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Sequential consistency:
@ a characterization of well-behaved programs
@ a model for different speed of execution

@ for fixed paths through the threads and a total order between accesses to
the same variable: executions can be illustrated by happened-before
diagram with one process per variable

@ MESI cache coherence protocol ensures SC for processors with caches
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Out-of-Order Execution
performance problem: writes always stall

Thread A
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Congjsiency, .,

q. 8 a- P> Opicf.
el

'
Given ¥fesult of a program with »n threads on a SC system,

@ with operations p{,p}.... and pj,p{,...and ...p2.p}. ...

implies i < k,
©@ such that this execution has the same result.
Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components
@ the original order @ becomes a partial order —
@ show that total orderings C’ exist for — for which the result differ
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Thread B
a = 1; // A.1 while (b == 0) {}; // B.1l
b = 1; //f A.2 assert(a == 1); // B.2
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@ there exists a total order HC.C{p’,:) < C(pl) foralli,j k,1... wherej = [
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Weakening the Model

T | MESI Example: Happened Before Model

Tl |
Idea: each cache line one process, A caches b=0 as E, B cachesa=0as E

There is no observable change if calculations on different memory locations Ag e a=1 o D=1
can happen-in parallel. q;‘? B % ff‘; e
@ idea: inodel each memory location as a different process S b — 4 —
o va=1 % b=1/ = - o <
v/ < g & o
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Observations:

@ each memory access must com before executing next instruction
~~ add edge

@ second execution of test b==0'sta

ithin cache ~~ no traffic
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Out-of-Order Execution ») | Out-of-Order Execution 1k
performance problem: writes always stall performance problem: writes always stall
Thread A Thread B Thread A Thread B
a=1; // A.1 while (b == 0) {}; // B.1 a = 1; [/ ALl while (b == 0) {}; // B.1
b =1; // A.2 assert(a == 1); // B.2 b =1; /) A2 assert(a == 1); // B.2
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Store Buffers

Goal: continue execution after cache-miss write operation
.'"-_________—

@ put each write into a store buffer

Store Buffers

Goal: continue execution after cache-miss write operation

Store Buffers

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer
and trigger fetching of cache line and trigger fetching of cache line
CPUA CPUB @ once a cache line has arrived, CPUA CPUB @ once a cache line has arrived,
apply relevant writes apply relevant writes
Store Store » today, a store buffer is always a siore Store » today, a store buffer is always a
®— buffer buffer queue [OSS09] ®— buffer buffer queue [OSS09] .
l l l l » two writes to the same location
are not merged
cache cache cache cache
[ : [ [ | ] ), a1
Memory Memory 6=/ ot (6 2a)
YV a =0
28143
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@ put each write into a store buffer

@ put each write into a store buffer
and trigger fetching of cache Tine and trigger fetching of cache line
CPUA CPUB CPUA CPUB @ once a cache line has arrived,
apply relevant writes
‘l ______-——_——.
store store store store
buffer buffer] ®— buffer buffer
cache cache cache cache
[ I ] [ I ]
Memory Memory
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Store Buffers

Goal: continue execution after cache-miss write operation
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Store Buffers

CPUA CPUB
store store
®— buffer buffer]

cache

cache

Memory

CPUA CPUB
¢ bufer Suffn
} |
cache cache
[ ]
Memory

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer
and trigger fetching of cache line
@ once a cache line has arrived,
apply relevant writes
» today, a store buffer is always a

queue [OSS09]
» two writes to the same location

are not merged

o AN sequential consistency per
CPU is violated unless

Memory Consistency Out-of-Order Execution of Stores

Store Buffers

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer
and trigger fetching of cache line

@ once a cache line has arrived,
apply relevant writes
» today, a store buffer is always a
queue [OSS09]
» two writes to the same location
are not merged

o AN\ sequential consistency per
CPU is violated unless
» each read checks store buffer
before cache
» on hit, return the youngest value
that is waiting to be written
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Store Buffers

Goal: continue execution after cache-miss write operation

@ put each write into a store buffer

and trigger fetching of cache line
CPUA CPUB @ once a cache line has arrived,
apply relevant writes
store store » today, a store buffer is always a
buffer buffer queue [0SS09)] ,
l l » two writes to the same location
are not merged
cache cache o AN sequential consistency per
| : I CPU is violated unless
» each read checks store buffer
Memory before cache
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Happened-Before Model for Store Buffers
Thread B
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Thread A
a = 1; while (b == 0) {}
b = 1; asserti(@n=="1);
U4

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |
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Explicit Synchronization: Write Barrier

Overtaking of messages is desirable and should not be prohibited in general.

@ store buffers render programs incorrect that assume sequential
consistency between different CPUs

Memory Consistency Out-of-Order Execution of Stores
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Explicit Synchronization: Write Barrier

Overtaking of messages is desirable and should not be prohibited in general.

@ store buffers render programs incorrect that assume sequential
consistency between different CPUs

@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted

@ Intel x86 CPUs provide the s fence instruction
@ a write barrier marks all current store operations in the store buffer
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Explicit Synchronization: Write Barrier

Overtaking of messages is desirable and should not be prohibited in general.

@ store buffers render programs incorrect that assume sequential
consistency between different CPUs

@ whenever two stores in one CPU must appear in sequence at a different
CPU, an explicit write barrier has to be inserted

@ Intel x86 CPUs provide the sfence instruction
@ a write barrier marks all current store operations in the store buffer

o the nexteta.n:eopefa'ﬁvlis only executed when all marked stores in the
—————

buffer have completed a/mrnw
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Explicit Synchronization: Write Barrier

Overtaking of messages is desirable and should not be prohibited in general.

store buffers render programs incorrect that assume sequential

consistency between different CPUs

whenever two stores in one CPU must appear in sequence at a different

CPU, an explicit write barrier has to be inserted

@ Intel x86 CPUs provide the sfence instruction

@ a write barrier marks all current store operations in the store buffer

@ the next store operation is only executed when all marked stores in the
buffer have completed

@ a write barrier after each write gives sequentially consistent CPU
behavior (and is as slow as a CPU without store buffer)

Memory Consistency Out-of-Order Execution of Stores

Invalidate Queue

Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge

Memory Consistency Out-of-Order Execution of Loads
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Happened-Before Model for Write Fences

Thread A Thread B
2 & 3 while (b == 0) {}
~ sfence (); _

b= 1: assert(a == 1);

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |

a=1 sfence b=l
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Jlilitl Thread B
——— —assert (a == 1);

Assume cache A contains: a: S0, b: EO, cache B contains: a: S0, b: |
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Invalidate Queue
Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs
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Invalidate Queue
Invalidation of cache lines is costly:
@ all CPUs in the system need to send an acknowledge
@ invalidating a cache line competes with CPU accesses
@ a cache-intense computation can fill up store buffers in other CPUs

CPUA CPUB
store store
®— buffer buffer|
| l
cache cache
[ [
invalidate invalidate|
queue queue
| — : |
Memory

Memory Consistency Out-of-Order Execution of Loads
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~+ immediately acknowledge an invali-
dation and apply them later

@ put each invalidate message into
an invalidate queue

e if a MESI message needs to be
sent regarding a cache line in the
invalidate queue then wait until
the line is invalidated

Invalidate Queue
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~= immediately acknowledge an invali-

CPUA CPUB :
dation and apply them later

store store

®— puffer buffer
cache cache
| [

invalidate invalidate

queue queue
R— '
Memory
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CPU A CPUB ~~ immediately acknowledge an invali-
dation and apply them later
@ put each invalidate message into
store store invali
&— buffer buffor .an invalidate queue
I I o if a MESI message needs to be
sent regarding a cache line in the
cache cache invalidate queue then wait until
[ [ the line is invalidated
|narggggte '”&’Sgﬂgte o /N local read and writes do not
T I consult the invalidate queue
I
Memory
LEVEL




Happened-Before Model for Invalidate Buffers Tl

Ll Thread B
2= while (b == 0) {}
sfence () ; __
b - 1; assert(a == 1);

Assume cache A contains: a: S0, b: EQ, cache B contains: a: S0, b: |
b=1

-] sfence

75

A -
B b Ut
b==0 a==1 \l/
w40

ik |

Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other
processors and local reads
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Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate gqueue.

@ might read an out-of-date value
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Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other
processors and local reads

@ insert an explicit read barrier before the read access
@ Intel x86 CPUs provide the 1fence instruction
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Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other
processors and local reads

@ insert an explicit read barrier before the read access
@ Intel x86 CPUs provide the 1 fence instruction
@ a read barrier marks all entries in the invalidate queue

@ the next read operation is only executed once all marked invalidations
have completed
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have completed

@ aread barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)
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Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value

@ need a way to establish sequential consistency between writes of other
processors and local reads

@ insert an explicit read barrier before the read access
@ Intel x86 CPUs provide the 1 fence instruction
@ a read barrier marks all entries in the invalidate queue

@ the next read operation is only executed once all marked invalidations
have completed

@ aread barrier before each read gives sequentially consistent read
behavior (and is as slow as a system without invalidate queue)

~= match each write barrier in one process with a read barrier in another
process

Memory Consistency Out-of-Order Execution of Loads
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Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate gqueue.
@ might read an out-of-date value
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Happened-Before Model for Read Fences

Thread A Thread B
a =1; while (b == 0) {};
sfence () ; =7 1fence () ;
b = 1; assert(a == 1);

Tl |
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Happened-Before Model for Read Fences

Thread A Thread B
a=1; while (b == 0) {};
sfence () ; lfence();

b = 1; assert(a == 1);
A a=1 sfenceb=1
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b==0 lfence a==1
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Summary: Weakly-Ordered Memory Models

Modern CPUs use a weakly-ordered memory model.
@ reads and writes are not synchronized unless requested by the user

@ many kinds of memory barriers exist with subtle differences
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Summary: Weakly-Ordered Memory Models

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user

@ many kinds of memory barriers exist with subtle differences
@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86) —
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Summary: Weakly-Ordered Memory Models [/l ]

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences
@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)
@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect
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Modern CPUs use a weakly-ordered memory model.
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

@ use the volatile keyword in C/C++

@ in the latest C++ standard, an access to a volatile variable will
automatically insert a memory barrier
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Modern CPUs use a weakly-ordered memory model.
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

@ usethe volatile keyword in C/C++
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Summary: Weakly-Ordered Memory Models  [/ll)]

Modern CPUs use a weakly-ordered memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

@ most systems provide on barrier that is both, read and write (e.g. mfence
on x86)

@ ahead-of-time imperative languages can use memory barriers, but
compiler optimizations may render programs incorrect

o use the volatile keyword in C/C++

@ in the latest C++ standard, an access to a volatile variable will
automatically insert a memory barrier

@ otherwise, inline assembler has to be used
~+ memory barriers are the “lowest-level” of synchronization

—_———
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Using Memory Barriers: the Dekker Algorithm 1]

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false
flag[l] = false
EEEQ =0 // or 1
PO: P1l:
flag@] = true; flag@ = true;
while (flag(E) == true) while (flag == true)
if (turn ™ 0) { if (turn != 1) {
flag[0] = false; flag[l] = false;
while (turn != 0) { while (turn != 1) {
// busy wait // busy wait
} }
flag[0] = true; flag[l] = true;
} }
// critical section // critical section
turn = 1; turn = 0;
flag[0] = false; flag[l] = false;
148

The Idea Behind Dekker M|

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter

PO: In process P;:
flag[0] = true; e if P,_; does not want to enter,
e L proceed immediately to the critical
if (turn = 0) { Seotlon
f}l)‘—f?[o] - fa}fe(’) @ ~ flag[i] is a lock and may be
wnae (turn = 0) | implemented as such
// busy wait
}
flag[0] = true;
}
// critical section
turn = 1;
flag[0] = false;
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The Idea Behind Dekker

Communication via three variables:
@ flag[i]l=true process P; wants to enter its critical section
@ turn=i process P; has priority when both want to enter
bt J——

PO: In process ‘&:
flag[0] = true; e if P,_; does not want to enter,
while (flag[l]_== true) proceed immediately to the critical
if (turn != 0) { section
flag[0] = false;
while (turn != 0) {
// busy wait
}
flag[0] = true;
}
// critical section
turn = 1;
flag[0] = false;

The Idea Behind Dekker

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=1i process P; has priority when both want to enter

PO: In process P;:
flag[0] = true; o if P,_; does not want to enter,
while (flag[l] == true) proceed immediately to the critical
if (turn != 0) { section
f:)?g[m = fallfea @ -~ flag[i] is a lock and may be
) L o U implemented as such

// busy wait ) .
} e if P,_; also wants to enter, wait for

turntobesetto i

flag[0] = true;
}
// critical section
turn = 1;
flag[0] = false;
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The Idea Behind Dekker

Communication via three variables:
@ flag[i]=true process P; wants to enter its critical section
@ turn=1i process P; has priority when both want to enter

A Note on Dekker’s Algorithm

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other

Memory Consistency The Dekker Algorithm

1]

PO: In process P;:
flag[0] = true; e if P,_; does not want to enter,
while (flag[l] == true) proceed immediately to the critical
if (turn != 0) { section
fi’f‘f[o]{t: fa}feé) . © - flagli] isalockand may be
w ’j_/eh_ p“mu; implemented as such
y e if P,_; also wants to enter, wait for
flag[0] = true; turnto besetto i
} @ while waiting for turn, reset
// critical section flagl[i] to enable P,_; to progress
turn = 1; @ algorithm only works for two
flag[0] = false; processes
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® ensure mutu lor: at most one process executes the critical
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Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will
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A Note on Dekker’s Algorithm Ly

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will

applications for Dekker: implement a (map o reduce) operation concurrently

T acc = init();
for (int 1 = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i);
g(tmp, 1i);
}
———
w014

A Note on Dekker’s Algorithm Ty ]

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will

applications for Dekker: implement a (map o reduce) operition concurrently

T acc = init(); 6}% a(f+4)

for (int i = 0; i<c; i++) { Gac 4
<T,U> (acc,tmp) = f(acc,1i); £ CL 5 ¢ 1
g(tmp, 1i);

}

@ accumulating a value by performing two operations £ and g in sequence
@ the calculation in £ of the ith iteration depends on iteration i — 1
@ non-trivial program to parallelize
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A Note on Dekker’s Algorithm

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will

applications for Dekker: implement a (map ¢ reduce) operation concurrently

T acc = init ();

for (int i = 0; i<ec; i++) {
<T,U> (acc,tmp) = f(acc,i);
g(tmp, 1i);

}

@ accumulating a value by performing two operations f and g in sequence

@ the calculation in £ of the ith iteration depends on iteration i — 1
-

A Note on Dekker’s Algorithm

Dekker’s algorithm has the three desirable properties:

@ ensure mutual exclusion: at most one process executes the critical
section

@ deadlock free: the process will never wait for each other
@ free of starvation: if a process wants to enter, it eventually will

applications for Dekker: implement a (map o reduce) operation concurrently

T acc = init () ;

for (int i = 0; i<cg; i++) {
<T,U> (acc,tmp) = f(acc,1i);
g(tmp, 1i);

}

@ accumulating a value by performing two operations £ and g in sequence
e the calculation in £ of the ith iteration depends on iteration i — 1
@ non-trivial program to parallelize

@ idea: use two threads, one for £ and one for g
——_.P_ i —

Memory Consistency The Dekker Algorithm
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Concurrent Reduce 1"s7 | concurrent Reduce T

Create an n-place buffer for communication between processes Py and P,. Create an n-place buffer for communication between processes P, and P,.

T acc = init (); T acc = init ();

Buffer<U> buf = buffer<T>(n); // some locked buffer Buffer<U> buf = buffer<T>(n); // some locked buffer

Pf: Pg: Pf: Pg:

‘f-;r (int 1 = 0; i<c; i++) { For (int 1 = 0; i<c; i++) { for (int i = 0; i<c; i++) { for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,i); T tmp = buf.get (); <T,U> (acc,tmp) = f(acc,i); T tmp = buf.get();
buf.put {l:_rip); g(tmp, 1i); buf.put (tmp) ; g(tmp, 1i);

1 } } 1

If £ and g are similarly expensive, the parallel version might run twice as fast.
But busy waiting is bad!
@ the cores might be idle anyway: no harm done (but: energy efficiency?)
\____.5——
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Create an n-place buffer for communication between processes P, and P,. Create an n-place buffer for communication between processes P, and P,.

T acc = init (); T acc = init(); 1

Buffer<U> buf = buffer<T>(n); // some locked buffer Buffer<U> buf = buffer<T>(a); // some locked buffer

——

Pf: Pg: Pf: Pg:

for (int 1 = 0; i<c; i++) { for (int i = 0; i<eg; i++) { for (int 1 = 0; i<c; 1i++) { for (int i = 0; i<c; i++) {
<T,U> (acc,tmp) = f(acc,1i); T tmp = buf.get(); <T,U> (acc,tmp) = flacc,1i); T tmp = buf.get();

buf.put (tmp) ; g(tmp, 1i); buf.put (tmp) ; g(tmp, i);

1 } } 1
If £ and g are similarly expensive, the parallel version might run twice as fast. If £ and g are similarly expensive, the parallel version might run twice as fast.
But busy waiting is bad! But busy waiting is bad!

@ the cores might be idle anyway: no harm done (but: energy efficiency?) @ the cores might be idle anyway: no harm done (but: energy efficiency?)

@ f can generate more elements while busy waiting @ f can generate more elements while busy waiting ’

@ g might remove items in advance, thereby keeping busy if f is slow
s
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Create an n-place buffer for communication between processes P, and P,.
T acc = init ()
Buffer<U> buf

Concurrent Reduce

;

buffer<T> (n) ; / some locked buffer

Pf: Pg:

for (int i = 0; i<c; i++) { for (int i = 0; i<ec; i++) |
<T,U> (acc,tmp) = f(acc,i); T tmp = buf.get();
buf.put (tmp) ; g(tmp, 1i);

} }
If £ and g are similarly expensive, the parallel version might run twice as fast.

But busy waiting is bad!
@ the cores might be idle anyway: no harm done (but: energy efficiency?)
@ f can generate more elements while busy waiting
@ g might remove items in advance, thereby keeping busy if £ is slow
@ ideal scenario: keep busy during busy waiting

Memory Consistency The Dekker Algorithm 41/48
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Generalization to Stream Processing

Observation: g might also manipulate a state, just like f.

PEAN
~» computation reduces/mg_ps a function on a sequence of items

@ general setup in signal/data processing
@ data is manipulated in several stages
@ each stage has an internal state

@ an item completed in one stage is passed on to the next stage
—_ - —_—
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Generalization to Stream Processing

Observation: g might also manipulate a state, just like f.

~~ computation reduces/maps a function on a sequence of items
@ general setup in signal/data processing
@ data is manipulated in several stages
@ each stage has an internal state

@ an item completed in one stage is passed on to the next stage

Use of Dekker’s algorithm:
@ could be used to pass information between stages
@ but: fairness of algorithm is superfluous
» producer does not need access if buffer is full
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Generalization to Stream Processing Ty

Observation: g might also manipulate a state, just like f.

~= computation reduces/maps a function on a sequence of items
@ general setup in signal/data processing
@ data is manipulated in several stages
@ each stage has an internal state
@ an item completed in one stage is passed on to the next stage

Use of Dekker’s algorithm:

@ could be used to pass information between stages
@ but: fairness of algorithm is superfluous

» producer does not need access if buffer is full
» consumer does not need access if buffer is empty

Dekker’s Algorithm and Weakly-Ordered

Problem: Dekker’s algorithm requires sequentially consistency.

Idea: insert memory barriers between all variables common to both threads.
PO:

flag[0] = true; e

sfence () ; @ insert a lead memory
while (lfence(), flag[l] == true) barrier 1fence () in front

if (lfence(), turn != 0) { of every read from common
ey = .
flag[0] = false; variables
sfence () ;
while (lfence(), turn != 0) {
// busy wait
}
flag[0] = true;
sfence();
}
// critical section
turn = 1;
sfence () ;
flag[0] = false; sfence();
43148
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Idea: insert memory barriers between all variables common to both threads.
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Problem: Dekker’s algorithm requires sequentially consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;

sfence () ; @ insert a load memory

while (lfence(), flag[l] == true) barrier 1 fence () in front
if (lfence(), turn != 0) { of every read from common

flag[0] = false; variables
sfence () ; @ insert a write memory
while (lfence (), turn != 0) ({ barrier sfence () after

// busy wait writing a variable that is
} read in the other thread
flag[0] = true;

———

sfence();

}
turn = 1;
sfence () ;

ce
flaq[0] = false; sfence();
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Ty

Problem: Dekker’s algorithm requires sequentially consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] =
-sfegget);

true;

while Mfence(), flag[l] == true)

if turn

false;

(1fence (),
flag[0] =
sfence () ;
while (lfence(),
// busy wait

}

flag[0] =
~temeetr
}

// critical section

true;

turn = 1;
sfence () ;

flag[0] = false;

Memory Consistency

Dekker’s Algorithm and Weakly-Ordered

1= 0N

turn != 0)

sfence () ;

The Dekker Algorithm

@ insert a load memory

barrier 1fence () in front
of every read from common
variables

insert a write memory
barrier sfence () after
writing a variable that is
read in the other thread

@ the 1fence () of the first

iteration of each loop may
be combined with the
preceding sfence () to an
mfence () -

43 /48

]

Problem: Dekker’s algorithm requires sequentially consistency.

Idea: insert ry barriers between all variables common to both threads.
PO:
flag[0] rue;

sfence () ;
while flag[l] == true)
if (lfence( turn != 0) {
flhg[O alse;
S
turn != 0)

}
turn = g
sfence () ;

flag[0] = fAlse;

Memory Consistency

sfence () ;

The Dekker Algorithm

{

insert a load memory
barrier 1fence () in front
of every read from common
variables

insert a write memory

barrier sfence () after
writing a variable that is
read in the other thread

the 1fence () of the first
iteration of each loop may
be combined with the
preceding sfence () to an
mfence ()
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Where are they useful?

Memory Consistency Wrapping Up

Dekker’s Algorithm and Weakly-Ordered

Problem: Dekker’s algorithm requires sequentially consistency.
Idea: insert memory barriers between all variables common to both threads.

]

PO:
flag[0] = true;
sfence () ; @ insert a load memory
while (lfence(), flag[l] == true) barrier 1fence () in front
if (lfence(), turn != 0) { of every read from common
flag[0] = false; variables
sfence () ; insert a write memory
while (lfence(), turn != 0) barrier sfence () after
// busy wait writing a variable that is
} read in the other thread
] = i the 1fence () of the first
sfence () ; iteration of each loop may
) ,} . ‘ be combined with the
/ critical section preceding Sfence () tO an
turn -1l mfence ()
sfence () ;
flag[0] = false; sfence();
43148
Discussion T

Memory barriers lie at the lowest level of synchronization primitives.

@ when several processes implement an automaton and . ..
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Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and .. .
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?
@ difficult to get right, possibly inappropriate except for specific, proven

algorithms
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Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..

@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads

@ often used in operating systems

wis
Discussion Ty

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and . ..
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

o difficult to get right, possibly inappropriate except for specific, proven
algorithms

@ often synchronization with locks is as fast and easier
@ too many fences are costly if store/invalidate buffers are bottleneck

Memory Consistency Wrapping Up
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Discussion

Memory barriers lie at the lowest level of synchronization primitives.
Where are they useful?

@ when several processes implement an automaton and ...
@ synchronization means coordinating transitions of these automata
@ when blocking should not de-schedule threads
@ often used in operating systems
Why might they not be appropriate?

@ difficult to get right, possibly inappropriate except for specific, proven
algorithms

@ often synchronization with locks is as fast and easier
@ too many fences are costly if store/invalidate buffers are bottleneck
What do compilers do about barriers?

@ C/C++: it's up to the programmer, use volatile for all thread-common
variables to avoid optimization that are only correct for sequential

programs
——
s

Future Many-Core Systems: NUMA T

Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to
all participants
@ point-to-point connections are faster than a bus, but do not provide
possibility of forming consensus
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Summary

Memory consistency models:
@ strict consistency —
@ sequential consistency —
@ weak consistency —
lllustrating consistency: —
@ happened-before relation —-
@ happened-before process diagrams ——
Intricacy of cache coherence protocols: —
o the effect of store buffers  —
@ the effect of invalidate buffers —
@ the use of memory barriers -
Use of barriers in synchronization algorithms:
@ Dekker’s algorithm —
e stream processing, avoidance of busy waiting —
@ inserting fences —
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Future Many-Core Systems: NUMA

Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus

@ the speed of the bus is limited since the electrical signal has to travel to
all participants

@ point-to-point connections are faster than a bus, but do not provide
possibility of forming consensus

~~ use a bus locally, use point-to-point links globally: NUMA
@ non-uniform memory access partitions the memory amongst CPUs
@ a directory states which CPU holds a memory region

et—-—-
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