics

Managing Conflicts

Definition (Conflicts)

A conflict ogcurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Tyl

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control.
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs

* resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem

Concurrency: Transactions Transaction Semantics

4/34

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborting one transaction

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborfing one transaction
* need to repeated aborted transaction: livelock problem
@ eager vs. lazy version management. how read and written data are
managed during the transaction

41348

Concurrency: Transactions Transaction Semantics

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control.
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem
@ eager vs. lazy version management. how read and written data are
managed during the transaction
» eager: writes modify the memory and an undo-log is necessary if the
transaction aborts -

Concurrency: Transactions Transaction Semantics

4/34

Tyl

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

5/34

Concurrency: Transactions Transaction Semantics

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborting one transaction
* need to repeated aborted transaction: livelock problem

@ eager vs. lazy version management. how read and written data are
managed during the transaction
» eager: writes modify the memory and an undo-log is necessary if the
transaction aborts
» lazy: writes are stored in a redo-log and modifications are done on
e

committing
ara

Managing Conflicts

Definition (Conflicts)

A conflict occurs when accessing the same piece of data, a conflict is
detected when the TM system observes this, it is resolved when the TM
system takes action (by delaying or aborting a transaction).

Design choices for transactional memory implementations:

@ optimistic vs. pessimistic concurrency control:
» pessimistic: conflict occurrence, detection, resolution occur at once

* resolution here is usually delaying one transaction
* can be implemented using /ocks: deadlock problem

» optimistic: detection and resolution can happen after a conflict occurs
* resolution here must be aborfing one transaction
* need to repeated aborted transaction: livelock problem

@ eager vs. lazy version management. how read and written data are
managed during the transaction
» eager: writes modify the memory and an undo-log is necessary if the
transaction aborts
» lazy. writes are stored in a redo-log and modifications are done on

committing
408

Tyl

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible ’ =

Concurrency: Transactions Transaction Semantics

5/34

Ty

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:
@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
@ conflict detection:
» eager: conflicts are detected when memory locations are first accessed

5/34

Concurrency: Transactions Transaction Semantics

Ty

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:
@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
© conflict detection:

Concurrency: Transactions Transaction Semantics

5/34

i)

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
@ conflict detection:
» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing

5/34

Concurrency: Transactions Transaction Semantics

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
Q conflict detection:

» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing

> E_z_y: conflicts are detected when committing a transaction

Concurrency: Transactions Transaction Semantics

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
@ conflict detection:
» eager: conflicts are detected when memory locations are first accessed
» validation: check occasionally that there is no conflict yet, always validate
when committing
» lazy: conflicts are detected when committing a transaction

Concurrency: Transactions Transaction Semantics

Tyl

5/34

Ty

5/34

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:
@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
© conflict detection:

» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing

» lazy: conflicts are detected when committing a transaction

@ reference of conflict (for non-eager conflict detection)

Concurrency: Transactions Transaction Semantics

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

Concurrency: Transactions Transaction Semantics

Tyl

5/34

Tyl

5/34

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:
@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible
Q conflict detection:

» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing

» lazy: conflicts are detected when committing a transaction
@ reference of conflict (for non-eager conflict detection)

» tentative detect conflicts before transactions commit, e.g. aborting when
transaction TA reads while TB may writes the same location

» committed detect conflicts only against transactions that have committed

Concurrency: Transactions Transaction Semantics 5/34

Choices for Optimistic Concurrency Control

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

Concurrency: Transactions Transaction Semantics 5/34

[

Tyl

Choices for Optimistic Concurrency Control

Tl

Design choices for TM that allow conflicts to happen:

@ granularity of conflict detection: may be a cache-line or an object, false
conflicts possible

@ conflict detection:

» eager: conflicts are detected when memory locations are first accessed

» validation: check occasionally that there is no conflict yet, always validate
when committing

» lazy: conflicts are detected when committing a transaction

el e —
—m,
Concurrency: Transactions Transaction Semantics

5/34

Gmwrmqgg bt

[rhm«w,,“'fc
PRrnE ok
(;-Gr;uo-'n»wu"—?L
Lory pets
g e

éﬂﬂw&a‘ Ao bk,

Semantics of Transactions

The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:

Concurrency: Transactions Transaction Semantics

Semantics of Transactions

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions

Concurrency: Transactions Transaction Semantics

il

6/34

Tl

6/34

Semantics of Transactions

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

Concurrency: Transactions Transaction Semantics

Semantics of Transactions

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions

consistency : each transaction transforms a consistent state to another
consistent state

Concurrency: Transactions Transaction Semantics

Tl

6/34

i)

6/34

Semantics of Transactions
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
nvananis r

Concurrency: Transactions Transaction Semantics

Semantics of Transactions
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)
isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory

durability : the effects are permanent v

Concurrency: Transactions Transaction Semantics

T

6/34

Tl

6/34

Semantics of Transactions Ty
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)
isolation : transactions do not influence each other

Concurrency: Transaclions Transaction Semantics

6/34
Semantics of Transactions Ty
The goal is to use transactions to specify atomic executions.
Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run
@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:

6/34

Concurrency: Transactions Transaction Semantics

. . 0

Semantics of Transactions Ty)

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:
@ the result of running current transactions must be identical to one

execution of thé Sequence
6/34

Tl

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a fransaction commits. -

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction
e e et

7/34

Concurrency: Transactions Transaction Semantics

. ')

Semantics of Transactions Ty

The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

@ we call this failure atomicity to distinguish it from atomic
executions
consistency : each transaction transforms a consistent state to another
consistent state
@ a consistent state is one in which certain invariants hold
@ invariants depend on the application (e.g. queue data
structure)

isolation : transactions do not influence each other
@ not so evident with respect to non-transactional memory
durability : the effects are permanent v
Transactions themselves must be serializable:
@ the result of running current transactions must be identical to one
execution of them in sequence

@ serializability for transactions is insufficient to perform synchronization
between threads

Concurrency: Transaclions Transaction Semantics

6/34

ity

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = X; atomic {
int tmp2 = y; x = 10;
assert (tmpl-tmp2==0) ; y = 10;
T }
il
"o

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

Tl

@ atransaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

@ but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert (tmpl-tmp2==0) ; y = 10;

¥ }
@ critical for G/C++ if, for instance, variables are pointers

——

Weak- and Strong Isolation
———

If guarantees are only given about memory accassed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

Concurrency: Transactions Transaction Semantics

Tl

7134

Consistency During Transactions

Consistency during a transaction.

ACID states how committed transactions behave but not what may happen
until a transaction commits.

Ty

@ a transaction that is run on an inconsistent state may generate an
inconsistent state ~~ zombie transaction

@ this is usually ok since it will be aborted eventually

o but transactions may cause havoc when run on inconsistent states

atomic { // preserved invariant: x==y
int tmpl = x; atomic {
int tmp2 = y; x = 10;
assert (tmpl-tmp2==0); y = 10;

¥ }
@ critical for C/C++ if, for instance, variables are pointers

Definition (opacity)
A TM system provides opacily if failing transactions are serializable w.r.t.
committing transactions.

~~ failing transactions stil nsistent view of memory

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

8/34

// Thread

atomic { // Thread 2
x = 42; int tmp = x;

} E—

iy

7/34

8/34

)

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1

atomic { // Thread 2
x = 42; int tmp = X;

}

@ - give programs with races the same semantics as if using a single
global lock for all atomic blocks

Concurrency: Transactions Transaction Semantics

8/34

Tl

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

Weak- and Strong Isolation

// Thread 1

atomic { // Thread 2
x = 42; int tmp = x;

}

@ -~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all
transactions acquire a single, program-wide mutual exclusion lock.

8/34

Concurrency: Transactions Transaction Semantics

Weak- and Strong Isolation

If guarantees are only given about memory accessed inside atomic, a TM
implementation provides weak isolation.
Can we mix transactions with code accessing memory non-transactionally?

@ no conflict detection for non-transactional accesses
@ standard race problems as in unlocked shared accesses

// Thread 1
atomic { ajv»ic (// Thread 2
x = 42; x =43, int tmp = x; |}

¥ 3 Aimg TUsf |
@ ~~ give programs with races the same semantics as if using a single
global lock for all atomic blocks

@ strong isolation: retain order between accesses to TM and non-TM

T
éﬁ&ﬂﬂ% (
bpic ¢ Y
a kz-crno{ (),' f (K)l
1[{2{ - v il
) ! sy

Concurrency: Transaclions Transaction Semantics

Properties of Single-Lock Atomicity

A

z

J

k

B
Observation:

i)

8/34

ity

9/34

Properties of Single-Lock Atomicity

atomic { k = i
.

A
’i’.

J

k
B

Observation:
@ SLA enforces order between TM and non-TM accesses v
— p— ——

Properties of Single-Lock Atomicity

Observation:
@ SLA enforces order between TM and non-TM accesses v
» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v
e

Concurrency: Transactions Transaction Semantics

9/34

il

9/34

} _

A >
1’ o
Ni -
o .
B Fomic {k = 1+3; ._.1(?{2_?_
Observation:

@ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses

——
Concurrency: Transaclions Transaction Semantics

Properties of Single-Lock Atomicity

atomic { k = i+j; }

A &

J e

B fomic {k=1+]; } e % =2IZ?
Observation:

@ SLA enforces order between TM and non-TM accesses v~
» this guarantees strong isolation between TM and non-TM accesses
@ within one transactions, accesses may be re-ordered v

@ the content of -TM memory conveys information_whi tomic block
has executed, even if the TM regions do not access the same memory
-__—_——__——

Concurrency: Transactions Transaction Semantics

9/34

WoE T

Observation:
@ SLA enforces order between TM and non-TM accesses v
» this guarantees strong isolation between TM and non-TM accesses

@ within one transactions, accesses may be re-ordered v

@ the content of non-TM memory conveys information which atomic block
has executed, even if the TM regions do not access the same memory

» SLA makes it possible to use atomic block for synchronization
i —d

Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // x in TW
} }
@ SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
int tmp = data;
data = 1; b = datd;
_ // Thread 1 not in atomic
atomic { .
} if (ready) {
ready = 1;) // use tmp
e ———

¥

Concurrency: Transactions Transaction Semantics

9/34

iy

10/34

0y

Disadvantages of the SLA model

The .S=_I;_A model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
6 while (true) {}; t int tmp = x; // x in TM
) y 953
10/

Tl

Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // % in TM
¥ }
@ SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1 int tmp = data;
atomic {’ // Thread 1 not in atomic
} if (ready) {
// use tmp
ready = 1;
y)

¥
» under the SLA model, atomic {} acts as barrier

10/34

Concurrency: Transactions Transaction Semantics

Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {7}; int tmp = x; // x in TW
} }
© SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1- int tmp = data;
atomic {’ // Thread 1 not in atomic
Y if (ready) {
- 1. // use tmp
ready 1;)
}

» under the SLA model, atomic {} acts as barrier
» intuitively, the two transactions should be independent rather than
synchronize

Transactional Sequential Consistency

How about a more permissive view of transaction semantics?

@ TM should not have the blocking behaviour of locks

@ -~ the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent. I

Ty |

10/34

Tlky |

Concurrency: Transactions Transaction Semantics

11/34

Ty |

Disadvantages of the SLA model

The SLA model is simple but often too strong:
@ SLA has a weaker progress guarantee than a transaction should have

// Thread 1 // Thread 2
atomic { atomic {
while (true) {}; int tmp = x; // % in TM
3 }
© SLA correctness is too strong in practice
// Thread 2
// Thread 1 atomic {
data = 1- int tmp = data;
atomic {’ // Thread 1 not in atomic
} if (ready) {
ready = 1; // use tmp

}

}
» under the SLA model, atomic {} acts as barrier
» intuitively, the two transactions should be independent rather than
synchronize

~+ need a weaker model for more flexible implementation of strong isolation
T e .———-——._______—-_—__

Concurrency: Transaclions Transaction Semantics

10/34

Ty |

Transactional Sequential Consistency
How about a more permissive view of transaction semantics?

@ TM should not have the blocking behaviour of locks
@ -~ the programmer cannot rely on synchronization

Definition (TSC)

The iransactional sequential consistency is a model in which the accesses
within each transaction are sequentially consistent.

atomic { k = i+j; }
o ;

g =T
[2o

@ TSC is weaker: gives strong isolation, but allows parallel execution v
@ TSC is stronger: accesses within a transaction may not be re-ordered VAN

e ———

Concurrency: Transactions Transaction Semantics

11/34

Quick Quiz

Associate one item on the left with one or two on the right.

@ redo and undo 2_

Qa translaction walits rather than creating o conflict detection >

a conflict _ _ ' e concurrency control /]
@ in case of a conflict, a kind of log is o isolation 1-}

needed i ¥
@ no opacity: a zombie transaction sees @ version managemen

an inconsistent state e eager,5
© no guarantee if a program accesses lazy 3

variables via TM and non-TM @ optimistic,
@ a write in a transaction is immediately pessimistic

globally visible @ strong,

weak ¢

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)
@ convert every write access x=e to a shared variable to WriteTx(&x,e)

Concurrency: Transactions Implementation of Software TM

%

12/34

il |

13/34

Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:
@ convert every read accessé_f_from a shared variable to ReadTx (&x)

Concurrency: Transaclions Implementation of Software TM

Translation of atomic-Blocks

A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)
@ convert every write access x=e to a shared variable to WriteTx (&x,e)

Convert atomic blocks as follows:

atomic { do 1
/Tl q . StartTx();
} sace // code with ReadTx and WriteTx
} while ('CommitTx());

Ty |

13/34

Tl |

{

13/34

Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:
@ convert every read access x from a shared variable to ReadTx (&x)

Convert atomic blocks as follows:

} while (!'CommitTx());
————

@ translation can be done using a pre-processor

requires a good static analysis
» idea: translate all accesses to global variables and the heap as TM
» more fine-grained control using manual translation
@ an actual implementation might provide a retry keyword
» when executing retry, the transaction aports and re-starts
the transaction will again wind up at retry unless its read set changes
~+ block until a variable in the read-set has changed

» simil iti riables in monitors \/

v

v

Transactional Memory for the Queue
If a preprocessor is used, PopRight can be implemented as follows:

double-ended queue: removal

int PopRight (DQueue* q) {

(QNode* oldRightNode;

(QNode* rightSentinel = g->right;

atomic {
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) retry;
(QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;

rightSentinel->left = newRightNode;
}
int val = oldRightNode->val;
free(oldRightNode) ;

return val;

}

Ty |

@ convert every write access x=e to a shared variable to WriteTx(&x,e)

atomic { do {
/Tlcade — StartTx();
3 // code with ReadTx and WriteTx

» determining a minimal set of memory accesses that need to be transactional
T ———— T E———

13/34

ik |

@ the transaction will abort if other threads call PopRight
o if the queue is empty, it may abort if PushLeft is executed

Concurrency: Transactions Implementation of Software TM

Transactional Memory for the Queue 1y |
If a preprocessor is used, PopRiéht can be implemented as follows:

double-ended queue: removal (

int PopRight (DQueuex q) { //,/

(Node* oldRightNode;

(Node* rightSentinel = q—>right;[:]4r

atomic {

—
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) retry;
(Node* newRightNode = oldRightNdag:31eft;
newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;

>

}

int val = oldRightNode->val;
free(oldRightNode) ;

return val;

}

@ the transaction will abort if other threads call PopRight

wim
A Software TM Implementation]

A software TM implementation allocates a iransaction descriptor to store data
specific to each atomic block, for instance:
@ undo-log of writes if writes have to be undone if a commit fails
e redo-log of writes if writes are pogtﬁmed—u'ﬁ-t_il a commit
@ read- and write-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed

Consider the TL2 STM (software transactional memory) algorithm [1]:

14/34

Concurrency: Transactions Implementation of Software TM 15/34

A Software TM Implementation iy

A software TM implementation allocates a transaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails

@ redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:

@ provides opacity: zombie transactions do not see inconsistent state

Concurrency: Transactions Implementation of Software TM

15/34

A Software TM Implementation Ty]

A software TM implementation allocates a transaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails
@ redo-log of writes if writes are postponed until a commit
@ read- and write-set: locations accessed so far
@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:
@ provides opacity: zombie transactions do not see inconsistent state
@ uses lazy versioning: writes are stored in a redo-log and done on commit
@ validating conflict detection: accessing a modified address aborts

15/34

Concurrency: Transactions Implementation of Software TM

A Software TM Implementation 1y |

A software TM implementation allocates a fransaction descriptor to store data
specific to each atomic block, for instance:

@ undo-log of writes if writes have to be undone if a commit fails

@ redo-log of writes if writes are postponed until a commit

@ read- and wrife-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:

@ provides gpacify. zombie transactions do not see inconsistent state

@ uses lazy versioning: writes are stored in a redo-log and done on commit

e ——

Concurrency: Transaclions Implementation of Software TM

A Software TM Implementation

A software TM implementation allocates a iransaction descriptor to store data
specific to each atomic block, for instance:

e undo-log of writes if writes have to be undone if a commit fails

@ redo-log of writes if writes are postponed until a commit

@ read- and write-set: locations accessed so far

@ read- and write-version: time stamp when value was accessed
Consider the TL2 STM (software transactional memory) algorithm [1]:

@ provides opacity: zombie transactions do not see inconsistent state

@ uses lazy versioning: writes are stored in a redo-log and done on commit

@ validating conflict detection: accessing a modified address aborts
TL2 stores a global version counter and:

@ aread version in each object (allocate a few bytes more in each call to
malloc, or inherit from a transaction objectin e.g. Java)

@ aredo-log in the transaction descriptor

@ aread- and a write-set in the transaction descriptor
== —_—
@ a read-version: the version when the transaction started
—— ________————

Concurrency: Transactions Implementation of Software TM

15/34

Principles of TL2

The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.

A read from a field at offset of object obj is implemented as follows:

transactional read
int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redolog) {
return tx.redoLog[&objloffset]];

} else {
atomic { v1 = obj.timestamp; locked = obj.sem<1; };
result = objloffset];

v2 = obj.timestamp;
if (locked || w1 !'= v2 || vl > tx.RV) AbortTx(tx);
‘— R
¥ Lopfat]
tx.readSet =

tx.readSet.add(obj);
return result;

¥

%

Concurrency: Transactions Implementation of Software TM

Committing a Transaction

A transaction can succeed if none of the read locations has changed:

committing a transaction

bool CommitTx(TMDesc tx) {
foreach (e in tx.writeSet)
if (ltry_wait(e.obj.sem)) goto Fail;
WV = FetchAndAdd(&globalClock);
Foreach (e in tx.readSet)
if (e.obj.version > tx.RV) goto Fail;
foreach (e in tx.redoLog
———
e.objle.offset] = e.value;
r——— T—— “EE—
foreach (e in tx.writeSet) {
e.obj~F WV; signal(e.obj.sem);
} ¥ 74 - —_—
return true,
Fail:
// signal all acquired semaphores
return false;

Tl

16 /34

b

y
Concurrency: Transactions Implementation of Software TM 17134

Principles of TL2

Ty |
The idea: obtain a version tx.RV from the global clock when starting the
transaction, the read-version, and set the versions of all written cells to a new
version on commit.
A read from a field at offset of object obj is implemented as follows:

transactional read

int ReadTx(TMDesc tx, object obj, int offset) {
if (&(objloffset]) in tx.redolog) {
return tx.rgﬂg&gg[&obj[offset]];
} else {
atomic { vl = obj.timestamp; locked = obj.sem<1; };
result = objloffset];
v2 = obj.timestamp;
if (locked || vi != v2 || v1 > tx.RV) AbortTx(tx);
}
tx.readSet = tx.readSet.add(obj);
return result;

}
WriteTx is simpler: add or update the location in the redo-log.
16734
Properties of TL2 by

Opacity is guaranteed by aborting a read access with an inconsistent value:
—_— e —

StartTx ReadTx WriteTx ReadTx CommitTx
——’ @ (T O Il.lllll'llll.'llllll—

- : 5 write redo-log
? validate read set
increment global clock

s

memory state seems to be consistent

Other observations:

Concurrency: Transactions Implementation of Software TM

18/34

Properties of TL2 ls] | Properties of TL2 1y |

Opacity is guaranteed by aborting a read access with an inconsistent value: Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx CommitTx StartTx ReadTx WriteTx ReadTx CommitTx
—$ ® ® @ S — —$ ® ® @ S —
i i ; write redo-log i i i i wrihcaj redo-log
= : > validate read set = : : validate read set
memory state seems to be consistent increment global clock memory state seems to be consistent increment global clock
Other observations: Other observations:
@ read-only transactions just need to check that read versions are @ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock) consistent (no need to increment the global clock)
@ writing values still requires locks @ writing values still requires locks

» deadlocks are still possible

Concurrency: Transactions Implementation of Software TM 18/34 Concurrency: Transactions Implementation of Software TM

18/34
Properties of TL2 I | Properties of TL2 by]
Opacity is guaranteed by aborting a read access with an inconsistent value: Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx CommitTx StartTx ReadTx WriteTx ReadTx CommitTx
—$ ® e ® S — —$ ® ® @ S —
i ; ; write redo-log i ; ; I write redo-log
< : > validate r = - ™ validate r
memory state seems to be consistent increme?lt%?é%a?g%gket memory state seems to be consistent increme%t%?é%a?glcégl? t
Other observations: Other observations:
@ read-only transactions just need to check that read versions are @ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock) consistent (no need to increment the global clock)
@ writing values still requires locks @ writing values still requires locks
» deadlocks are still possible » deadlocks are still possible
» since other transactions can be aborted, one can preempt transactions that » since other transactions can be aborted, one can preempt transactions that
are deadlocked are deadlocked
» since lock accesses are generated, computing a lock order up-front might be
possible
18128 82

Properties of TL2 Ty]
Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx CommitTx
—» ® ® ® G ————

write redo-log
validate read set

increment global clock

L

memory state seems to be consistent

Other observations:
@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks

» deadlocks are still possible

» since other transactions can be aborted, one can preempt transactions that
are deadlocked

» since lock accesses are generated, computing a lock order up-front might be
possible

@ at least two memory barriers are necessary in ReadTx

18/34

Ty

General Challenges when using TM

Executing atomic blocks by repeatedly trying to executing them
non-atomically creates new problems:
@ a transaction might unnecessarily be aborted

19/34

Concurrency: Transactions Implementation of Software TM

Properties of TL2 iy
Opacity is guaranteed by aborting a read access with an inconsistent value:
StartTx ReadTx WriteTx ReadTx CommitTx
—1i o = o

i i write redo-log
: validate read set
increment global clock

s

memory state seems to be consistent

Other observations:

@ read-only transactions just need to check that read versions are
consistent (no need to increment the global clock)
@ writing values still requires locks
» deadlocks are still possible
» since other transactions can be aborted, one can preempt transactions that
are deadlocked
» since lock accesses are generated, computing a lock order up-front might be
possible
@ at least two memory barriers are necessary in ReadTx

» read version+lock, 1fence, read value, 1fence, read version
— — —— ——— A — s -

18/34

Concurrency: Transaclions Implementation of Software TM

