Script generated by TTT

Title: Petter: Programmiersprachen (08.10.2014)
Date: Wed Oct 08 14:24:25 CEST 2014
Duration: 79:53 min

Pages: 82

Need for Concurrency

Consider two processors:
@ in 1997 the Pentium P55C had 4.5M transistors
@ in 2006 the /tanium 2 had 1700M transistors
~ Intel could have built a processor with 256 Pentium cores in 2006

Memory Consistency Motivation

TR

2/48

TECHNISCHE
FAKULTAT

MUNCHEN
INFORMATIK

UNIVERSITAT
FUR

Programming Languages

Concurrency: Memory Consistency

Dr. Axel Simon and Dr. Michael Petter
Winter term 2014

Memory Consistency

Need for Concurrency

Consider two processors:
@ in 1997 the Pentium P55C had 4.5M transistors
@ in 2006 the /tanium 2 had 1700M transistors
~=+ |ntel could have built a processor with 256 Pentium cores in 2006
However:
@ most programs are not inherently parallel
» -~ parallelizing a program is between difficult and impossible
@ correctly communicating between different cores is challenging
» = correctness of concurrent communication is_very hard
» low-level aspects: locking algorithms must be correct !
» high-level aspects: program may deadlock ¢
@ a program on n cores runs m < n times faster
» -~ all effort is voided if program runs no faster —
» distributing work load is application specific ..

Memory Consistency Motivation

T

2/48

The free lunch is over Ml

Single processors cannot be made much faster due to physical limitations.

IT Roadmap Semiconductors

5
=]
=]
5
==
=]
=

2007 Roadmap

Intel Single Core
Intel Multicore

2007 2009 2011 2013

Year

2003 2005

Source D. Patterson, UC—Berkeley

3/48

LA

Memory Consistency Motivation

Concurrency for the Programmer
How is concurrency exposed in a programming language?

@ spawning of new concurrent computations
© communication between threads

4/48

Memory Consistency Motivation

The free lunch is over
Single processors cannot be made much faster due to physical limitations.

IT Roadmap Semiconductors

Clock Rate {GHz)

2007 Roadmap

Intel Single Core

2007 2009 2011 2013

Year

2003 2005

Source: D. Patterson, UC-Berkeley

But Moore’s law still holds for the number of transistors:
@ they double every 18 months for the foreseeable future
@ may translate into doubling the number of cores
@ programs have to become parallel
—_—

Motivation

Memory Consistency

Concurrency for the Programmer

How is concurrency exposed in a programming language?
@ spawning of new concurrent computations
@ communication between threads
Communication can happen in many ways:
@ communication via shared memory (this lecture)
@ atomic transactions on shared memory
@ message passing

Learning Outcomes

@ Happened-before Partial Ord?L
@ Sequential Consistency,_

© The MESI Cache Model_

@ Weak Consistency _

@ Memory Barriers _

1

3/48

Lt

Motivation

Memory Consistency

4148

A {
Communication between Cores [IUEH
We consider the concurrent execution of these functions:
Thread A Thread B
wvoid foo (void) { void bar (void) {
{ a=1; y while (b == 0) {};
b = 1; assert (a == 1);
} }
@ initial state of aand b is 0_
5/48
¢ s \
Communication between Cores JILEE
We consider the concurrent execution of these functions:
Thread A Thread B
wvoid foo (void) { void bar (void) {
a = 1;) while (b == 0)a{};
b = 1; assert (a == 1); =~
} }
@ initial state of aand b is 0
@ A writes a before it writes b
@ B should see b go to one before executing the assert statement

5/48

Memory Consistency Memory Consistency

Communication between Cores

We consider the concurrent execution of these functions:
Thread A Thread B

void foo (void) { void bar (void)

T

} }

a=1;= while (b == 0) {};
b =1;= assert (a == 1);
} }
@ initial stateof aand b is 0
@ A writes a before it writes b
5/48
. . |
Communication between Cores L
We consider the concurrent execution of these functions:
Thread A Thread B
void foo (void) { void bar (void) ({
a = 1; while (b == 0) {};
b = 1; assert (a == 1);

@ initial state of a and b is 0

@ A writes a before it writes b

@ B should see b go to one before executing the assert statement
@ the assert statement should always hold

@ here the code is correct if the assert holds

Memory Consistency Memory Consistency

5/48

We consider the concurrent execution of these functions:

Thread A Thread B
void foo (void) { void bar (void) {
a =1; while (b == 0) {};
b = 1; assert (a == 1);
} }

Communication between Cores MU

@ initial state of a and b is 0
@ A writes a before it writes b
@ B should see b go to one before executing the assert statement
@ the assert statement should always hold
@ here the code is correct if the assert holds
~ correctness means: writing a one to a happens before reading a one inb

Assuming foo and bar are started on two cores operating in lock-step.
Then one of the following may happen:

fO 0 . -foo _ fOO - o

2=t b=f a=f B=f e=f b=f
mem, 1 mem L mem_\/ ~.

b2 b? b7 b2 b2 a2 b2 b? b? ja?
bar [/[W[bar ; [[barl [[N[

Unrealistic to assume that there is only one order between memory accesses:

@ each conditional (and loop iteration) doubles the number of possible
lock-step executions

@ processors use caches ~ lock-step assumption is violated since cache
behavior depends on data

Memory Consistency Memory Consistency 6/48

i
Strict Consistency L

Strict Consistency — T

Assuming foo and bar are started on two cores operating in lock-step.
Then one of the follovxing may happen:
EEEE——

fo foo foo

Q . .
merr"ig';.r R V mem/ 1.‘_ mem_ \ R V R
ar [/ W/ o\ bar [[[barl [[W[
v
o0
Strict Consistency i

Assuming foo and bar are started on two cores operating in lock-step.
Then one of the following may happen:

foQ . fog R foo .

a=t b=F a=f "b=f ‘a=1""b=F

memL ,_ me m ,_ mem ,_ L
b2 b2 b2 b2 b2 a2 b2 b2 b2 /a2
bar /| / \/ bar /[\ [[‘\barj [[/ [|

Unrealistic to assume that there is only one order between memory accesses:

@ each conditional (and loop iteration) doubles the number of possible
lock-step executions

@ processors use caches -~ lock-step assumption is violated since cache
behavior depends on data

~= strict consistency is too strong to be realistic
~~ state correctness in terms of what event may happen before another one

—

Memory Consistency Memory Consistency 6/48

Events in a Distributed System T
A process as a series of events [Lam78]: Given a distributed system of

processes P, ..., each process P consists of events pi,pa,

T —

Memory Consistency Happened-Before Relation

71/48

Events in a Distributed System

A process as a series of events [Lam78]: Given a distributed system of
processes P, ..., each process P consists of events p1,p»,
Example:

@ event p; in process P happened before p; .,

e if p; is an event that sends a message to Q then there is some event g; in
Q that receives this message and p; happened before g;

7148

Memory Consistency Happened-Before Relation

Events in a Distributed System

A process as a series of events [Lam78]: Given a distributed system of
processes P, ..., each process P consists of events pi, pa,
Example:

Ry]

R F'l

@ event p; in process P happened before pi,

Wand Law (l)

Events in time are like power of wands:

Memory Consistency Happened-Before Relation

TG

8/48

Wand Law (l)

Events in time are like power of wands:

Wand Law (l)

Events in time are like power of wands:

e
\ beats ——

: . 4
L% beats

hence:

~ the “beats” relation is transitive

Memory Consistency Happened-Before Relation

: R]
m beats —

Tyl

8/48

Wand Law (I)

Events in time are like power of wands:

—
T ——————— boals — &

l F
' I —-
m = beats

Memory Consistency Happened-Before Relation

Wand Law (ll)

More wand laws:
@ “beats” is transitive
@ “beats” is irreflexive

——— T

@ implies that “beats” is asymmetric: if
-—

— il - gt
) beats — =
then
e el
— beats —

~~ “beats” is a strict partial order

Memory Consistency Happened-Before Relation

9/48

The Happened-Before Relation

Definition
If an event p happened before an event g then p — q.

- -

Memory Consistency Happened-Before Relation

The Happened-Before Relation

Definition
If an event p happened before an event ¢ then p — q.

Observe:
@ — is partial (neither p — ¢ or g — p may hold)
e _— isirreflexive (p — p never holds)

Memory Consistency Happened-Before Relation

10/48

The Happened-Before Relation

Definition
If an event p happened before an event ¢ then p — g.

Observe:
@ — is partial (neither p— ¢ or ¢ — p may hold)

—

Memory Consistency Happened-Before Relation

The Happened-Before Relation

Definition
If an event p happened before an event ¢ then p — g.

10/48

Tyl

Observe:
@ — is partial (neither p — ¢ or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
° — is transitive (p g A g—r then‘{)_j_r)

—

Memory Consistency Happened-Before Relation

10/48

The Happened-Before Relation

Definition
If an event p happened before an event g then p — q.

Observe:
@ — is partial (neither p — g or g — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p ~gAg—rthenp—r)
@ — is asymmetric (if p — ¢ then —(g — p))
——

N

Concurrency

Let a /4 b abbreviate —(a — b).

Definition
Two distinct events p and ¢ are said to be concurrent if p 4 g and g /4 p.

10/48

Ty

_—

P _ P! &3

L2
£

4
E

@ p; — rq in the example

———

Memory Consistency Happened-Before Relation

11/48

The Happened-Before Relation

Definition
If an event p happened before an event ¢ then p — g. J

Observe:
@ — is partial (neither p — g or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p +gAg—rthenp—7)
@ — is asymmetric (if p — ¢ then —(q — p))
~+the — relation is a strict partial order

Note: a strict partial order < differs from a (non-strict) partial order ; due to:

| strict partial order | non-strict partial order |

irreflexive —(p < p) | reflexive p=p
asymmetric antisymmetric
p < gimplies =(g <p) | p2gihq=pimpliesp =¢q
10735
Concurrency LY
Let @ 4 b abbreviate ~(a — b).
Definition
Two distinct events p and g are said to be concurrentif p % g and g/ p. J

P =Pl }__Pz d’z

L4
L

@ p, — ry in the example
@ p; and ¢; are, in fact, concurrent since p; 4 ¢; and ¢; /4 p;

Memory Consistency Happened-Before Relation

11/48

Ordering Ty

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition)
£ satisfies the clock condition if for any events p — g then C(p) < C(q). J

i
Ordering L

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition)
C satisfies the clock condition if for any events p — g then C(p) < C(q). J

For a distributes system the clock condition holds iff:
@ if p; and p; are events of P and p; — p; then C(p;) < C(p;)

@ if pis the sending of a message by process P and g is the reception of
this message by process Q then C(p) < C(q)

Yo 28
~- a logical clock C that satisfies the clock condition deseriteg a fotal order
a < b (with C(a) < C(b)) that is compatible with the strict partial order —

Ordering

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition)
C satisfies the clock condition if for any events p — g then C(p) < C(q).

1y

For a distributes system the clock condition holds iff:
Q if piand pjare events of P and Pi—pj then C(p,) < C(pj)

Q if p is the sending of a message by process P P and qis s the reception of
this message by process 0 then C(p) < C()

Ordering

Let C be a logical clock that assigns a time-stamp C(p) to each event p.

Definition (Clock Condition)
C satisfies the clock condition if for any events p — g then C(p) < C(q).

12748

Ty

For a distributes system the clock condition holds iff:
@ if p; and p; are events of P and p; — p; then C(p;) < C(p))

@ if pis the sending of a message by process P and g is the reception of
this message by process Q then C(p) < C(q)

~+ a logical clock C that satisfies the clock condition describes a total order
a < b (with C(a) < C(b)) that is compatible with the strict partial order —

The set defined by C that satisfies the clock condition are exactly the set of
execltions possible in the system.
~~ use the process model and — to define better consistency model

e ——— i

12/48

Memory Consistency Happened-Before Relation

Memory Consistency Happened-Before Relation

12748

Defining C Satisfying the Clock Condition Ty,

Given:
P __ M &2 o3 44
-\ fr - r
e P1 | P2 | P3| P4
Cle) |13 19 |4
€ q1 | 492 | 93 | 94 | 95 | Y6 | 47
Clo 251619 [T [11]4
e n 2 3 ra
Cle) [F]1& 12113
148

Moving Away from Strong Consistency

Idea: use process diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
@ consider the actions of each thread as events of a process
@ use more processes to model memory
» here: one process per variable in memory
@ -~ concisely represent some interleavings

—————
Memory Consistency Sequential Consistency 15/48

Summary

We can model concurrency using processes and events:
o there is a happened-before relation between the events of each process
o there is a happened-before relation between communicating events
@ happened-before is a strict partial order
@ aclock is a total strict order that embeds the happened-before partial

Moving Away from Strong Consistency

Idea: use process diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
@ consider the actions of each thread as events of a process

@ use more processes to model memory
» here: one process per variable in memory

@ -~ concisely represent some interleavings

We obtain a model for sequential consistency.

Memory Consistency Sequential Consistency 15/48

Ty

order
Memory Consistency Happened-Before Relation 14748

Ty

]

I

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program. — -

16 /48

Tl

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with n threads on a SC system,

@ with operations p,p},... and pj,p3....and ... pt. pl, ...

@ there exists a total order HC.C(;% < C(@ foralli,j k,1...wherej=1
implies i < k, e,

)

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with » threads on a SC system,

@ with operations p},p!....and p3.p3,...and ...pi pt, ...
p—, ——

e

16 /48

Tty

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with n threads on a SC system,
@ with operations p},pl....and p3.p?,...and ... pt.pl,. ..

@ there exists a total order HC.C{p’,:) < C(pl) foralli,j k,1... wherej = [
implies i < &,

@ such that this execution has the same result.

16 /48

Memory Consistency Sequential Consistency

16 /48

Memory Consistency Sequential Consistency

[

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with » threads on a SC system,
@ with operations p},p!,...and p3,p3....and ... pt pt, ...
© there exists a total order 3C.C(p§) < C(p) foralli,j,k,I... wherej=1[
implies i < k,
@ such that this execution has the same result.
Yet, in other words:
o @ defines the execution path of each thread

E———— =

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with n threads on a SC system,

@ with operations p,p},... and pj,p3....and ... pt. pl, ...

@ there exists a total order HC.C(pD < C(p,) foralli,j,k,1... wherej =1
implies i < k,
@ such that this execution has the same result.
Yet, in other words:
@ @ defines the execution path of each thread
@ the total order defined in @ is one interleaving of the execution paths

e © stipulates that the result of running the threads with this interleaving is
always the sa

Ty

Definition: Sequential Consistency

Definition (Sequential Consistency Condition for Multi-Processors)

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its
program.

Given a result of a program with » threads on a SC system,
@ with operations p},p!....and p3.p3,...and ...pi pt, ...
© there exists a total order HC.C(p’,:) < C(p,) for alli,j,k,1... where j = [
implies i < k, -
@ such that this execution has the same result.
Yet, in other words:
o @ defines the execution path of each thread

o the total order defined in @ is one interleaving of the execution paths
—————e —

16/48

i)

Disproving Sequential Consistency

Given a result of a program with » threads on a SC system,
@ with operations p{,p}.... and pj,p{,...and ...p2.p}. ...
@ there exists a total order HC.C{p’,:) < C(pl) foralli,j k,1... wherej = [
implies i < k,
@ such that this execution has the same result.
Idea for showing that a system is not sequentially consistent:

@ pick a result obtained from a program run on a SC system

16/48

Memory Consistency Sequential Consistency

17/48

Memory Consistency Sequential Consistency

Disproving Sequential Consistency

Given a result of a program with n threads on a SC system,
@ with operations p},p!,..

© there exists a total order 3C. C(p}) < C(pl) for all i,j, k,I ... where j =
implies i < k,

.andpd,pi....and .optpt, .

@ such that this execution has the same result.
Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components
@ the original order @ becomes a partial order —

Memory Consistency Sequential Consistency

17/48

Weakening the Model LN

There is no observable change if calculations on different memory locations
can happen in parallel.

@ idea: model each memory location as a different process

18/48

Memory Consistency Sequential Consistency

)

Disproving Sequential Consistency

Given a result of a program with » threads on a SC system,
@ with operations p},p!...

© there exists a total order IC. C(p}) < C(pl) for all i,j kI ... where j = I
implies i < k,

.and pd.p3,...and ...piph. ...

© such that this execution has the same resullt.
Idea for showing that a system is nof sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components
@ the original order @ becomes a partial order —
@ show that total orderings C’ exist for — for which th%

Memory Consistency Sequential Consistency

Weakening the Model

There is no observable change if calculations on different memory locations
can happen in parallel.

@ idea: model each memory location as a different process

foo _ _ foo
5 r D= 3' 5, A\ F
=1/ b=1) a1\ b=1/
.-[;’" 1_ j:
/ x "\.7 -: _

o - YV e ; \\

AN AN AN B

b? /b? /b? ;a?

[W S i
18/

Weakening the Model Ty

There is no observable change if calculations on different memory locations
can happen in parallel.

@ idea: model each memory location as a different process

foo . . fao, P ,
K 4 =1/ \ \ /
=1 / b_1; __a=‘|/ \ b=1 /
rf ,’; \ f
mem g *
[y LA) AR ANE A
b2 b2 b2 b2 b2 b2 a2\

bar [[] bar /[v/ N, V]

Sequential consistency still obeyed:
@ the accesses of foo to a occurs before-g

Memory Consistency Sequential Consistency

18/48

Tlky]

Benefits of Sequential Consistency
Benefits of the sequential consistency model:

@ concisely represent all interleavings that are due to variations in speed
@ synchronization usﬁd‘time is uncommon for software

@ -~ a good model for correct behaviors of concurrent programs

@ -~ programs results besides SC results are undesirable (they contain

races)
B

Weakening the Model Tl)

There is no observable change if calculations on different memory locations
can happen in parallel.

@ idea: model each memory location as a different process

foo :

Sequential consistency still obeyed:
o the aceessesOTTo0 10 4 occurs before b

@ the first two read accesses to b are in parallel to a=1

Memory Consistency Sequential Consistency

Benefits of Sequential Consistency

Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommon for software
@ ~~ a good model for correct behaviors of concurrent programs

@ -~ programs results besides SC results are undesirable (they contain
races)

It is a realistic model for older hardware:

@ sequential consistency model suitable for concurrent processors that
acquire exclusive access to memory

@ processors can speed up computation by using caches and still maintain
sequential consistency

Memory Consistency Sequential Consistency

19748

Ty |

Benefits of Sequential Consistency

Benefits of the sequential consistency model:
@ concisely represent all interleavings that are due to variations in speed
@ synchronization using time is uncommon for software
@ -~ a good model for correct behaviors of concurrent programs

@ ~ programs results besides SC results are undesirable (they contain
races)

It is a realistic model for older hardware:

@ sequential consistency model suitable for concurrent processors that
acquire exclusive access to memory

@ processors can speed up computation by using caches and still maintain
sequential consistency
Not a realistic model for modern hardware with out-of-order execution:
e ——
@ what other processors see is determined by complex optimizations to

caching

~~ need to understand how caches work
e e S—

Memory Consistency Sequential Consistency 19/48

The MESI Protocol: States Ty |

Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M, E, §,I:

M — a5 E I: itis invalid and is ready for re-use
S |1

Memory Consistency The MESI Protocol 20/48

The MESI Protocol: States 1Ty |

Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

e programs often access the same memory area repeatedly (e.g. stack)

° keepiwggl_nliggr image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M.E.S. T
— a4
M = F

A

Memory Consistency The MESI Protocol 20/48

The MESI Protocol: States iy

Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memaory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy
Each cache line is in one of the states M, E, S, I:
I: itis invalid and is ready for re-use

_ﬂ_p
M 2 F Y o
S: other caches have an identical copy

‘H } & of this cache line, it is shared

S | 1

Memory Consistency The MESI Protocol 20/48

The MESI Protocol: States

Processors (and also: GPUs, intelligent 1/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M, E, S, I

I: itis invalid and is ready for re-use

E S: other caches have an identical copy
} } of this cache line, it is shared
E:

!

b

the content is in no other cache; it is
exclusive to this cache and can be

S I overwritten without consulting other
«h caches
Memory Consistency The MESI Protocol

The MESI Protocol: States

Processors (and also: GPUs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy

Each cache line is in one of the states M, E, §,I:

—d I: it is invalid and is ready for re-use
S: other caches have an identical copy

Hf } } of this cache line, it is shared

the content is in no other cache; it is
exclusive to this cache and can be
i overwritten without consulting other
S Kk I caches
the content is exclusive to this cache
and has furthermore been modified

~- the state of cache lines is kept consistent by sending messages

M:

The MESI Protocol

Memory Consistency

Ty |

20/48

The MESI Protocol: States iy

Processors (and also: GPUSs, intelligent I/O devices) use caches to avoid a
costly round-trip to RAM for every memory access.

@ programs often access the same memory area repeatedly (e.g. stack)
@ keeping a local mirror image of certain memory regions requires
bookkeeping about who has the latest copy
Each cache line is in one of the states M. E, S, I:
I: itis invalid and is ready for re-use

—d
b
E S: other caches have an identical copy
y & of this cache line, it is shared
E:

the content is in no other cache; it is

M

H

exclusive to this cache and can be
overwritten without consulting other
caches

the content is exclusive to this cache
and has furthermore been modified

Kk

M:
-

Memory Consistency The MESI Protocol

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an
address

21/48

Memory Consistency The MESI Protocol

Ty |

Moving data between caches is coordinated by sending messages [McK10]:

The MESI Protocol: Messages

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message

, _a .,
carries the data at the requested address M b E
I
S = 1
21/

Tlky |

Moving data between caches is coordinated by sending messages [McK10]:

The MESI Protocol: Messages

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message
carries the data at the requested address

@ Invalidate: asks others to evict a cache line

e Invalidate Acknowledge: reply indicating that
an address has been evicted

M i~ E

A

)

Moving data between caches is coordinated by sending messages [McK10]:

The MESI Protocol: Messages

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message,

a>
carries the data at the requested address M o F
@ Invalidate: asks others to evict a cache line I{ f } }
I
S = T
2180

The MESI Protocol: Messages

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an
address

e R R nse: r n r m , a
c;ﬁgs tinga;leat ?ﬁg ?ecsqiégtgd Zad%rezzsage M 22—~ F

@ Invalidate: asks others to evict a cache line

@ Invalidate Acknowledge: reply indicating that I(f }}
an address has been evicted

@ Read Invalidate: like Read + Invalidate (also [
called “read with intend to modify”) S — I

21/48

Memory Consistency The MESI Protocol

21/48

Memory Consistency The MESI Protocol

Ty |

Moving data between caches is coordinated by sending messages [McK10]:

The MESI Protocol: Messages

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message
carries the data at the requested address

@ Invalidate: asks others to evict a cache line

@ Invalidate Acknowledge: reply indicating that
an address has been evicted

M G- E

H &

@ Read Invalidate: like Read + Invalidate (also I
called “read with intend to modify”) S 1
@ Writeback: info on what data has been sent to
main memary
S
MESI Example Tl |
Consider how the following code might execute:
Thread A Thread B
a = 1; // A.1 while (b == 0) {}; // B.1
b =1; // A.2 assert(a == 1); // é;z
@ in all examples, the initial values of variables are assumed to be 0
-4
2L

[y

Moving data between caches is coordinated by sending messages [McK10]:

The MESI Protocol: Messages

@ Read: sent if CPU needs to read from an
address

@ Read Response: response to a read message,
carries the data at the requested address

@ Invalidate: asks others to evict a cache line

_a
M 22— F
@ Invalidate Acknowledge: reply indicating that }f }}
an address has been evicted

@ Read Invalidate: like Read + Invalidate (also i
called “read with intend to modify”) S &= 1

@ Writeback: info on what data has been sent to
main memory

We mostly consider messages between processors. Upon (Read) Invalidate,

a processor replies with Read Response/ Writeback before the Invalidate
Acknowledge is sent. ’ -

MESI Example

Consider how the following code might execute:

Thread A Thread B
a = 1; // ALl while (b == 0) {}; // B.1
b =1; // A.Z assert(a == 1); // B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines
@ assume that a cache line is larger than the variable itself

22/48

Memory Consistency The MESI Protocol

MESI Example

Consider how the following code might execute:

Thread A Thread B
a = 1; // ALl while (b == 0) {}; // B.1l
b = 1; // A.2 assert(a == 1); // B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines
@ assume that a cache line is larger than the variable itself

@ we write the content of a cache line as
» Mx: modified, with value x

R
Memory Consistency The MESI Protocol 22/48

MESI Example (1)

Thread A Thread B
a = 1; /7 ALl while (b == 0) {}; // B.1l
b =1; // A2 assert(a == 1); // B.2
state- CPUA CPUB | RAM | message
ment a b al b alb
A I I I I 010 read invalidate of a from CPU A
I I I I 00 invalidate ack. of a from CPU B
I I bt 010 read response of a=0 from RAM
B.1 M1 ' ' 00 read of b from CPU B
M1 b 0] 0 read response with b=0 from RAM
B.1 M1 | | | |EO|O]|O
Az |M1 I EO | 01 01 roaq invalidate of b from CPU A
M1 I|EOO0]0 read response of b=0 from CPU B
M1 S0 1]S0| 00 invalidate ack. of b from CPU B
M1 | M1 ||| | 0|0

23/48

Memory Consistency The MESI Protocol

Tl |

MESI Example (1) iy

Thread A Thread B
a = 1; // A1 while (b == 0) {}; // B.1l
b = 1; // D.2 assert(a == 1); // B.2
state- | CBPUA CPUB || RAM | message
ment | a b [al b |afb
ar D0 O ead invalivate of 4 from CRUA
Lot 00 nvaliate ack. of 2 from GPU B
| | | | 00
read response of a=0 from RAM
B.1 LA b 010 read of b from CPU B
= Mt 00 e ag response with b=0 from RAM
B.1 M1 | I TE0O 0|0
é_g M1 EO 100 read invalidate of b_from CPU A
M1 1 | JEO OO read response of b=0 from CPU B
M11S0 1 180)0]0 invalidate ack. of b from CPU B
M1 | M1 ([T || 0|0 —
/48

MESI Example (1)

Thread A Thread B
a 1; // AL while (b == 0) {}; / Byl
b =1; // A.2 assert(a == 1); '/ B.2
state- CPUA CPUB RAM | message
ment a b a b alb
Bt MU IMTE T 0 0 eag0f b from CPU B
MM b0 10 D e back of b=1 from GPU A
B2 (MTISTRT 183001 oadof afrom CPUB
M1 Sl ST 01T P back of a=1 from CPU A
S1 | S1 S1 | S1 111

S1/s1/81|811]1

A. invalidate of a from CPU A
- S1 | S1 -

L St i alidate ack. of a from GPU B
M1 ST L |S1[1]1 —=
210

MESI Example: Happened Before Model

Idea: each cache line one process, A caches b=0 as E B cachesa=0asE
a=1 _ b=1

~in alidate
fead
wnteback

'éad
wnteback

Observations:

@ each memory access must complete before executing next instruction
~ add edge

Memory Consistency

The MESI Protocol 25/48

Can MESI Messages Collide? Ty]

If two processors emit a message at the same time, the protocol might break.

Access to common bus is coordinated by an arbiter:
T ——

Memory Consistency The MESI Protocol 26 /48

Ty |

MESI Example: Happened Before Model 1y |

Idea: each cache line one process, A caches b=0 as E, B cachesa=0as E

. a=1 _ b=1
-_1 Ea '

e]
'

-../ead
inalidate ...
..Iead

_readres
write €

Observations:

@ each memory access must complete before executing next instruction
~~ add edge
@ second execution of test b==0 stays within cache ~- no traffic
Memory Consistency

The MESI Protocol 25/48

Can MESI Messages Collide? Ty

If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter:

Cme.mgry

arbiter

Snape, Snape, Severus Snaps

]\
I/O

L

source: YouTube “The Mystericus Ticking Noise”
Memory Consistency

The MESI Protocol 26 /48

Can MESI Messages Collide?

If two processors emit a message at the same time, the protocol might break.
Access to common bus is coordinated by an arbiter:

CPUA

Dumbledorel

arbiter

memory

/ N
CPUB 110

-

source: YouTube “The Mysterious Ticking Noise”™
Memory Consistency

The MESI Protocol 26 /48

Out-of-Order Execution
performance problem: writes always stall

Thread A

Thread B
a=1; // A.1l while (b == 0) {}; // B.1l
b =1; // A.2 assert(a == 1); // B.2
A _ a=1 _ - b=1
<« -
Sa—» - _."r
§b— = 1
[P2
‘e T e ¥ § 95
o @ 2 ® ©v & 90 o
I = 8 & 2 T o=
- =g = 2 e
2 2 = e
J b
B

Memory Consistency Out-of-Order Execution of Stores

%

Ty

28/48

Summary

Ty |

Sequential consistency:

@ a characterization of well-behaved programs

o a model for different speed_ of execution

@ for fixed paths through the threads and a total order between accesses to

the same variable: executions can be illustrated by happened-before
diagram with one process per variable

@ MESI cache coherence protocol ensures SC for processors with caches

—

e ———

Memory Consistency The MESI Protocol

27/48

