Script generated by TTT

Title: Petter: Programmiersprachen (29.10.2014)
Date: Wed Oct 29 14:18:06 CET 2014
Duration: 85:35 min

Pages: 79

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Atomic Executions, Locks and Monitors Motivation 2/41

Why Memory Barriers are not Enough Tl

TECHNISCHE UNIVERSITAT MUNCHEN
% FAKULTAT ~ FUR INFORMATIK
ﬂﬂ, /114 #“"(&y A/ &0&44&
u\-ﬁ

Programming Languages

T

Concurrency: Atomic Executions, Locks and Monitors

Dr. Axel Simon and Dr. Michael Petter
Winter term 2014

Implementation of a Basic Monitor ey

A manitor contains a mutex s and the thread currently occupying it:
typedef struct monitor mon_t;
struct monitor { int tid; int count; };
void monitor_init (mon_t* m) { memset(m, 0, sizeof(mon_t)); }
Define monitor_enter and monitor_leave:
@ ensure mutual exclusion of accesses to mon_t
@ track how many times we called a monitored procedure recursively
void monitor_enter (mon_t *m) {
bool mine = false;
while ('mine) {
atomic {
mine = thread_id()==m->tid;
if (mine) m->count++; else
if (m—->tid==0) { }
mine = true; m->count=1; }
m->tid = thread_id(); }
}

void monitor_leave(mon_t *m) {
atomic {
m->count—-—;
if (m->count==0) {
// wake up threads
m->tid=0;

};
if (!mine) de_schedule(&m->tid);}}

Locked Atomic Executions 20/41

Atomic Executions, Locks and Monitors

Rewriting the Queue using Monitors Ty |
Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueue* q, int val) {
Lt
monitor_enter (q->m) ;

P

monitor_leave(q->m) ;

b
void ForAll (DQueue* g, void*_data, void (*callback) (void*,int)){
Rty LT o T—
monitor_enter(q->m);
for (QNode* gn = g->left->right; qn!=q->right; qn=qn->right)
(*callback) (data, gn->val);
monitor_leave(q->m);

}

Recursive calls possible:

Locked Atomic Executions 21/4

il]

Atomic Executions, Locks and Monitors

Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueue* g, int val) {
monitor_enter (q->m) ;

monitor_leave(q->m) ;
b
void ForAll(DQueuex* q, void* data, void (*callback) (void#,int)){
monitexr—eater(q->m) ;
for (QNode* gqn = gq->left->right; qn!=q->right; gn=qn->right)
(*callback) (data, gqn->val);
monitor_leave(q->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,&PushLeft) duplicates entries
e e e——

Atomic Executions, Locks and Monitors Locked Atomic Executions 21/41

Rewriting the Queue using Monitors 1y |

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueuex q, int val) {
monitor_enter (q->m);

monitor_leave(q->m) ;
T
void ForAll (DQueue* g, void* data, void (*callback) (void*,int)){
monitor_enter (q->m) ;
for (QNode* gn = gq->left->right; gn!=q->right; qn=gqn->right)
(xcallback) (data, gn->val);
monitor_leave(g->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft

Locked Atomic Executions 21/41

Ty |

Atomic Executions, Locks and Monitors

Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version

void PushLeft(DQueue* q, int val) {
monitor_enter(gq->m) ;

monitor_leave(q->m) ;
T
void ForAll(DQueue* q, void* data, void (*callback) (void*,int)){
monitor_enter (q->m) ;
for (QNode* gn = gq->left->right; qn!=q->right; qn=gqn->right)
(*callback) (data, gn->val);
monitor_leave(q->m) ;

}

Recursive calls possible:
@ the function passed to ForAll can invoke PushLeft
@ example: ForAll(q,q,&PushLeft) duplicates entries
@ using monitor instead of mutex ensures that recursive call does not block

Locked Atomic Executions 21/

Atomic Executions, Locks and Monitors

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
e if a thread £ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock
N e e R

22/41

Atomic Executions, Locks and Monitors Locked Atomic Executions

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:

» t will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

- A t is busy waiting and produces contention on the lock
Idea: create a condition variable on which to block while waiting
struct monitor { int tid; int count; int cond; };
Define these two functions:
@ vait for the condition to become true
" called while being inside the monitor

» temporarily releases the monitor and blocks
» when sjgnalled, re-acquires the monitor and returns

©@ signal waiting threads that they may be able to proceed
» ane/all waiting threads that called wait willbe woken up, two possibilities:

signal-and-urgent-wait : the signalliin

iy |

read suspends and continues once

Ty |

Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
@ if a thread ¢ waits for a data structure to be filled:

» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting

struct monitor { int tid; int count; int cond; };
—— ‘—-‘._

Signal-And- t-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:
@ athread who tries to enter a

monitor is added to queue e if
the monitor is occupied

i

a.q <« waita
| g

-~ ﬂ\?ignalled

[

N O
bag % waitb

il signalled
©o £

22/41

)

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Locked Atomic Executions

the signalled thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread

Atomic Executions, Locks and Monitors

22/41

enters when the monitor becomes available

Atomic Executions, Locks and Monitors Locked Atomic Executions

23/

Ty |

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

bg %
=== signalled | _
R = 2

source: http://en.uikipedia.org/wiki/Monitor_({synchronization}

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.q

@ acallto signal for a adds
thread to queue s (suspended)

@ one thread form the a queue is

23/4

d woken up
‘-I:WD_)J >]
bq < Naltb
. signalled |
GRS S

-

1 7
[

source: http://en.wikipedia.org/wik i/Monu!t]jsynchronizatmn)

23/4

Ty |

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.¢

@ acall to signal for a adds
thread to queue s (suspended)

K < waita
.a 4 Yy e

-~ ﬂ\?ignalled

D]
)

)

D wait b

bg %
===l signalled

Y0 [

)
\

\/

. BAES)

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.g

@ acall to signal for a adds
thread to queue s (suspended)

23/41

Ty |

agq <« Wwaita :
A @ one thread form the a queue is
A ﬂ\signalled woken up
/:\)D‘ @ signal onais ano-op if a.q is
ba < wait b empty
"__‘:El\signalled s
O > 2
|T o
I‘\‘\/,d:”

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors Locked Atomic Executions

23/

Atomic Executions, Locks and Monitors Locked Atomic Executions

Ty |

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acall to wait on condition a
adds thread to the queue a.q

@ acallto signal for ¢ adds
thread to queue s (suspended)

/%90 wene @ one thread form the a queue is
%E\Med woken up
:\D / @ signal ona is a No-op if a.q is
bgq < Watb empty

@ if a thread leaves, it wakes up
ol one thread waiting on s

ﬂ - @ if s is empty, it wakes up one
\V thread from e

source: http://en.uikipedia.org/wiki/Monitor_({synchronization}

. signalled
. -l

)]
()

., anes|

23/4

Tlly |

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.q

@ acallto signal for a adds
thread to queue s (suspended)

aq <« wata ./ .
N @ one thread form the a queue is
o E\Med woken up
R O @ signal onais ano-opifa.qis
e s emply
:ﬁ signalled | — e if athread leaves, it wakes up
O o ST e one thread waiting on s
[O e if s is empty, it wakes up one
Vv thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~+ gqueue s has priority over e

Signal-And-Urgent-Wait Semantics

Requires one queues for each condition ¢ and a suspended queue s:

@ athread who tries to enter a
monitor is added to queue e if
the monitor is occupied

@ acallto wait on condition a
adds thread to the queue a.¢

@ acall to signal for a adds

aq < wata \/ thread to queue s (suspended)
TN T @ one thread form the a queue is
Iﬁ\mpd woken up
:\‘ﬂ O @ signal onaisano-opifa.qis
bq < Naitb empty
'“:ﬁ\wl_ed = @ if a thread Ieaygs, it wakes up
ONNS) o one thread waiting on s
ﬂ) m o if s is empty, it wakes up one
vV thread from e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

~~ queue_s_has priority over e

Atomic Executions, Locks and Monitors Locked Atomic Executions

23/41

Ty |

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

Jaus

@ acall to wait on condition « adds
thread to the queue a.q

5 . iRy
% notified |/
R i

O notifed ¥

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)

23/4

Atomic Executions, Locks and Monitors Locked Atomic Executions

Locked Atomic Executions 24/

Atomic Executions, Locks and Monitors

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

thread to the queue a.q

empty)

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

thread to the queue a.g

T Ld\\ H "\ :1
OO N notified " /

I
L

empty)

b.q

thread waiting on e

monitor

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

Atomic Executions, Locks and Monitors Locked Atomic Executions

Ty |

@ acall to wait on condition a adds

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

2441

[y

9]
=] o
] @ acall to wait on condition a adds

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

e if a thread leaves, it wakes up one

~+ signalled threads compete for the

24 /41

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

thread to the queue a.q

empty)

thread waiting on e

source: http://en.wikipedia. org/wiki/Meoniter_(synchrenization)

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

Jaus

A

thread to the queue a.q

I L
— =, . | 4
vy Y notified v/
)N \.}4_ W

O :ﬂ: notified

-~ empty)

thread waiting on e

wait a

monitor

wait b

a_ q
i
notify
', \

threads who tried to enter

first

 aneg|

3
\ A
A

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)

Atomic Executions, Locks and Monitors Locked Atomic Executions

@ acall to wait on condition « adds

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

e if a thread leaves, it wakes up one

@ acall to wait on condition « adds

@ acall to notify for @ adds one
thread from a.q to e (unless a.q is

ba) ;‘ — e if a thread leaves, it wakes up one
~ signalled threads compete for the

@ assuming FIFO ordering on e,

between wait and notify will run

Ty |

24/41

Ty |

24 /41

< waita
. notify
< waitb T
L § -

source: http://en.wikipedia.org/wiki/Moniter_(synchronization)

A Note on Notify

Signal-And-Continue Semantics

Here, the signal function is usually called notify.

@ acall to wait on condition a adds

thread to the queue a.q

@ acall to notify for « adds one
thread from a.q to e (unless a.q is

empty)
e if a thread leaves, it wakes up
thread waiting on e

~+ signalled threads compete for the

monitor
@ assuming FIFO ordering on e,
threads who tried to enter
between wait and notify will
first

@ need additional queue s if waiting

threads should have priority

Atomic Executions, Locks and Monitors Locked Atomic Executions

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

Atomic Executions, Locks and Monitors Locked Atomic Executions

Ty |

one

run

2441

ik |

Implementing Condition Variables N

We implement the simpler signal-and-continue semantics:

@ a notified thread is simply woken up and competes for the monitor
——r— _____—-————

void cond_wait(mon_t #*m) {
assert (m->tid==thread_id());
int old_count = m->count;
‘-__ —f
m->tid = 0;
e
wait(m->cond) ;
e
bool next_to_enter;

do { void cond_notify(mon_t *m) {
atomic { // wake up other threads
next_to_enter = m->tid==0; signal (m->cond) ;
——— —_— ——
if (next to_enter) { b

m->tid = thread_id();
m->count = old_count;
}
}

if ('next_to_enter) de_schedule (&m->tid);
} while ('mnext_to_enter);}
Pttt

LS.
A Note on Notify Tk |
With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable

N\ an implementation often becomes easier if notify means notify some

~+ programmer should assume that thread is not the only one woken up

26/41

26 /41

Atomic Executions, Locks and Monitors Locked Atomic Executions

A Note on Notify iy

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~- programmer should assume that thread is not the only one woken up

What about the priority of notified threads?
/'-__—____-—

@ a notified thread is likely to block immediately on &m->tid

Atomic Executions, Locks and Monitors

Lacked Atomic Executions 26/41

A Note on Notify Tl

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~ programmer should assume that thread is not the only one woken up
What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid

@ -~ notified threads compete for the monitor with other threads

o if OS implements FIFO order: notified threads will run after threads that
tried to enter since wait was called

—

Atomic Executions, Locks and Monitors Locked Atomic Executions 26/41

A Note on Notify Ty

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
@ notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some
~+ programmer should assume that thread is not the only one woken up
What about the priority of notified threads?

@ a notified thread is likely to block immediately on &m->tid
@ -~ notified threads compete for the monitor with other threads

Atomic Executions, Locks and Monitors

Locked Atomic Executions 26/ 41

Tl |

Implementing PopRight with Monitors
We use the monitor g->m and the condition variable g->c. PopRight:

double-ended queue: removal

int PopRight (DQueue* q, int val) {
(Node* oldRightNode;
monitor_enter(q->m); // wait to ent

L: QNode* rightSentinel = gq->right;

- oldRightNode = rightSentinel->left|
if (oldRightNode==leftSentinel) { cond_wait(q->c); goto L; T
(Node* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentingel->left = newRightNode;
monitor_leave(q->m); // signal that we’re done

(int val = oldRi—g_lENode—>E1 :

free(oldRightNode);

return val;
——

}

Atomic Executions, Locks and Monitors

Locked Atomic Executions 2714

Implementing PopRight with Monitors
We use the monitor g->m and the condition variable g->c. PopRight:

double-ended queue: removal

int PopRight(DQueue* q, int val) {

QNode* oldRightNode;

monitor_enter(q->m); // wait to enter the critical section
L: QNode* rightSentinel = q->right;

oldRightNode = rightSentinel->left;

if (oldRightNode==leftSentinel) { cond_wait(g->c); goto L;

(QNode* newRightNode = oldRightNode->left; -

newRightNode->right = rightSentinel;

rightSentingel->left = newRightNode;

monitor_leave(q->m); // signal that we’re done

int val = oldRightNode->val;

free(oldRightNode) ;

return val;

}

Ty |

}

@ if the queue is empty, wait on g->c
@ use a loop, in case the thread is woken up spuriously

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting

Atomic Executions, Locks and Monitors Locked Atomic Executions

2714

il]

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex

Monitor versus Semaphores

A monitor can be implemented using semaphores:

@ protect each queue with a mutex

@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:

@ protect the semaphore variable s with a monitor

28/4

Atomic Executions, Locks and Monitors Locked Atomic Executions

Tl |

28/41

1l

28/41

Tlly |

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
e T map——— —_—

Lacked Atomic Executions 28/41

Ly

Atomic Executions, Locks and Monitors

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

—

Atomic Executions, Locks and Monitors Locked Atomic Executions 28/41

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p

Locked Atomic Executions

Atomic Executions, Locks and Monitors

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds

» OS would have to ensure atomicity

» problematic if p is implemented by arbitrary code
/-—‘

Locked Atomic Executions

Atomic Executions, Locks and Monitors

[y

28/41

1y |

28 /41

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity
» problematic if p is implemented by arbitrary code
» - wake up thread and have it check the predicate itself

————
Atomic Executions, Locks and Monitors Locked Atomic Executions

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity
>

problematic if p is implemented by arbitrary code
» -~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
» notify variable if the predicate may have changed

Atomic Executions, Locks and Monitors Locked Atomic Executions

1y

1=

28/41

iy]

28/41

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true

@ -~ difficult to implement general conditions
» OS would have to run code to determine if p holds
» OS would have to ensure atomicity
» problematic if p is implemented by arbitrary code
» ~- wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p

Atomic Executions, Locks and Monitors Locked Atomic Executions

Monitor versus Semaphores

A monitor can be implemented using semaphores:
@ protect each queue with a mutex
@ use a binary semaphore to block threads that are waiting
A semaphore can be implemented using a monitor:
@ protect the semaphore variable s with a monitor
@ implement wait by calling cond_wait if s =0
A note on the history of monitors:
@ condition variables were meant to be associated with a predicate p
@ signalling a variables would only wake up a thread if p is true
@ -~ difficult to implement general conditions
OS would have to run code to determine if p holds
OS would have to ensure atomicity

problematic if p is implemented by arbitrary code

~~ wake up thread and have it check the predicate itself

@ create condition variable for each set of threads with the same p
» notify variable if the predicate may have changed

@ or, simpler: notify all threads each time any predicate changes
» -~ without predicates, a single condition variable suffices!

Atomic Executions, Locks and Monitors Locked Atomic Executions

¥y ¥y vyvy

28/41

1]

28 /41

1]

Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#:
class C {

pub]ﬁ% void £(O) {
i’”’ body o
}

is equivalent to
class C {
public void f() {

monitor_enter();

// body of £

monitor_leave();
}}

with Qbject containing:
private int mon_var;
. . ——p—
private int mon_count;
] . e
private int cond_var;
protected voidTﬁSﬁI%or;gnter();
protected void monitor_leave();
—

Atomic Executions, Locks and Monitors Locked Atomic Executions

Deadlocks with Monitors

Definition (Deadlock)
A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

! notified

'\
GRS

LU (

T e

(
=
A 4

_—
-

c- Wt

. 9ne9|

Y
N

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

29/41

]

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:

class Fgo {
public Foo other = null;
public.;;hchronized void bar() {
. if gi) other.bar(); ...

3
S = w2
and two instances:
new Foo();
Foo b = new Foo();
a.other =__1_J; p_.other = a;
// in parallel: =
a.bar() || b.bar();

Foo a =

30/4

Atomic Executions, Locks and Monitors Locked Atomic Executions

Deadlocks with Monitors 1]
Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

30/41

Deadlocks with Monitors)
Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

@ threads A and B execute a.bar ()
and b.bar ()

——

Consider this Java class:

class Foo {
public Foo other = null;
public synchronized void bar() {
. if (*) other.bar();

T
T
and two instances:
= new Foo();
Foo b = new Foo();
a.other = b; b.other = a;

// in parallel:
a.bar() || b.bar();

Foo a

Locked Atomic Executions

Atomic Executions, Locks and Monitors

30/41

Atomic Executions, Locks and Monitors Locked Atomic Executions

1]

Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
. if (%) other.bar(); ...

} — -
}
and two instances:

Foo a

Consider this Java class:

new Foo();

Foo b = new Foo();
a.other = b; b.other = a;
// in parallel:

a.bar() || b.bar();

Atomic Executions, Locks and Monitors Locked Atomic Executions

30/41

R

Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar()

public synchronized void bar() { @ a.bar() acquires the monitor of a
_ 1f (+) other.bar(Q); ... gy 1.0 () acquires the monitor of b

} @ A happens to execute
other.bar ()

@ A blocks on the monitor of b

Consider this Java class:

and two instances:

Foo a = new Foo();

Foo b = new Foo(); @ B happens to execute
a.other = b; b.other = a; other.bar ()

// in parallel: @ -~ both block indefinitely
a.bar() || b.bar();

30/4

Atomic Executions, Locks and Monitors Locked Atomic Executions

]

Deadlocks with Monitors

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective
other to finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar ()
public Foo other = null; and b.bar ()

public synchronized void bar() { @ a.bar() acquires the monitor of a
_ 1t () other.bar(); @ b.bar () acquires the monitor of b

} @ A happens to execute
other.bar ()

Consider this Java class:

and two instances:

Foo a = new Foo();
Foo b = new Foo();
a.other = b; b.other = a;

// in parallel:
a.bar() |l b.bar();

Atomic Executions, Locks and Monitors Locked Atomic Executions

30/41

%]

Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
.
@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

Locked Atomic Executions 31/41

Atomic Executions, Locks and Monitors

Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

Locked Atomic Executions 3/

Atomic Executions, Locks and Monitors

Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
@ circular wait. waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
© detection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

© avoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

Atomic Executions, Locks and Monitors Locked Atomic Executions 31/41

]

']

]

Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
@ no preemption: resources cannot be taken away form processes
@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare

@ detection: check within OS for a cycle, requires ability to preempt

Locked Atomic Executions 31/41

]

Atomic Executions, Locks and Monitors

Treatment of Deadlocks
Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:
@ mutual exclusion: processes require exclusive access
© wait for: a process holds resources while waiting for more
© no preemption: resources cannot be taken away form processes
@ circular wait: waiting processes form a cycle
The occurrence of deadlocks can be:
@ ignored: for the lack of better approaches, can be reasonable if deadlocks
are rare
@ detection: check within OS for a cycle, requires ability to preempt
© prevention: design programs to be deadlock-free

@ awoidance: use additional information about a program that allows the OS
to schedule threads so that they do not deadlock

~+ prevention is the only safe approach on standard operating systems
@ can be achieve using lock-free algorithms
@ but what about algorithms that require locking?

Locked Atomic Executions 31/41

Atomic Executions, Locks and Monitors

]

Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

o .

Let L denote the set of locks” We call A(p) € L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program pomt D.

Definition (lock sets)

Atomic Executions, Locks and Monitors Locked Atomic Executions

32/4

']

Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure ot of a relation o

Definition (transitive closure)

Let o C X x X be a relation. Its transitive closure is o* = J, ., o' where

JD = 0o

ottt = {(:l?l,:ij‘g) ‘ Jro € X . <SC1,£CQ> € at A (332,563) E Ji}

Each time a lock is acquired, we track the lock set at p:

Definition (lock order) }

Define <1 € L x L such that [< U U iff L € A(p) and the statement at p is of the

form walt(l’) or monitor_enter (17). Define the strict lock order <= <i*

=
.

]

Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks can be partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, that is, the set
of locks that may be in the “acquired” state at program point p.

We require the transitive closure o+ of a relation o

Definition (transitive closure)

Let o C X x X be a relation. Its tra sureis ot = U.EN o' where
0o _ /4' ‘.S 7(y*ﬁ

(ar = a
—— o
i+1 . 1
a = {<$1,$3> |H.’£2EX.<.GC1,:UQ g,ﬂt'z)EJ }
— L. - ——— —_ - =
Atomic Executions, Locks and Monitors Locked Atomic Executions 32/4

k)

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

(J
&

Atomic Executions, Locks and Monitors Locked Atomic Executions

32/4

Atomic Executions, Locks and Monitors Locked Atomic Executions 33/4

]

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly,
such tha!_@_: Ls U Lyy. —

IftVa € Lg.a AaandVa € Ly,be L.a<bAb=<a= a=0thenthe program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. }

A

Atomic Executions, Locks and Monitors Locked Atomic Executions

3B/4

']

Avoiding Deadlocks in Practice

How can we verify that program contains no deadlocks?
@ identify mutex locks Ls and summarized monitor locks L3, C Ly,
Am—

Atomic Executions, Locks and Monitors Locked Atomic Executions

344

)

Freedom of Deadlock

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks. J

Suppose a program blocks on semaphores (mutexes) Lg and on monitors Ly
suchthat L = Lg U Lyy.

IfYa € Lg.a 4 aandVa € Ly,be L.a<bAb=< a=-a=bthen the program

Theorem (freedom of deadlock for monitors)
is free of deadlocks. }

Note: the set L contains instances of a lock.
@ the set of lock instances can vary at runtime

o if we statically want to ensure that deadlocks cannot occur:

» summarize every lock/monitor that‘ may have several instances into one
» asummary lock/moitor @ € L represents several concrete ones
» thus, if a < a then this might not be a self-cycle

» ~- require that @ # a for all summarized monitors @ € L

Atomic Executions, Locks and Monitors Locked Atomic Executions

33/41

T

Avoiding Deadlocks in Practice

How can we verify that program contains no deadlocks?
o identify mutex locks Ls and summarized monitor locks L5, € Ly,
@ identify non-summary monitor locks LY, = Ly \ L3,

A T e

Atomic Executions, Locks and Monitors Locked Atomic Executions

34/4

Avoiding Deadlocks in Practice Th7 | Avoiding Deadlocks in Practice 17|

How can we verify that program contains no deadlocks? How can we verify that program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks L5, C Ly, @ identify mutex locks Ls and summarized monitor locks L5, C Ly
@ identify non-summary monitor locks L%, = Ly \ L}, o identify non-summary monitor locks LY, = Lys \ L3,
@ sort locks into ascending order according to lock sets @ sort locks into ascending order according to lock sets <

@ check that no cycles exist except for self-cycles of non-summary monitors
\‘——_

Atomic Executions, Locks and Monitors Locked Atomic Executions 34/4 Atomic Executions, Locks and Monitors Locked Atomic Executions 34/41
Avoiding Deadlocks in Practice T4 | Avoiding Deadlocks in Practice [T
How can we verify that program contains no deadlocks? How can we verify that program contains no deadlocks?
@ identify mutex locks Lg and summarized monitor locks L5, C Ly, @ identify mutex locks Ls and summarized monitor locks L5, C Ly,
@ identify non-summary monitor locks L', = Ly; \ L}, @ identify non-summary monitor locks L}, = Lys \ L,
@ sort locks into ascending order according to lock sets @ sort locks into ascending order according to lock sets
@ check that no cycles exist except for self-cycles of non-summary monitors @ check that no cycles exist except for self-cycles of non-summary monitors
/\ What to do when lock order contains cycle? 2. ,é- Ao /N What to do when lock order contains cycle?
@ determining which locks may be acquired at each ch program p0|nt is @ determining which locks may be acquired at each program point is
undecidable - IWM undecidable ~ lock sets are an approximation
@ an array of locks in Ls: lock in increasing array index sequence @ an array of locks in Lg: lock in increasing array index sequence
o if L € A\(P) exists I "< 1is to be acquired ~- change program: release L e ifl € \(P) exists I’ < [is to be acquired ~~ change program: release I,
acqwre !, then acqwre { again ~- inefficient acquire ', then acquire [again ~ inefficient
e if a lock set contains a summarized lock a and a is to be acquired, we're @ if a lock set contains a summarized lock a and a is to be acquired, we're
stuck stuck
L ¢ an example for the latter is the Foo class: two instances of the same class call
each other me—

Atomic Executions, Locks and Monitors Locked Atomic Executions 34/41 Atomic Executions, Locks and Monitors Locked Atomic Executions 34/41

Refining the Queue: Concurrent Access

Add a second lock =->t to allow concurrent removal'
double-ended queue: removal
int PopRight (DQueue* q) {

QNode* oldRightNode; b@
wait(gq->t); // wait to enter the cr section
QNode* rightSentinel = g->right; ok
oldRightNode = rightSentinel->left;

if (oldRightNode==leftSentinel) { signal(gq->t);
QNode* newRightNode = oldRightNode->left;

int ¢ = newRightNode==leftSentinel;

if (c) wait(g->s);
newRightNode->right
rightSentinel->left
if (c) signal(g->s);
signal(q->t); // signal that we’re done
int val = oldRightNode->val;

rightSentinel; 1?;
newRightNode;

return -1;

Ty

}

Example: Deadlock freedom
Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight() {

wait(q->t);

if.(*) { signal(q->t);

return; }

f 1f (c) wait(g->s);)\(.;1) -_‘L/ f}
if.(c) signal(g->s);
signal(q->t);

}

free(oldRightNode) ;
g
return val;
}
>
e

Ty

@ in PushLeft, the lock set for s is empty
@ here, the lock set of s is {¢}

@ ¢ <1 s and transitive closure is t < s

@ -~ the program cannot deadiock

Atomic Executions, Locks and Monitors Locked Atomic Executions

1<

36/41

Example: Deadlock freedom
Is the example deadlock free? Consider its skeleton:

double-ended queue: removal
void PopRight() {
it gt
it) { signal(g->t); return; }
if (c) wait(g->s);

if.(c) signal(qg->s);

]

[

Atomic Execution and Locks

double-ended queue: removal
void PopRight() {

e o
wart{q=—>t) ; d%;“4c <3
ié.(*) { signal(q->t); return; }

ié'(om-i-n,—eq-—;sa;dhm{
+—crstpnattq>e);)

Consider replacing the specific locks with atomic annotations:

signal (g—>t);
¥
J
| Atomic Executions, Locks and Monitors __________ Locked Atomic Executions _____| 38/41

Ti)

ks*gnﬁifﬁ:5?r'3
>
Atomic Executions, Locks and Monitors Locked Atomic Executions 37/41

Atomic Execution and Locks
Consider replacing the specific locks with atomic annotations:

double-ended queue: removal
void PopRight() {

wait(q->t);
if (*) { signal(q->t); return; }
if (c) wait(g->s);\

if (c) signal(q->s);
signal(q->t);

@ nested atomic blocks still describe one atomic execution
@ -~ locks convey additional information over atomic
@ locks cannot easily be recovered from atomic declarations

o
Outlook ey

Writing atomic annotations around sequences of statements is a convenient
way of programming.

ldea of mutexes: Implement atomic sections with locks:
—— el —
@ a single lock could be use to protect all atomic blocks
@ more concurrency is possible by using several locks
e e B i —
» see the PushLeft, PopRight example

@ some statements might modify variables that are never read by other
threads ~~ no lock required
]
@ statements in one atomic block might access variables in a different order
to another atomic block ~~ deadlock possible with locks implementation

@ creating 0o many Tocks can decrease the performance, especially when
required to release locks in A(I) when acquiring {

38/4

Atomic Executions, Locks and Monitors Locked Atomic Executions

.
Outlook Téy]
Writing atomic annotations around sequences of statements is a convenient
— —
way of programming.
IR

Ty

Concurrency across Languages

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations

Locked Atomic Executions 39/41

Atomic Executions, Locks and Monitors

Concurrency across Languages I'sv] | Concurrency across Languages Ty

In most systems programming languages (C,C++) we have In most systems programming languages (C,C++) we have
@ the ability to use atomic operations @ the ability to use atomic operations
@ -~ we can implement wait-free algorithms @ -~ we can implement wait-free algorithms

In Java, C# and other higher-level languages In Java, C# and other higher-level languages

@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems

Concurrency across Languages Te] | Summary Tan]

Classification of concurrency algorithms:
In most systems programming languages (C,C++) we have @ wait-free, lock-free, locked

@ the ability to use atomic operations @ next on the agenda: transactional

@ -~ we can implement wait-free algorithms Wait-free algorithms: -
In Java, C# and other higher-level languages

@ never block, always succeed, nevELq‘_ag_dpck, no starvation
@ provide monitors and possibly other concepts @ very limited in what they can do —

@ often simplify the programming but incur the same problems Lock-free algorithms:

| language || barriers | wait-/lock-free | semaphore | mutex | monitor | @ never block, may fail, never deadlock, may starve
CCst v v — v - v - @ @ invariant may only span a few bytes (8 on Intel)
Jr:lva C# - - (b) v A v -~ Locking algorithms:

¢ can guard arbitrary code ¥t PCes

(a) some pthread implementations allow a_reentzant attribute @ can use several locks to enable more fine grained concurrency
(b) simulate semaphores using an object with two synchronized o may deadiagk
e
methods

@ semaphores are not re-entrant, monitors are
~+ use algorithm that is best fit _

Atomic Executions, Locks and Monitors Locked Atomic Executions 39/41 Atomic Executions, Locks and Monitors Locked Atomic Executions 40 /41

