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Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion
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Implementation of a Basic Monitor ey

A manitor contains a mutex s and the thread currently occupying it:
typedef struct monitor mon_t;
struct monitor { int tid; int count; };
void monitor_init (mon_t* m) { memset(m, 0, sizeof(mon_t)); }
Define monitor_enter and monitor_leave:
@ ensure mutual exclusion of accesses to mon_t
@ track how many times we called a monitored procedure recursively
void monitor_enter (mon_t *m) {
bool mine = false;
while ('mine) {
atomic {
mine = thread_id()==m->tid;
if (mine) m->count++; else
if (m—->tid==0) { }
mine = true; m->count=1; }
m->tid = thread_id(); }
}

void monitor_leave(mon_t *m) {
atomic {
m->count—-—;
if (m->count==0) {
// wake up threads
m->tid=0;

};
if (!mine) de_schedule(&m->tid);}}
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Rewriting the Queue using Monitors Ty |
Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueue* q, int val) {
Lt
monitor_enter (q->m) ;

P

monitor_leave(q->m) ;

b
void ForAll (DQueue* g, void*_data, void (*callback) (void*,int)){
Rty LT o T—
monitor_enter(q->m);
for (QNode* gn = g->left->right; qn!=q->right; qn=qn->right)
(*callback) (data, gn->val);
monitor_leave(q->m);

}

Recursive calls possible:
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Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueue* g, int val) {
monitor_enter (q->m) ;

monitor_leave(q->m) ;
b
void ForAll(DQueuex* q, void* data, void (*callback) (void#,int)){
monitexr—eater(q->m) ;
for (QNode* gqn = gq->left->right; qn!=q->right; gn=qn->right)
(*callback) (data, gqn->val);
monitor_leave(q->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,&PushLeft) duplicates entries
e e e——
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Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueuex q, int val) {
monitor_enter (q->m);

monitor_leave(q->m) ;
T
void ForAll (DQueue* g, void* data, void (*callback) (void*,int)){
monitor_enter (q->m) ;
for (QNode* gn = gq->left->right; gn!=q->right; qn=gqn->right)
(xcallback) (data, gn->val);
monitor_leave(g->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
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Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueue* q, int val) {
monitor_enter(gq->m) ;

monitor_leave(q->m) ;
T
void ForAll(DQueue* q, void* data, void (*callback) (void*,int)){
monitor_enter (q->m) ;
for (QNode* gn = gq->left->right; qn!=q->right; qn=gqn->right)
(*callback) (data, gn->val);
monitor_leave(q->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,&PushLeft) duplicates entries
@ using monitor instead of mutex ensures that recursive call does not block
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Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
e if a thread £ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock
N e e R

22/41
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Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

- A t is busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting
struct monitor { int tid; int count; int cond; };
Define these two functions:
@ vait for the condition to become true
" called while being inside the monitor

» temporarily releases the monitor and blocks
» when sjgnalled, re-acquires the monitor and returns

©@ signal waiting threads that they may be able to proceed
» ane/all waiting threads that called wait willbe woken up, two possibilities:

signal-and-urgent-wait : the signalliin

iy |

read suspends and continues once

Ty |

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting

struct monitor { int tid; int count; int cond; };
—— ‘—-‘._

Signal-And- t-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:
@ athread who tries to enter a

monitor is added to queue e if
the monitor is occupied

i

a.q <« waita
| g

-~ ﬂ\?ignalled

[

N O
bag % waitb

il signalled
©o £
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source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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the signalled thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread
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enters when the monitor becomes available
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

bg %
=== signalled | _
R = 2

source: http://en.uikipedia.org/wiki/Monitor_({synchronization}

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.q

@ acallto signal for a adds
thread to queue s (suspended)

@ one thread form the a queue is

23/4

d woken up
‘-I:WD_)J > ]
bq < Naltb
. signalled |
GRS S

-

1 7
[

source: http://en.wikipedia.org/wik i/Monu!t]jsynchronizatmn)
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.¢

@ acall to signal for a adds
thread to queue s (suspended)

K < waita
.a 4 Yy e

-~ ﬂ\?ignalled

D]
)

)

D wait b

bg %
===l signalled

Y0 [

)
\

\/

. BAES)

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.g

@ acall to signal for a adds
thread to queue s (suspended)

23/41
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agq <« Wwaita :
A @ one thread form the a queue is
A ﬂ\signalled woken up
/:\)D‘ @ signal onais ano-op if a.q is
ba < wait b empty
"__‘:El\signalled s
O > 2
|T o
I‘\‘\/,d:”

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acallto signal for ¢ adds
thread to queue s (suspended)

/%90 wene @ one thread form the a queue is
%E\Med woken up
:\D / @ signal ona is a No-op if a.q is
bgq < Watb empty

@ if a thread leaves, it wakes up
ol one thread waiting on s

ﬂ - @ if s is empty, it wakes up one
\V thread from e

source: http://en.uikipedia.org/wiki/Monitor_({synchronization}

. signalled
. -l

)]
()

., anes|
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Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.q

@ acallto signal for a adds
thread to queue s (suspended)

aq <« wata ./ .
N @ one thread form the a queue is
o E\Med woken up
R O @ signal onais ano-opifa.qis
e s emply
:ﬁ signalled | — e if athread leaves, it wakes up
O o ST e one thread waiting on s
[ O e if s is empty, it wakes up one
Vv thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~+ gqueue s has priority over e

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.¢

@ acall to signal for a adds

aq < wata \/ thread to queue s (suspended)
TN T @ one thread form the a queue is
Iﬁ\mpd woken up
:\‘ﬂ O @ signal onaisano-opifa.qis
bq < Naitb empty
'“:ﬁ\wl_ed = @ if a thread Ieaygs, it wakes up
ONNS) o one thread waiting on s
ﬂ ) m o if s is empty, it wakes up one
vV thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~~ queue_s_has priority over e
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

Jaus

@ acall to wait on condition « adds
thread to the queue a.q

5 . iRy
% notified |/
R i

O notifed ¥

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

thread to the queue a.q

empty)

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

thread to the queue a.g

T Ld\\ H "\ :1
OO N notified " /

I
L

empty)

b.q

thread waiting on e

monitor

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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@ acall to wait on condition a adds

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

2441

[y

9]
=] o
] @ acall to wait on condition a adds

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

e if a thread leaves, it wakes up one

~+ signalled threads compete for the
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

thread to the queue a.q

empty)

thread waiting on e

source: http://en.wikipedia. org/wiki/Meoniter_(synchrenization)

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

Jaus

A

thread to the queue a.q

I L
— =, . | 4
vy Y notified v/
)N \.}4_ W

O :ﬂ: notified

-~ empty)

thread waiting on e

wait a

monitor

wait b

a_ q
i
notify
', \

threads who tried to enter

first

 aneg|

3
\ A
A

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)
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@ acall to wait on condition « adds

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

e if a thread leaves, it wakes up one

@ acall to wait on condition « adds

@ acall to notify for @ adds one
thread from a.q to e (unless a.q is

ba ) ;‘ — e if a thread leaves, it wakes up one
~ signalled threads compete for the

@ assuming FIFO ordering on e,

between wait and notify will run

Ty |
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< waita
. notify
< waitb T
L § -

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)

A Note on Notify

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

@ acall to wait on condition a adds

thread to the queue a.q

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

empty)
e if a thread leaves, it wakes up
thread waiting on e

~+ signalled threads compete for the

monitor
@ assuming FIFO ordering on e,
threads who tried to enter
between wait and notify will
first

@ need additional queue s if waiting

threads should have priority
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With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable
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Implementing Condition Variables N

We implement the simpler signal-and-continue semantics:

@ a notified thread is simply woken up and competes for the monitor
——r— _____—-————

void cond_wait(mon_t #*m) {
assert (m->tid==thread_id());
int old_count = m->count;
‘-__ —f
m->tid = 0;
e
wait(m->cond) ;
e
bool next_to_enter;

do { void cond_notify(mon_t *m) {
atomic { // wake up other threads
next_to_enter = m->tid==0; signal (m->cond) ;
——— —_— ——
if (next to_enter) { b

m->tid = thread_id();
m->count = old_count;
}
}

if ('next_to_enter) de_schedule (&m->tid);
} while ('mnext_to_enter);}
Pttt

LS.
A Note on Notify Tk |
With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable

N\ an implementation often becomes easier if notify means notify some

~+ programmer should assume that thread is not the only one woken up

26/41
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A Note on Notify iy

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~- programmer should assume that thread is not the only one woken up

What about the priority of notified threads?
/'-__—____-—

@ a notified thread is likely to block immediately on &m->tid

Atomic Executions, Locks and Monitors
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A Note on Notify Tl

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~ programmer should assume that thread is not the only one woken up
What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid

@ -~ notified threads compete for the monitor with other threads

o if OS implements FIFO order: notified threads will run after threads that
tried to enter since wait was called

—
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A Note on Notify Ty

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~+ programmer should assume that thread is not the only one woken up
What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid
@ -~ notified threads compete for the monitor with other threads
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Implementing PopRight with Monitors
We use the monitor g->m and the condition variable g->c. PopRight:

double-ended queue: removal

int PopRight (DQueue* q, int val) {
(Node* oldRightNode;
monitor_enter(q->m); // wait to ent

L: QNode* rightSentinel = gq->right;

- oldRightNode = rightSentinel->left|
if (oldRightNode==leftSentinel) { cond_wait(q->c); goto L; T
(Node* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentingel->left = newRightNode;
monitor_leave(q->m); // signal that we’re done

( int val = oldRi—g_lENode—>E1 :

free(oldRightNode);

return val;
——

}

Atomic Executions, Locks and Monitors
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Implementing PopRight with Monitors
We use the monitor g->m and the condition variable g->c. PopRight:

double-ended queue: removal

int PopRight(DQueue* q, int val) {

QNode* oldRightNode;

monitor_enter(q->m); // wait to enter the critical section
L: QNode* rightSentinel = q->right;

oldRightNode = rightSentinel->left;

if (oldRightNode==leftSentinel) { cond_wait(g->c); goto L;

(QNode* newRightNode = oldRightNode->left; -

newRightNode->right = rightSentinel;

rightSentingel->left = newRightNode;

monitor_leave(q->m); // signal that we’re done

int val = oldRightNode->val;

free(oldRightNode) ;

return val;

}

Ty |

}

@ if the queue is empty, wait on g->c
@ use a loop, in case the thread is woken up spuriously

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting

Atomic Executions, Locks and Monitors Locked Atomic Executions
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex

Monitor versus Semaphores

A monitor can be implemented using semaphores:

@ protect each queue with a mutex

@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:

@ protect the semaphore variable s with a monitor

28/4
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
e T map——— —_—
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

—
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds

» OS would have to ensure atomicity

» problematic if p is implemented by arbitrary code
/-—‘
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity
» problematic if p is implemented by arbitrary code
» - wake up thread and have it check the predicate itself

————
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity
>

problematic if p is implemented by arbitrary code
» -~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
» notify variable if the predicate may have changed
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity
» problematic if p is implemented by arbitrary code
» ~- wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
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Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult to implement general conditions
OS would have to run code to determine if p holds
OS would have to ensure atomicity

problematic if p is implemented by arbitrary code

~~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
» notify variable if the predicate may have changed

@ or, simpler: notify all threads each time any predicate changes
» -~ without predicates, a single condition variable suffices!
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Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#:
class C {

pub]ﬁ% void £(O) {
i’”’ body o
}

is equivalent to
class C {
public void f() {

monitor_enter();

// body of £

monitor_leave();
}}

with Qbject containing:
private int mon_var;
. . ——p—
private int mon_count;
] . e
private int cond_var;
protected voidTﬁSﬁI%or;gnter();
protected void monitor_leave();
—

Atomic Executions, Locks and Monitors Locked Atomic Executions

Deadlocks with Monitors

Definition (Deadlock)
A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

! notified

'\
GRS

LU (

T e

(
=
A 4

_—
-

c- Wt

. 9ne9|

Y
N

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:

class Fgo {
public Foo other = null;
public.;;hchronized void bar() {
. if gi) other.bar(); ...

3
S = w2
and two instances:
new Foo();
Foo b = new Foo();
a.other =__1_J; p_.other = a;
// in parallel: =
a.bar() || b.bar();

Foo a =

30/4
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Deadlocks with Monitors 1]
Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
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Deadlocks with Monitors )
Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

@ threads A and B execute a.bar ()
and b.bar ()

——

Consider this Java class:

class Foo {
public Foo other = null;
public synchronized void bar() {
. if (*) other.bar();

T
T
and two instances:
= new Foo();
Foo b = new Foo();
a.other = b; b.other = a;

// in parallel:
a.bar() || b.bar();

Foo a
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
. if (%) other.bar(); ...

} — -
}
and two instances:

Foo a

Consider this Java class:

new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar()

public synchronized void bar() { @ a.bar() acquires the monitor of a
_ 1f (+) other.bar(Q); ... gy 1.0 () acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo b = new Foo(); @ B happens to execute
a.other = b; b.other = a; other.bar ()

// in parallel: @ -~ both block indefinitely
a.bar() || b.bar();

30/4
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Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
_ 1t () other.bar(); @ b.bar () acquires the monitor of b

} @ A happens to execute
other.bar ()

Consider this Java class:

and two instances:

Foo a = new Foo();
Foo b = new Foo();
a.other = b; b.other = a;

// in parallel:
a.bar() |l b.bar();
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
.
@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
© detection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

© avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt
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Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
@ detection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

@ awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~+ prevention is the only safe approach on standard operating systems
@ can be achieve using lock-free algorithms
@ but what about algorithms that require locking?
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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

o .

Let L denote the set of locks” We call A(p) € L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program pomt D.

Definition (lock sets)
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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure ot of a relation o

Definition (transitive closure)

Let o C X x X be a relation. Its transitive closure is o* = J, ., o' where

JD = 0o

ottt = {(:l?l,:ij‘g) ‘ Jro € X . <SC1,£CQ> € at A (332,563) E Ji}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order) }

Define <1 € L x L such that [ < U U iff L € A(p) and the statement at p is of the

form walt(l’) or monitor_enter (17). Define the strict lock order <= <i*

=
.

]

Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o+ of a relation o

Definition (transitive closure)

Let o C X x X be a relation. Its tra sureis ot = U.EN o' where
0o _ /4' ‘.S 7( y*ﬁ

(ar = a
—— o
i+1 . 1
a = {<$1,$3> |H.’£2EX.<.GC1,:UQ g,ﬂt'z)EJ }
— L. - ——— —_ - =
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

(J
&
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly,
such tha!_@_: Ls U Lyy. —

IftVa € Lg.a AaandVa € Ly,be L.a<bAb=<a= a=0thenthe program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. }

A

Atomic Executions, Locks and Monitors Locked Atomic Executions

3B/4

']

Avoiding Deadlocks in Practice

How can we verify that program contains no deadlocks?
@ identify mutex locks Ls and summarized monitor locks L3, C Ly,
Am—
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Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly
suchthat L = Lg U Lyy.

IfYa € Lg.a 4 aandVa € Ly,be L.a<bAb=< a=-a=bthen the program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. }

Note: the set L contains instances of a lock.
@ the set of lock instances can vary at runtime

o if we statically want to ensure that deadlocks cannot occur:

» summarize every lock/monitor that‘ may have several instances into one
» asummary lock/moitor @ € L represents several concrete ones
» thus, if a < a then this might not be a self-cycle

» ~- require that @ # a for all summarized monitors @ € L
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Avoiding Deadlocks in Practice

How can we verify that program contains no deadlocks?
o identify mutex locks Ls and summarized monitor locks L5, € Ly,
@ identify non-summary monitor locks LY, = Ly \ L3,

A T e
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Avoiding Deadlocks in Practice Th7 | Avoiding Deadlocks in Practice 17|

How can we verify that program contains no deadlocks? How can we verify that program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks L5, C Ly, @ identify mutex locks Ls and summarized monitor locks L5, C Ly
@ identify non-summary monitor locks L%, = Ly \ L}, o identify non-summary monitor locks LY, = Lys \ L3,
@ sort locks into ascending order according to lock sets @ sort locks into ascending order according to lock sets <

@ check that no cycles exist except for self-cycles of non-summary monitors
\‘——_
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Avoiding Deadlocks in Practice T4 | Avoiding Deadlocks in Practice [T
How can we verify that program contains no deadlocks? How can we verify that program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks L5, C Ly, @ identify mutex locks Ls and summarized monitor locks L5, C Ly,
@ identify non-summary monitor locks L', = Ly; \ L}, @ identify non-summary monitor locks L}, = Lys \ L,
@ sort locks into ascending order according to lock sets @ sort locks into ascending order according to lock sets
@ check that no cycles exist except for self-cycles of non-summary monitors @ check that no cycles exist except for self-cycles of non-summary monitors
/\ What to do when lock order contains cycle? 2. ,é- Ao /N What to do when lock order contains cycle?
@ determining which locks may be acquired at each ch program p0|nt is @ determining which locks may be acquired at each program point is
undecidable - IWM undecidable ~ lock sets are an approximation
@ an array of locks in Ls: lock in increasing array index sequence @ an array of locks in Lg: lock in increasing array index sequence
o if L € A\(P) exists I "< 1is to be acquired ~- change program: release L e ifl € \(P) exists I’ < [ is to be acquired ~~ change program: release I,
acqwre !, then acqwre { again ~- inefficient acquire ', then acquire [ again ~ inefficient
e if a lock set contains a summarized lock a and a is to be acquired, we're @ if a lock set contains a summarized lock a and a is to be acquired, we're
stuck stuck
L ¢ an example for the latter is the Foo class: two instances of the same class call
each other me—
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Refining the Queue: Concurrent Access

Add a second lock =->t to allow concurrent removal'
double-ended queue: removal
int PopRight (DQueue* q) {

QNode* oldRightNode; b@
wait(gq->t); // wait to enter the cr section
QNode* rightSentinel = g->right; ok
oldRightNode = rightSentinel->left;

if (oldRightNode==leftSentinel) { signal(gq->t);
QNode* newRightNode = oldRightNode->left;

int ¢ = newRightNode==leftSentinel;

if (c) wait(g->s);
newRightNode->right
rightSentinel->left
if (c) signal(g->s);
signal(q->t); // signal that we’re done
int val = oldRightNode->val;

rightSentinel; 1?;
newRightNode;

return -1;

Ty

}

Example: Deadlock freedom
Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight() {

wait(q->t);

if.(*) { signal(q->t);

return; }

f 1f (c) wait(g->s); )\(.;1) -_‘L/ f}
if.(c) signal(g->s);
signal(q->t);

}

free(oldRightNode) ;
g
return val;
}
>
e

Ty

@ in PushLeft, the lock set for s is empty
@ here, the lock set of s is {¢}

@ ¢ <1 s and transitive closure is t < s

@ -~ the program cannot deadiock
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Example: Deadlock freedom
Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight() {
it gt
it ) { signal(g->t); return; }
if (c) wait(g->s);

if.(c) signal(qg->s);

]

[

Atomic Execution and Locks

double-ended queue: removal
void PopRight() {

e o
wart{q=—>t) ; d%;“4c <3
ié.(*) { signal(q->t); return; }

ié'(om-i-n,—eq-—;sa;dhm{
+—crstpnattq>e); )

Consider replacing the specific locks with atomic annotations:

signal (g—>t);
¥
J
| Atomic Executions, Locks and Monitors __________ Locked Atomic Executions _____| 38/41
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Atomic Execution and Locks
Consider replacing the specific locks with atomic annotations:

double-ended queue: removal
void PopRight() {

wait(q->t);
if (*) { signal(q->t); return; }
if (c) wait(g->s);\

if (c) signal(q->s);
signal(q->t);

@ nested atomic blocks still describe one atomic execution
@ -~ locks convey additional information over atomic
@ locks cannot easily be recovered from atomic declarations

o
Outlook ey

Writing atomic annotations around sequences of statements is a convenient
way of programming.

ldea of mutexes: Implement atomic sections with locks:
—— el —
@ a single lock could be use to protect all atomic blocks
@ more concurrency is possible by using several locks
e e B i —
» see the PushLeft, PopRight example

@ some statements might modify variables that are never read by other
threads ~~ no lock required
]
@ statements in one atomic block might access variables in a different order
to another atomic block ~~ deadlock possible with locks implementation

@ creating 0o many Tocks can decrease the performance, especially when
required to release locks in A(I) when acquiring {

38/4
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Outlook Téy]
Writing atomic annotations around sequences of statements is a convenient
— —
way of programming.
IR

Ty

Concurrency across Languages

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations
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Concurrency across Languages I'sv] | Concurrency across Languages Ty

In most systems programming languages (C,C++) we have In most systems programming languages (C,C++) we have
@ the ability to use atomic operations @ the ability to use atomic operations
@ -~ we can implement wait-free algorithms @ -~ we can implement wait-free algorithms

In Java, C# and other higher-level languages In Java, C# and other higher-level languages

@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems

Concurrency across Languages Te] | Summary Tan]

Classification of concurrency algorithms:
In most systems programming languages (C,C++) we have @ wait-free, lock-free, locked

@ the ability to use atomic operations @ next on the agenda: transactional

@ -~ we can implement wait-free algorithms Wait-free algorithms: -
In Java, C# and other higher-level languages

@ never block, always succeed, nevELq‘_ag_dpck, no starvation
@ provide monitors and possibly other concepts @ very limited in what they can do —

@ often simplify the programming but incur the same problems Lock-free algorithms:

| language || barriers | wait-/lock-free | semaphore | mutex | monitor | @ never block, may fail, never deadlock, may starve
CCst v v — v - v - @ @ invariant may only span a few bytes (8 on Intel)
Jr:lva C# - - (b) v A v -~ Locking algorithms:

¢ can guard arbitrary code ¥t PCes

(a) some pthread implementations allow a_reentzant attribute @ can use several locks to enable more fine grained concurrency
(b) simulate semaphores using an object with two synchronized o may deadiagk
e
methods

@ semaphores are not re-entrant, monitors are
~+ use algorithm that is best fit _
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