Script generated by TTT

Title: Petter: Programmiersprachen (22.10.2014)
Date: Wed Oct 22 14:15:42 CEST 2014
Duration: 90:18 min

Pages: 89

Why Memory Barriers are not Enough

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling)

Atomic Executions, Locks and Monitors Motivation

TR

2/4

TECHNISCHE UNIVERSITAT MUNCHEN
% FAKULTAT ~ FUR INFORMATIK m
Programming Languages

Concurrency: Atomic Executions, Locks and Monitors

Dr. Axel Simon and Dr. Michael Petter
Winter term 2014

Why Memory Barriers are not Enough i

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
@ for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to imE)_Ie_ment automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Atomic Executions, Locks and Monitors Motivation 2/4

Why Memory Barriers are not Enough

Communication via memory barriers has only specific applications:
@ coordinating state transitions between threads
o for systems that require minimal overhead (and no de-scheduling)
Often certain pieces of memory may only be modified by one thread at once.
@ can use barriers to implement automata that ensure mutual exclusion
@ -~ generalize the re-occurring concept of enforcing mutual exclusion

Need a mechanism to update these pieces of memory as a single atomic
execution: -

@ several values of the objects are
used to compute new value

@ certain information form the thread
flows into this computation

e certain information flows from the

computation to the thread

a=1,b=1
A %,

s 4
& % .-"':
& >

I

Atomic Executions, Locks and Monitors Motivation 2/4

LA

Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an 1/O entity
» a file can be modified through a shared handle

Atomic Executions, Locks and Monitors Motivation 3/4

Atomic Executions

A concurrent program consists of several threads that share common
Rihdiihodhuinb bt
resources:

@ resources are often pieces of memory, but may be an I/O entity

Atomic Executions

A concurrent program consists of several threads that share common
resources:
@ resources are often pieces of memory, but may be an 1/O entity
» a file can be modified through a shared handle
o for each resource an invariant must be retained

Atomic Executions, Locks and Monitors Motivation

3/a

3/m

Atomic Executions

A concurrent program consists of several threads that share comman
resources:
@ resources are often pieces of memory, but may be an I/O entity
» afile can be madified through a shared handle
@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

Atomic Executions

A concurrent program consists of several threads that share common
resources:

@ resources are often pieces of memory, but may be an 1/O entity
» a file can be modified through a shared handle

@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken

@ an invariant may span several resources

Atomic Executions, Locks and Monitors Motivation

LA

3/4

T

3/4

It

Atomic Executions

A concurrent program consists of several threads that share common
resources:
@ resources are often pieces of memory, but may be an 1/0 entity
» afile can be modified through a shared handle
@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list

@ during an update, an invariant may be broken

Dl

/c//-“
(A
l

Motivation 3a

i

Atomic Executions, Locks and Monitors

Atomic Executions

A concurrent program consists of several threads that share common
resources:
@ resources are often pieces of memory, but may be an 1/O entity
» a file can be modified through a shared handle
o for each resource an invariant must be retained
» a head and tail pointer must define a linked list
@ during an update, an invariant may be broken
@ an invariant may span several resources
@ -~ several resources must be updated together to ensure the invariant

@ which particular resources need to be updated may depend on the
current program state

Atomic Executions, Locks and Monitors Motivation 3/m

TG

Atomic Executions

A concurrent program consists of several threads that share comman
resources:
@ resources are often pieces of memory, but may be an I/O entity
» a file can be modified through a shared handle
@ for each resource an invariant must be retained
» a head and tail pointer must define a linked list
@ during an update, an invariant may be broken
@ an invariant may span several resources
@ -~ several resources must be updated together to ensure the invariant

@ which particular resources need to be updated may depend on the
current program state

Ideally, we want to mark a sequence of operations that update shared
resources for atomic execution [Harris et al.(2010)Harris, Larus, and Rajwar].
This would ensure that the invariant never seem to be broken.

3141
- 1l
Overview i

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks

Atomic Executions, Locks and Monitors Motivation 4/41

Overview

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms

Atomic Executions, Locks and Monitors Motivation 4/4

Overview [ILEF)
We will address the established ways of managing synchronization.

@ present techniques are available on most platforms

@ likely to be found in most existing (concurrent) software

@ techniques provide solutions to solve common concurrency tasks

@ technigues are the source of common concurrency problems

Atomic Executions, Locks and Monitors Motivation 4/41

Overview

We will address the established ways of managing synchronization.
@ present technigues are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks
@ techniques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other

imperative languages. T—

Atomic Execution: Varieties

Definition (Atomic Execution)

e ————

a single Transformatiori on the memory.

4/4

A computation forms an atomic execution if its effect can only be observed as

Atomic Executions, Locks and Monitors Motivation

5/4

Overview

We will address the established ways of managing synchronization.
@ present techniques are available on most platforms
@ likely to be found in most existing (concurrent) software
@ techniques provide solutions to solve common concurrency tasks
@ techniques are the source of common concurrency problems

Presented techniques applicable to C, C++ (pthread), Java, C# and other
imperative languages.

Learning Outcomes

@ Principle of Atomic Executions

@ Wait-Free Algorithms based on Atomic Operations
@ _Locks: Mutex, Semaphore, and Manitor

©Q Deadlocks: Concept and Prevention

a/4

T

Atomic Executions, Locks and Monitors Motivation

Atomic Execution: Varieties

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks
Lock-Free : an atomic execution may fail but never blocks
Locked : an atomic execution always succeeds but mayw
Mﬂ : an atomic execution mMil (and may implement recovery)

5/

Atomic Executions, Locks and Monitors Motivation

Atomic Execution: Varieties

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as
a single transformation on the memory.

Several classes of atomic executions exist:
Wait-Free : an atomic execution always succeeds and never blocks
Lock-Free : an atomic execution may fail but never blocks
“Locked : an atomic execution always succeeds but may block the thread
Transaction : an atomic execution may fail (and may implement recovery)

These classes differ in
amount of data they can access during an atomic execution
expressivity of operations they allow
granularity of objects in memory they require

5/41

Wait-Free Updates [

Which operations on a CPU are atomic executions? (j and tmp are registers)

Atomic Executions, Locks and Monitors Motivation

Program 2 Program 3
Program 1 L int tmp = i;
it+; J . :-]':-:-k- f=
—— b = 4L j = EPP;
Answer:
@ none by default (even without invali uffers,why?)

@ but all of them can be atomic executions
f_——______-_—

Wait-Free Updates Ty

Which operations on a CPU are atomic executions? (j and tmp are registers)
~ Program 3

Program 1 Pr?gIaT 2 int tmp = i;
i+ I i=j;
= i+k; i = tmp;
(i) d . ’
it
L é—[l .
¥ < . +7
° r & v+
Bil¢ .
4 g V— R
! > [e) <«
“1
7
6141

Wait-Free Updates Tkty)

Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 3
Program 2
Program 1 L int tmp = 1i;
i++; q _ }’ i=j;
i = i+k; .
J = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions

The programs can be atomic executions:
og_must be in memory (e.g. declare as volatile)

6/41

Atomic Executions, Locks and Monitors Wait-Free Atomic Executions

Wait-Free Atomic Executions 6/41

Atomic Executions, Locks and Monitors

Wait-Free Updates T

Which operations on a CPU are atomic executions? (j and tmp are registers)

Program
Program 2 Ll
Program 1 L int tmp = i;
i++; 3= i=j;
i = i+k; .
] = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:

@ i must be in memorye.g. dectare-as-vetatite)

@ most CPUs can lock the cache for the duration of an instruction; on x86:

———

Wait-Free Atomic Executions 6/41

Wait-Free Updates LA

Which operations on a CPU are atomic executions? (j and tmp are registers)

Atomic Executions, Locks and Monitors

Program
Program 2 cillul
Program 1 L int tmp = ij;
it+; J S i=73;
i = i+k; .
j = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can lock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a lock inc [addr_i] instruction

@ Program 2 can be implemented using mov eax,k;
lock xadd [ad%f_i] 183X; MmOV reg_j,eax

Wait-Free Atomic Executions 6/41

Atomic Executions, Locks and Monitors

Wait-Free Updates Ty

Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 3
Program 2
Program 1 L int tmp = 1i;
i+ I i=j;
i = i+k; .
] = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can lock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a lock inc [addr_i] instruction

Wait-Free Alomic Executions 6/41

Wait-Free Updates Tk

Which operations on a CPU are atomic executions? (j and tmp are registers)

Atomic Executions, Locks and Monitors

Program 3
Program 2
Program 1 L int tmp = 1i;
i++; J _ :!-’ i=j;
i = i+k; .
J = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can lock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a 1ock inc [addr_i] instruction

@ Program 2 can be implemented using mov eax,k;
lock xadd [addr_i],eax; mov reg_j,eax

@ Program 3 can be implemented using lock xchg [addr_i],reg_j
ERET ey, | ——————— —_—

Wait-Free Atomic Executions 6/4

Atomic Executions, Locks and Monitors

Wait-Free Updates Tl

Which operations on a CPU are atomic executions? (j and tmp are registers)

Program 2 Program 3
Program 1 L int tmp = i;
it+; J)= i=j;
i = i+k; .
] = tmp;
Answer:

@ none by default (even without store and invalidate buffers,why?)
@ but all of them can be atomic executions
The programs can be atomic executions:
@ i must be in memory (e.g. declare as volatile)
@ most CPUs can lock the cache for the duration of an instruction; on x86:
@ Program 1 can be implemented using a 1ock inc [addr_i] instruction
@ Program 2 can be implemented using mov eax,k;
lock xadd [addr i],eax; mov reg j,eax
@ Program 3 can be implemented using lock xchg [addr_i],reg_j
/\ Without 1ock, the load and store generated by i++ may be interleaved
with a store from another processor.

Waii-Free Atomic Executions 6/41

Atomic Executions, Locks and Monitors

Wait-Free Bumper-Pointer Allocation
Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[2°20];
char* firstFree = &heap[0];

char* alloc(int size) {
char* start = firstFree;
firstFree = firstFree + size;
if (start+size>sizeof(heap)) garbage_collect();
return start;

b

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap
Thread-safe implementation:

@ the alloc function can be used from multiple threads when implemented
using a lock xadd [firstFreel,egax instruction
—— ——— e

@ -~ reqguires inline assembler

Wait-Free Atomic Executions 7141

Atomic Executions, Locks and Monitors

Wait-Free Bumper-Pointer Allocation

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation
char heap[2720];

char* firstFree
‘___“

o

= gheap[0] %"/%-u J

char* alloc(int size) {
char* start = firstFree;
firstFree = firstFree + size;
if (Stéﬁtiiize>51?22££EE§P)) garbage_collect();
return start;

1

4

Ty

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

<

Program 2 Program 3
Program 1 erine T
. atomic { . .
atomic 4 o 4- int tmp = i;
1 . i=j;
i = itk; .
ﬂ } j = tmp;

1

74

Ty

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

8/4

Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program
p 1 Program 2 Ll
rogram i atomic {
. atomic { . .
atomic { j = i; int tmp = i;
i++; ’ 1= qo
T i= itk; Cob
¥ j = tmp;
U }

The statements in an atomic block execute as atomic execution:

atomic { tmp = i; i = j; j = tmp }

8/41

Ty

Wait-Free Atomic Executions

Atomic Executions, Locks and Monitors

Wait-Free Synchronization

Wait-Free algorithms are limited single instruction:

@ no control flow possible, no behavioral change depending on data
Pl sttt

Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 3

p 1 Program 2

rogram i atomic {

. atomic { . .

atomic { j = i; int tmp = 1i;

i++; ’ 1= Fe

1++; i = i+k; % Js
¥ j = tmp;

: }

Tl

The statements in an atomic block execute as atomic execution:

atomic { tmp = i; 1 = j; j = tmp }
A — P
; e g

exist
@ the notion of requesting afomic execution is a general concept
/____———-.

Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally

9/41

Atomic Executions, Locks and Monitors Wait-Free Synchronization

Wait-Free Synchronization

Atomic Executions, Locks and Monitors

@ atomic only translatable when a corregponding atomic CPU instruction

8/41

i)

9/4

Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally

Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally

Program 4 Program 5 Program 6
atomic { atomic { atomic {
r = b; r = b; r = (k==i);
b = 0; b=1; lf(r)l=J;
} } 1

-

N .
g i€ rigaten
Program 4 Program 5 Program 6
atomic { atomic { atomic {
r =_b; r =b; r = (k==i);
b =0; b=é; if(r)3=l;
} } }
9/41

Operations update a memory cell and return the previous value.

@ the first two operations can be seen as setting aflagb to v € {0,1} ifb
not already contains v

» this operation is called modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap

~ use as building blocks for algorithms that can fail

9/41

Ty

Wait-Free Synchronization

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ instructions often exist that execute an operation conditionally

Program 4 Program 5 Program 6
atomic { atomic { atomic {
r - b; r - b; T = (i)
b = 0; W= iz if (r) 1 = j;
} } }

Operations update a memory cell and return the previous value.

o the first two operations can be seen as setting aflag b to v € {0,1} if b
not already contains XY - _

» this operation is called modify-and-test
@ the third case generalizes this to arbitrary values
» this operation is called compare-and-swap
/-‘-—-____

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 9/4

Lock-Free Algorithms

If a wail-free implementation is not possible, a /ock-free implementation might
still be viable. —

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 10/41

I

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
O calculate a new value j — f(k)

Q update‘i to } if i = k still holds

© go tofirst step if i # k meanwhile

Lock-Free Algorithms

Atomic Executions, Locks and Monitors Wait-Free Synchronization 10/41
Tl

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
@ calculate a new value j = f(k)
@ update i to j if ¢ = & still holds
© go tofirst step if i # £ meanwhile
/N note: i = k must imply that no thread has updated ¢
~~ general recipe for lock-free algorithms
@ given a compare-and-swap operation for g bytes
@ try to group variables for which an invariant must hold intcwb&s
@ read these bytes atomically
@ calculate a new e
@ perform a compare-and-swap operation on these n bytes

P —

Lock-Free Algorithms

Atomic Executions, Locks and Monitors Wait-Free Synchronization 10/41

Ty

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in ¢ into & (using memory barriers)
@ calculate a new value j = f(k)
@ update i to j if i = k still holds
@ go to first step if i # k& meanwhile
/N note: i = k must imply that no thread has updated i

Lock-Free Algorithms

Wait-Free Synchronization 10/41

Atomic Executions, Locks and Monitors

Lock-Free Algorithms Tl

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barriers)
@ calculate a new value j = f(k)
@ update i to j if i = k still holds
@ go to first step if i £ k& meanwhile
/N note: i = k must imply that no thread has updated i
~+ general recipe for lock-free algorithms
@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into »n bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on these n bytes

~ calculating new value must be repeatable
L —

Wait-Free Synchronization 10/41

Atomic Executions, Locks and Monitors

Ty

If a wait-free implementation is not possible, a lock-free implementation might
still be viable.
Common usage pattern for compare and swap:

@ read the initial value in i into & (using memory barrw ;20

-

Lock-Free Algorithms

@ calculate a new value j = f(k) Ypp
@ update i to j if i = k still holds
. L . RoD
© go tofirst step if i # k meanwhile l
/N note: i = k must imply that no thread has updated i o0
~ general recipe for lock-free algorithms 02 el

@ given a compare-and-swap operation for n bytes
@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically
@ calculate a new value
@ perform a compare-and-swap operation on theseéa bytes
~ calculating new value must be repeatable

Limitations of Wait- and Lock-Free Algorithms Ty

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes

p— — —

Atomic Executions, Locks and Monitors Wait-Free Synchronization 11/41

Limitations of Wait- and Lock-Free Algorithms [y]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

e

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 11/41

Limitations of Wait- and Lock-Free Algorithms ;)

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 11/4

Limitations of Wait- and Lock-Free Algorithms []l]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 11/41

Limitations of Wait- and Lock-Free Algorithms 1]l

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~ only very simple algorithms can be implemented, for instance
binary semaphores : a flag that can be acquired (set) if free (unset) and

released
counting semaphores : an integer that can be decreased if non-zero and
A increased = ——

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 11/41

Limitations of Wait- and Lock-Free Algorithms [l]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes
» exchange of a memory cell with a register
» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory
» modify-and-test on bits in memory
@ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance
binary semaphores : a flag that can be acquired (set) if free (unset) and
released -

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 11/41

Limitations of Wait- and Lock-Free Algorithms ;]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register
compare-and-swap of a register with a memory cell
fetch-and-add on integers in memory
modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore

¥y vy

Atomic Executions, Locks and Monitors

Wait-Free Synchronization 11/41

Limitations of Wait- and Lock-Free Algorithms [[l]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
@ restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~- only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
(released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore
monitor : ensures mutual exclusion using a binary semaphore, atizwrs=

her threads to block 1intil the-rext-+eteaseof the TesoTrc
" o, Va, 4M%me.s,wﬂfm

Atomic Executions, Locks and Monitors Wait-Free Synchronization 11/41
{f]
Locks 1y

A lock is a data structure that

@ protects a critical section: a piece of code that may praduce incorrect
results when executed concurrently from several threads

@ it ensures mutual exclusion: no two threads execute at once

@ block other threads as soon as one thread executes the critical section
o can be acquired and released

@ may deadlock the program

12/41

Atomic Executions, Locks and Monitors Locked Atomic Executions

Limitations of Wait- and Lock-Free Algorithms [y]

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
o restricted to the semantics of a single atomic operation

@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand
~+ only very simple algorithms can be implemented, for instance

binary semaphores : a flag that can be acquired (set) if free (unset) and
released

counting semaphores : an integer that can be decreased if non-zero and
increased

mutex : ensures mutual exclusion using a binary semaphore

monitor : ensures mutual exclusion using a binary semaphore, allows
other threads to block until the next release of the resource

We will collectively refer to these data structures as Jocks.

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:
§1=C)4£$¢4 :,'h“Lﬂ
QB Lok b wek ke

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} T if (avail) s—-;
b
} while (lavail);
}
A counting semaphore can track how many resources are still available.
s,
IR

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s--;
}
} while (lavail);

}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()

'-“-._
Atomic Executions, Locks and Monitors Locked Atomic Executions

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() A atomic {
atomic { s = s + 1; } avail = s>0;
3 if (avail) s--;
}
} while (lavail);

}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal ()
@ (choosing which available resource to use requires more synchr.)

Atomic Executions, Locks and Monitors Locked Atomic Executions

Ty |

13/41

il

13/41

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s--;
}
} while (lavail);

}
A counting semaphore can track how many resources are still available.
@ athread requiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal ()

Atomic Executions, Locks and Monitors Locked Atomic Executions

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
T if (avail) s--;
}
} while ('avail);

}

A counting semaphore can track how many resources are still available.

@ a thread requiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal ()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

—— —

Locked Atomic Executions

Atomic Executions, Locks and Monitors

Ty |

13/41

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s--;
}
} while (lavail);
}

@ athread requiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal ()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

@ can be used to block and unblock a thread

Atomic Executions, Locks and Monitors Locked Atomic Executions

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() A atomic {
atomic { s = s + 1; } avail = s>0;
3 if (avail) s--;
}
} while (lavail);
}

@ athread requiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal ()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

@ can be used to block and unblock a thread

@ can be used to protect a single resource
» in this case the data structure is also called_mutex

Atomic Executions, Locks and Monitors Locked Atomic Executions

A counting semaphore can track how many resources are still available.

A counting semaphore can track how many resources are still available.

Tl |

13/41

ik |

13/41

Tl |

Semaphores and Mutexes

A (counting) semaphore is an integer s with the following operations:

void wait() {
bool avail;

do {
void signal() { atomic {
atomic { s = s + 1; } avail = s>0;
} if (avail) s--;
}
} while (lavail);

}

A counting semaphore can track how many resources are still available.

@ athread requiring a resource executes wait ()

@ if a resource is still available, wait () returns

@ once a thread finishes using a resource, it calls signal ()

@ (choosing which available resource to use requires more synchr.)
Special case: initializing with s = 1 gives a binary semaphore:

@ can be used to block and unblock a thread

@ can be used to protect a single resource

Atomic Executions, Locks and Monitors Locked Atomic Executions

13/41

Implementation of Semaphores [1%Y
A semaphore does not have to busy wait:

void wait() {
bool avail;

do {
atomic
void signal() { . t
i avail = s>0;
atomic { s = s + 1; }) .
if (avail) s--;
¥ }

=>if (lavail) de_schedule(&s);

} while (lavail);
}

Busy waiting is avoided by placing waiting threads into queue:

Locked Atomic Executions 14/41

Atomic Executions, Locks and Monitors

Implementation of Semaphores

A semaphore does not have to busy wait:

void wait() {
bool avail;

do {
atomic
void signal() { . {
. avail = s>0;
atomic { s = s + 1; } . .
if (avail) s—-;
¥ }

if (lavail) de_schedule(&s);
} while (lavail);
}

Busy waiting is avoided by placing waiting threads into queue:
@ a thread failing to decrease 5 executes de_schedule()

Atomic Executions, Locks and Monitors Locked Atomic Executions

Implementation of Semaphores
A semaphore does not have to busy wait:

void wait() {
bool avail;

do {
atomic
void signal() { . t
. avail = s>0;
atomic { s = s + 1; } . .
if (avail) s--;
¥ }

if (lavail) de_schedule(&s);
} while (lavail);
}
Busy waiting is avoided by placing waiting threads into queue:
@ athread failing to decrease s executes de_schedule()

@ de_schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s
— ———— e . .

@ once a thread calls signal (), the first thread ¢ waiting on &s is extracted
ar— am— g

14/41

Atomic Executions, Locks and Monitors Locked Atomic Executions

Ty |

Implementation of Semaphores

A semaphore does not have to busy wait:

void wait() {
bool avail;
do {
atomic {
avail = s>0;
if (avail) s--;

}
g :::?E (lavail) de_schedule(&s);

} while (lavail);
¥ refnsie torn ds iy L', ';‘(
Busy waiting is avoided by placing waiting threads into queue: ¢ == ¢
@ a thread failing to decrease s executes de_schedule ()

@ de_schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s

void signal() {
atomic { s =

}

s +1; }

Atomic Executions, Locks and Monitors Locked Atomic Executions

Implementation of Semaphores
A semaphore does not have to busy wait:

void wait() {
bool avail;

do {
atomic
void signal() { . t
i avail = s>0;
atomic { s = s + 1; }) .
if (avail) s--;
¥ }

if ('avail) de_schedule(&s);
} while (lavail);
¥
Busy waiting is avoided by placing waiting threads into queue:
@ athread failing to decrease s executes de_schedule ()

@ de_schedule() enters the operating system and adds the waiting thread
into a queue of threads waiting for a write to memory address &s

@ once a thread calls signal (), the first thread ¢ waiting on &s is extracted
@ the operating system lets ¢ return from its call to de_schedule()

Locked Atomic Executions 14/41

Atomic Executions, Locks and Monitors

Practical Implementation of Semaphores

Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;
if (avail) s--;

void signal() {
atomic { s = s + 1; }
3 ¥
if (lavail) de_schedule(&s);
} while (lavail);
bs

In general, the implementation is more complicated
@ wait() may busy__via_iticlr_elf_elvﬂa_tions

Atomic Executions, Locks and Monitors Locked Atomic Executions

Practical Implementation of Semaphores

Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;
if (avail) s--;

void signal() {

atomic { s = s + 1; }
y —~—ts
if” (lavail) de_schedule(&s);

} while (lavail);
}

In general, the implementation is more complicated

@ wait () may busy wait for a few iterations

» saves de-scheduling if the lock is released frequently
» better throughput for semaphores that are held for a short time

] si%l() might have to inform the OS that s has been written
"-—-_-__——

Atomic Executions, Locks and Monitors Locked Atomic Executions

)

15/41

Tlky |

15/41

Ty |

Practical Implementation of Semaphores

Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;
if (avail) s--;

void signal() {
atomic { s = s + 1; }
T }
if (lavail) de_schedule(&s);
} while (lavail);
}

In general, the implementation is more complicated
@ wait() may busy wait for a few iterations
» saves de-scheduling if the lock is released frequently

» better throughput for semaphores that are held for a short time
_— e e

Atomic Executions, Locks and Monitors Locked Atomic Executions

15/41

Ty |

Practical Implementation of Semaphores

Certain optimisations are possible:

void wait() {
bool avail;
do { atomic {
avail = s>0;

void signal() {
s+ 1; } if (avail) so-;

atomic { s =
p—

¥ 1
if (lavail) de_schedule(&s);
} while (lavail);
¥
In general, the implementation is more complicated

@ wait() may busy wait for a few iterations

» saves de-scheduling if the lock is released frequently

» better throughput for semaphores that are held for a short time

@ signal () might have to inform the OS that s has been written

~ using a semaphore with a sinMread reduces to if gs_)_;—_—; stt;
@ using semaphores in sequential code has no or little penalty
@ program with concurrency in mind?

Locked Atomic Executions 15/41

Atomic Executions, Locks and Monitors

Making a Queue Thread-Safe

3@‘% Tl]
Consider a double epded queue:
g e

o asdouble-ended queye ., \

, &
| I . J Irigh
s%ﬂntinel B sgn;(iﬁel
double-ended queue: adding an element
void PushLeft(DQueue* q, int val) {
1 QNode *gqn = malloc(sizeof (QNode));
? gn->val = val;
// prepend node qn
1 QNode* leftSentinel = g->left;
v QNode* oldLeftNode = leftSentinel->right;
< gqn->left = leftSentinel;
e gn->right = oldLeftNode;
> leftSentinel->right = qgn;
{ oldLeftNode -> left = gn;
"‘\ﬁ,)
Atomic Executions, Locks and Monitors Locked Atomic Executions 16/41

Tl |

Mutexes

One common use of semaphores is to guarantee mutual exclusion.
@ in this case, a binary semaphore is also called a mutex
@ add a lock to the double-ended queue data structure
@ decide what needs protection and what not

double-ended queue: thread-safe version

void PushLeft(DQueuex g, int val) {
QNode *gn = (QNode*) malloc(sizeof (QNode)) ;
gn->val = val;
wait(9—>s); // wait to enter the critical section
QNode* leftSentinel = g->left;
QNode* oldLeftNode = leftSentinel->right;
gn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = gn;
oldLeftNode -> left = gn;
signal(gq->s); // signal that we’re done

} —

Atomic Executions, Locks and Monitors Locked Atomic Executions 17/41

Mutexes
One common use of semaphores is to guarantee mutual exclusion.
@ in this case, a binary semaphore is also called a mutex

—

Locked Atomic Executions

Atomic Executions, Locks and Monitors

Implementing the Removal %
By using the same lock g->s, we cWre(-
double-ended queue: remowalﬂ
int PopRight (DQueuex q) { - KS
RES

(Node* oldRightNode; ey v
(Node* leftSentinel = g->left;
(QNode* rightSentinel = g->right;

wait(q->s); // wait to enter the critical section
oldRightNode = rightSentinel->left;

e PopRight:

if (oldRightNode==leftSentinel) { signal(g->s); return -1; }

(Node* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
signal(q->s); // signal that we’re done
int val = oldRightNode->val;

free (oldRightNode) ;

return val;

Ty |

17/41

Tl |

Locked Atomic Executions

Atomic Executions, Locks and Monitors

18/41

Implementing the Removal iy
By using the same lock g->s, we can write a thread-safe PopRight:
double-ended queue: removal ‘

int PopRight(DQueue* q) {
QNode* oldRightNode;

’ (QNode* leftSentinel = g->left;
QNode* rightSentinel = g->right;
wait(q->s); // wait to enter the critical section
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { signal(q->s); return -1; }
(QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
signal(q->s); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode) ;
return val;

/

s
@ crror case complicates code ~— semaphores are easy to get wrong
@ abstract common concept: take lock on entry, release on exit

e
Implementing the Removal]

By using the same lock g->s, we can write a thread-safe PopRight:
double-ended queue: removal

int PopRight (DQueue* q) {
QNode* oldRightNode;
(Node* leftSentinel = g->left;
(QNode* rightSentinel = g->right;
wait(gq->s); // wait to enter the critical section
oldRightNode = rightSentinel->left;
if (oldRightNode==leftSentinel) { signal(g->s); return -1; }
(QNode* newRightNode = oldRightNode->left;
newRightNode->right = rightSentinel;
rightSentinel->left = newRightNode;
signal(q->s); // signal that we’re done
int val = oldRightNode->val;
free(oldRightNode) ;
return val;

}
@ error case complicates code -~ semaphores are easy to get wrong
@ abstract common concept: take lock on entry, release on exit

Atomic Executions, Locks and Monitors Locked Atomic Executions 18/41

Mutexes

One common use of semaphores is to guarantee mutual exclusion.

@ in this case, a binary semaphore is also called a mutex
@ add a lock to the double-ended queue data structure
@ decide what needs protection and what not

double-ended queue: thread-safe version

void PushLeft(DQueue* q, int wval) {
QNode *gn = (QNode*) malloc(sizeof (QNode)) ;

gn->val = val;
@W&it(qﬁvs); // wait to enter the critical section
(Node* leftSentinel = gq->left;
(Node* oldLeftNode = leftSentinel->right;
gn->left = leftSentinel;
gn->right = oldLeftNode;
leftSentinel->right = gn;
oldLeftNode -> left = qgn;
signal (g->s); // signal that we’re done

Ty |

Locked Atomic Executions

Atomic Executions, Locks and Monitors

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function

Locking each procedure body that accesses a data structure:

Locked Atomic Executions

Atomic Executions, Locks and Monitors

17/41

[Ny

19/41

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-accurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

Te—

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

Atomic Executions, Locks and Monitors Locked Atomic Executions

19/41

ik |

19/41

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks
©Q if a thread ¢ waits for a data structure to be filled:

— g
Atomic Executions, Locks and Monitors Locked Atomic Executions

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:
» t will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock
e

Locked Atomic Executions

Atomic Executions, Locks and Monitors

Ty |

19/41

Ty |

19/41

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-accurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

- & t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
©@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> .& t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

Q if that lock is already taken, proceed if it is taken by the current thread

Atomic Executions, Locks and Monitors Locked Atomic Executions

19/41

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

©Q if a thread ¢ waits for a data structure to be filled:
» ¢ will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

- & t is busy waiting and produces contention on the lock
Monitor. a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
:) Al
releases it on exit

Atomic Executions, Locks and Monitors Locked Atomic Executions

19/41

Monitors: An Automatic, Re-entrant Mutex [l
Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
Locking each procedure body that accesses a data structure:
@ is a re-occurring pattern, should be generalized
@ becomes problematic in recursive calls: it blocks

@ if a thread ¢ waits for a data structure to be filled:
» t will call e.g. PopRight and obtain -1
» t then has to call again, until an element is available

> & t is busy waiting and produces contention on the lock
Monitor: a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and
releases it on exit

@ if that lock is already taken, proceed if it is taken by the current thread
~~ need a way to release the lock after the return of the last recursive call

Atomic Executions, Locks and Monitors

Locked Atomic Executions 19/41

Ty |

Implementation of a Basic Monitor

A monitor contains a mutex s and the thread currently occupying it:

————
typedef struct monitor mon_t;

struct monitor { int Lid; int count; };
void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }
. T E—— -
Define monitor_enter and monitor_leave:
@ ensure mutual exclusion of accesses to mon_t
@ track how many times we called a monitored procedure recursively

void monitor_enter(mon_t *m) { void monitor_leave(mon_t *m) {
ey

bool mi = false; tomi .
O? u&pe' alse; atomic { eee—y (-‘ﬂ\é--f‘,{
while (!'mine) { m->count--; g Vﬂ}
atomic { if (m->count==0) { !
mine = thread_id()==m->tid; // wake up threads
if (mine) m->count++; else m->tid=0;
if (m->tid==0) { }
mine = true; m—>count=1; }
m->tid = thread_id(); ¥
} —— —

};
if (!'mine) de_schedule(&m->tid);}

Locked Atomic Executions

20/41

Atomic Executions, Locks and Monitors

Ty |

Rewriting the Queue using Monitors

Instead of the mutex, we can now use monitors to protect the queue:

double-ended queue: monitor version
void PushLeft(DQueuex q, int val) {

monito{;_gmer (q—>m) ;

monitor_leave(q->m) ;
T ———

oni¥or_leave(q->m) ;

Recursive calls possible:

21/41

Atomic Executions, Locks and Monitors Locked Atomic Executions

