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How to analyze and improve the time (and space) complexity
of functional programs

Based largely on Richard Bird's book
Introduction to Functional Programming using Haskell.

Assumption in this section:

Reduction strategy is innermost (call by value, cbv)

e Analysis much easier
e Most languages follow cbv

e Number of lazy evaluation steps < number of cbv steps
= (O-analysis under cbv also correct for Haskell
but can be too pessismistic
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Basic assumption:
T¢(n) = number of steps required for the evaluation of £

One reduction step takes one time unit . .
when applied to an argument of size n

(No guards on the left-hand side of an equation,
if-then-else on the righ-hand side instead)

Justification:

The implementation does not copy data structures
but works with pointers and sharing

Example: length (_ : xs) = length xs + 1
Reduce length [1,2,3]

Compare: id [] = []

id (x:xs) = x : id xs
Reduce id [el,e?2]
Copies list but shares elements.
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T:(n) = number of steps required for the evaluation of £
when applied to an argument of size n
in the worst case

What is “size"?
e Number of bits. Too low level.

Better: specific measure based on the argument type of £

[ ]

e Measure may differ from function to function.

Frequent measure for functions on lists: the length of the list
We use this measure unless stated otherwise

Sufficient if £ does not compute with the elements of the list
Not sufficient for function ...

How to calculate (not mechanically!) Te(n):

@ From the equations for £ derive equations for T
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Example
(] ++ ys = ys
(x:x8) ++ ys = x : (xs ++ ys)
How to calculate (not mechanically!) Te(n):
® From the equations for £ derive equations for T
® If the equations for T; are recursive, solve them
D O
Example Example
[ ++ ys = ys () ++ ys e
(x:x8) ++ ys = x : (X8 ++ ys) (x:x8) ++ ys = x : (xs ++ ys)
T++(0,n) = 0(1) T++(0,n) = 0(1)

T++(m+1,n) =




= T++(m,n) = O(m)
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Example Example
[ ++ ys = ys () ++ ys e
(x:x8) ++ ys = x : (X8 ++ ys) (x:x8) ++ ys = x : (xs ++ ys)
T++(0,n) = 0(1) T+4+(0, n) = 0(1)
T++(m—|— 1, n) = T++(m, n) + O(l) T++(m + 1, n) = T++(m, n) + O(l)
= T4++(m,n) = O(m)
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Example Example
[ ++ ys = ys () ++ ys e
(x:x8) ++ ys = x : (X8 ++ ys) (x:x8) ++ ys = x : (xs ++ ys)
T++(0,n) = 0(1) T++(0,n) = 0(1)
T++(m—|— 1, n) = T++(m, n) + O(l) T++(m + 1, n) = T++(m, n) + O(l)

= T4++(m, n) = O(m)

Note: (++) creates copy of first argument
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Example
[ ++ ys - s Example
(x:x8) ++ ys = x : (X8 ++ ys) reverse [] = [
reverse (x:xs) = reverse xs ++ [x]
T++(0: n) = O(l)
Tes(m+1,n) = Tes(m, n)+ O(1) Treverse(0) = 0(1)
Treverse(n+1) =
= T4++(m,n) = O(m)
Note: (++) creates copy of first argument
Principle:
Every constructor of an algebraic data type takes time O(1).
A constant amount of space needs to be allocated.
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Example Example

reverse []
reverse (x:xs)

Treverse(0) =
Treverse(n+1) =

(]

reverse xs ++ [x]
O(1)
Treverse(n)

reverse []
reverse (x:xs)

Treverse(0) =
Treverse(n+1) =

= [

reverse xs ++ [x]

o(1)

Treverse(n) + T++(n, 1)
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Example Sum up all Tg(ny, ..., nk)
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
Treverse(0) = 0(1)
Treverse(” + 1) = Treverse(”) + T++(n, 1)
= Treverse(n) = O(”z)
&, | &
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The worst case time complexity of an expression e:

Sum up all T¢(nq, ..., ng)
where f e ...e, is a function call in e
and n; is the size of ¢

(assumption: no higher-order functions)

Note: examples so far equally correct with ©(.) instead of O(.),

both for cbv and lazy evaluation. (Why?)
Consider min xs = head(sort xs)
Tnin(n) = Tsort(n) + Thead(n)
For cbv also a lower bound, but not for lazy evaluation.

Complexity analysis is compositional under cbv

13.2 Optimizing functional programs
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13.2 Optimizing functional programs

Premature optimization is the root of all evil

13.2 Optimizing functional programs

Premature optimization is the root of all evil
Don Knuth

But we are in week n — 1 now ;-)
The ideal of program optimization:

® Write (possibly) inefficient but correct code

® Optimize your code and prove equivelence to correct version

C
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No duplication

Eliminate common subexpressions with where (or let)

No duplication

Eliminate common subexpressions with where (or let)
Example

£ % =g (h x> (hx)




No duplication

Eliminate common subexpressions with where (or let)
Example
fx=p x>

fx=gyy where y =hx

Tail recursion / Endrekursion

The definition of a function £ is tail recursive / endrekursiv

Tail recursion / Endrekursion

The definition of a function f is tail recursive / endrekursiv
if every recursive call is in “end position”,

Tail recursion / Endrekursion

The definition of a function £ is tail recursive / endrekursiv
if every recursive call is in "end position",

= it is the last function call before leaving £,

= nothing happens afterwards




Tail recursion / Endrekursion

The definition of a function f is tail recursive / endrekursiv
if every recursive call is in “end position”,

= it is the last function call before leaving £,

= nothing happens afterwards

= no call of f is nested in another function call

Tail recursion / Endrekursion

The definition of a function £ is tail recursive / endrekursiv
if every recursive call is in "end position",

= it is the last function call before leaving £,

= nothing happens afterwards

= no call of £ is nested in another function call

Example

0
length xs + 1

length []
length (x:xs)

Tail recursion / Endrekursion

The definition of a function f is tail recursive / endrekursiv
if every recursive call is in “end position”,

= it is the last function call before leaving f,

= nothing happens afterwards

= no call of f is nested in another function call

Example

0
length xs + 1

length []
length (x:xs)

length2 []
length2 (x:xs)

=]
I

n
length2 xs (n+1)

=]
I

%.ength 0]

0
length xs + 1

length (x:xs)

length2 []
length2 (x:xs)

=]
Il

n
length2 xs (n+1)

=]
Il
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length2 []
length2 (x:xs)

n
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Compare executions:

length [a,b,c]

length [b,c] + 1

0

length xs + 1

n
length2 xs (n+1)

(length [c] + 1) + 1
((length [1 + 1) + 1) + 1
= ((0+1) +1) +1

3

length2 [a,b,c] O

0
length xs + 1

Elf&.ength 0]
length (x:xs)

length2 [] n
length2 (x:xs) n

n
length2 xs (n+1)

Compare executions:

length [a,b,c]

= length [b,c] + 1

(length [c] + 1) + 1
((length [] + 1) + 1) + 1
= ((0+1) +1) +1

3

length2 [a,b,c]
= length2 [b,c]
length2 [c]
length2 []

W NN = O
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length (x:xs)

length2 []
length2 (x:xs)

n
n

Compare executions:

length [a,b,c]

length [b,c] + 1

0

length xs + 1

n
length2 xs (n+1)

(length [c] + 1) + 1
((length [1 + 1) + 1) + 1
((o+ 1) +1) +1

3

length2 [a,b,c]

length2 [b,c]
length2 [c]
length2 []

3

W N = O

H|&| . . . . . .
~—=vract Tail recursive definitions can be compiled into loops.
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—=ract Tail recursive definitions can be compiled into loops.

Not just in functional languages.

No (additional) stack space is needed
to execute tail recursive functions

Example

length2 [] n = n
length2 (x:xs) n length2 xs (n+1)

m& . . . - o
~—=vract Tail recursive definitions can be compiled into loops.

Not just in functional languages.

No (additional) stack space is needed
to execute tail recursive functions

Example
length2 [] n = n
length2 (x:xs) n = length2 xs (n+1)
~
loop: if null xs then return n
Xs := tail xs
n := n+l

goto loop
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What does tail recursive mean for

f x = if b then e} else e
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What does tail recursive mean for
f x = if b then e else e

e { does not occur in b

e if f occurs in g then only at the outside: i =f ...

Tail recursive example:

f x = if x > 0 then f(x-1) else f(x+1)
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Accumulating parameters

What does tail recursive mean for

f x = if b then e} else e

e f does not occurin b

e if f occurs in g then only at the outside: ¢ =1 ...

Tail recursive example:
f x = if x > 0 then f(x-1) else f(x+1)

Similar for guards and case e of:
e f does not occur in e

e if f occurs in any branch then only at the outside: ...

CICY BI&% ) ength []

: 0
Accumulating parameters

length xs + 1

length (x:xs)

An accumulating parameter is a parameter where intermediate length2 [] n = n

results are accumulated. length2 (x:xs) n length2 xs (n+1)

Compare executions:

length [a,b,c]

length [b,c] + 1

(length [c] + 1) + 1
((length [] + 1) + 1) + 1
((o+1) +1) +1

=3

length2 [a,b,c]
length2 [b,c]
length2 [c]
length2 []

3

o
W NN = O
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An accumulating parameter is a parameter where intermediate
results are accumulated.
Purpose:

e tail recursion
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An accumulating parameter is a parameter where intermediate
results are accumulated.
Purpose:

e tail recursion

e replace (++) by (:)

Accumulating parameters

An accumulating parameter is a parameter where intermediate
results are accumulated.
Purpose:

e tail recursion

e replace (++) by (:)

length2 [] n = n
length2 (x:xs) n length2 xs (n+1)

Accumulating parameter: reverse

reverse [] = [I
reverse (x:xs) reverse xs ++ [x]

Treverse(n) = O(”Z)

XS
itrev xs (x:ys)

itrev [] xs
itrev (x:xs) ys
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Accumulating parameter: reverse

reverse [] 1l
reverse (x:xs) = reverse xs ++ [x]

Treverse(n) = O(”z)

XS

itrev [] xs
itrev (x:xs) ys

itrev xs (x:ys)

Not just tail recursive also linear:

Titrev(0,n) = 0(1)
Titrey(m+1,n) = Titrey(m,n)+ O(1)

Accumulating parameter: reverse

(]

reverse (x:xs) = reverse xs ++ [x]

reverse []

Treverse(n) = O(”Z)

X8

itrev [] xs
itrev (x:xs) ys

itrev xs (x:ys)

Not just tail recursive also linear:

Titrev(0.n) = 0(1)

Titrev(m+1,n) = Tigrey(m,n)+ O(1)

= Titrev(m,n) = O(m)

=

[
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Accumulating parameter: tree flattening

L)

Accumulating parameter: tree flattening

data Tree a = Tip a | Node (Tree a) (Tree a)




Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [al]
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

Accumulating parameter: tree flattening

data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [a]
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

Tf1at(1) o(1)

Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [a]
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

Tr1at(1) = 0(1)
Triat(h+1) = 2xTe1ae(h) +

Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [al
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

T£1at(1)
Tf1at(h+1)

0(1)
2 % Tflat(h) + T++




Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [al]
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

Tr1at(1) = 0(1)
Triac(h+1) = 2% Teyae(h) + Tea(20.27)

Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [a]
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

T£1at(1) = 0(1)
Teiat(h+1) = 2% Teyae(h) + Tea(20.27)
= 2% Te1a¢(h) + O(2")

Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [a]
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

Tr1at(1) = 0(1)
Triac(h+1) = 2% Teyae(h) + Tea(20.27)
= 2% Tg1a5(h) + O(2")

= T1at(h) = O(h=2")

Accumulating parameter: tree flattening
data Tree a = Tip a | Node (Tree a) (Tree a)

flat (Tip a) = [al
flat (Node t1 t2) = flat t1 ++ flat t2

Size measure: height of tree (height of Tip = 1)

T£1at(1) = 0(1)
Teiat(h+1) = 2% Teyae(h) + Tea(20.27)
= 2% Tg1ag(h) + O(2%)

= Tg1at(h) = O(h=2")

With accumulating parameter:

flat2 :: Tree a —> [a] -> [a]
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foldr £ z [] = z
foldr f z (x:xs) f x (foldr f z xs)

foldr f z [x1,...,xn] = x1 ‘f¢ (... ‘f¢ (xn ‘f¢ z)...)
Tail recursive, second parameter accumulator:
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foldr f z [] = z foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs) foldr f z (x:xs) = f x (foldr f z xs)

foldr f z [x1,...,xn] = x1 ‘f¢ (... ‘f¢ (xn ‘f¢ z)... foldr f z [x1,...,xn] = x1 ‘f¢ (... ‘f¢ (xn ‘f¢ z)...)

Tail recursive, second parameter accumulator: Tail recursive, second parameter accumulator:

foldl £ z [] = z foldl £ z [] = z

foldl f z (x:xs) = foldl (f z x) xs foldl f z (x:xs) = foldl (f z x) xs
foldl f z [x1,...,xn] = (...(z “f¢ x1) ‘f¢ ...) ‘f¢ xn

Relationship between foldr and foldl:




Accumulating parameter: foldl

foldr £ z [] = z
foldr f z (x:xs) f x (foldr f z xs)

foldr f z [x1,...,xn] = x1 ‘f¢ (... ‘f¢

Tail recursive, second parameter accumulator:

foldl £ z [] = z
foldl f z (x:xs) = foldl (f z x) xs

foldl f z [x1,...,xn] = (...(z ‘f¢ x1) ‘f¢ ...) ‘f¢

Relationship between foldr and foldl:
Lemma foldl f e = foldr f e

(xn ‘f¢ z)...

Xn

Accumulating parameter: foldl

foldr £ z [] = z
foldr f z (x:xs) f x (foldr f z xs)

foldr f z [x1,...,xn] = x1 ‘f¢ (... ‘f° (xn ‘f¢ z)...
Tail recursive, second parameter accumulator:

foldl £ z [] = z

foldl f z (x:xs) = foldl (f z x) xs

foldl f z [x1,...,xn] = (...(z “f¢ x1) ‘f¢ ...) ‘f¢

Relationship between foldr and foldl:

foldr f e
(f(

Lemma foldl f e =

if £ is associative and e Xx =x ‘f° e.

Xn

Tupling of results

Tupling of results

Typical application:

Avoid multiple traversals of the same data structure
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Typical application:
Avoid multiple traversals of the same data structure

average :: [Float] -> Float
average xs = (sum xs) / (length xs)

Requires two traversals of the argument list.

Tupling of results

Typical application:
Avoid multiple traversals of the same data structure

average :: [Float] -> Float
average xs = (sum xs) / (length xs)

Requires two traversals of the argument list.

Avoid intermediate data structures

Avoid intermediate data structures

Typical example: map g . map f = map (g . £)




Avoid intermediate data structures

Typical example: map g . map f = map (g . f)

Another example: sum [n..m]

Precompute expensive computations

Precompute expensive computations

search :: String -> String -> Bool

Precompute expensive computations

search :: String -> String -> Bool
search text s =
table_search (hash_table text) (hash s,s)




Precompute expensive computations

search :: String -> String -> Bool
search text s =
table_search (hash_table text) (hash s,s)

bsearch = search bible

Precompute expensive computations

search :: String -> String -> Bool
search text s =
table_search (hash_table text) (hash s,s)

bsearch = search bible

> map bsearch ["Moses", "Goethe"]

Precompute expensive computations

search :: String -> String -> Bool
search text s =
table_search (hash_table text) (hash s,s)

bsearch = search bible

> map bsearch ["Moses", "Goethe"]

Better:

search text = \s -> table_search ht (hash s,s)
where ht = hash_table text

Lazy evaluation




Lazy evaluation

Not everything that is good for cbv is good for lazy evaluation

Lazy evaluation

Not everything that is good for cbv is good for lazy evaluation

Example: length2 under lazy evaluation

(m)[@]

length []
length (x:xs)

length2 [] n
length2 (x:xs) n

Compare executions:

length [a,b,c]

=3

length2 [a,b,c]
length2 [b,c]
length2 [c]
length2 []

length [b,c] + 1

(length [c] + 1) + 1
((length [] + 1) + 1) + 1
((o+1) +1) +1

W N = O

0
length xs + 1

n
length2 xs (n+1)

Lazy evaluation

Not everything that is good for cbv is good for lazy evaluation

Example: length2 under lazy evaluation
In general: tail recursion not always better under lazy evaluation

Problem: lazy evaluation may leave many expressions unevaluated
until the end, which requires more space
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Lazy evaluation Lazy evaluation

Not everything that is good for cbv is good for lazy evaluation Not everything that is good for cbv is good for lazy evaluation
Example: length2 under lazy evaluation Example: length2 under lazy evaluation
In general: tail recursion not always better under lazy evaluation In general: tail recursion not always better under lazy evaluation
Problem: lazy evaluation may leave many expressions unevaluated Problem: lazy evaluation may leave many expressions unevaluated
until the end, which requires more space until the end, which requires more space
Space is time because it requires garbage collection — not counted Space is time because it requires garbage collection — not counted

by number of reductions! by number of reductions!




