T W E @ D <> ¢ f F 4) @ Fiod:32 Q

e 3

[

()&

Script generated by TTT General format (observe layout!):

do a

Title: Nipkow: Info2 (12.12.2014) n

where each a; can be one of

Date: Fri Dec 12 08:31:03 CET 2014

® an action

. . Effect: execute action
Duration: 30:17 min)
e x <- action

Pages: 62 Effect: execute action :: IO a, give result the name x :: a
e let x = expr
Effect: give expr the name x
Lazy: expr is only evaluated when x is needed!
#® Terminal Shell Edit View Window Help @ 4D <> ¢ $ “I° «) @ Fri08:33 Q = ® Terminal Shell Edit View Window Help @ D <> « | = «) @& Fi08:34 Q =
I EN N HENE
S Case study s | Code — ghe — 70x24
=
[/ 1
| 2
I
I
I
Word: ——-
= Missed: e
18006 (] Code — bash — 80x24) 9

Last | ¢ Distinguished Affiliated Professor for Logic in Informatics at TUM!=/Lli= =] g‘

=

Tlargz:-u <li=0ur former team member G

Connet erwin Klein</a= was awarded the <a href="http://www.gi-ev.de/wir-ueber-uns/wetth

Escapt
Kkthia
got ki
fdfds,
got i
gquit

goodby
Connes
lapni
fUser:
lapni

ewerbe/dissertationspreistraegerinnen/">GI dissertation prize</a= for his thesis
about
verifying the Java bytecode verifier</a= in Isabelle/HOL!</li=
<ful=
<fdiv=
</div=
<fdiv=

<div class="hr"=>
<hr /=
</div=

=div id="footer"=
<psLast updated: 2814-88-19 17:23:13 - Impressum</a
=i
<fdiv=
</body=
</html=

lapnipkowld: Code nipkows _

@ D <> ¢ § =) & Fri0g:3s Q :i=

® Terminal Shell Edit View Window Help @ O <> « § = «) @& Fri08:34 Q = ® Terminal Shell Edit View Window Help
g || Code — ghc — 70%x24 gI |_|Code — ghc — 70x24 ")
]
[/ | [/ |
| o | o
I [/]
I I
I I
Word: -a—-— Word: -a—
Missed: eg Missed: egsm
a m
Terminal She Edit View Window Help D &> x =" «) @@= Fri(08:35 = Terminal Shel Edit View Window Help DRSNS = 4) @@= Fri08:36 =
[3 inal Shell Ed d | m D = 4 Q = [4 inal Shell Ed d | m D b = 4 Q =
g || Code — ghc — 70%x24 gI |_|Code — ghc — 70x24
[/ | [/ |
I | o
A VAR
I | 7/
I I
Word: -a—-— Word: —-a—
Missed: egsmt Missed: egsmtk
k

t

#® Terminal Shell Edit View Window Help @ D <> « 1 = «) @& Fri08:36 Q = ® Terminal Shell Edit View Window Help @ D <> « + = «) @& Fi08:37 Q :
‘m| e | (| |
-__#‘I-%J || Code — ghc — 70%x24 ol -_%‘I-,;‘le |_|Code — ghc — 70x24
[/ | [/
| o I
[71\ I
[7\ I
I I
Word: -a—-— Word: haskell
Missed: egsmtky Missed:
YOU ARE DEAD: jazz YOU WIN!
Input secret word: Input secret word: —“CInterrupted.
*Main>

G o

main :: I0 () main :: I0 Q)

main = do putStr "Input secret word: " main = do putStr "Input secret word: "

word <- getWord "™
clear_screen
guess word

guess :: String -> I0 () guess :: String -> 10 O
guess word = loop "" "" gallows guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0Q)

@
E

C

guess :: String -> I0 ()

guess :: String -> I0 ()
guess word = loop "" "" gallows where

guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0(Q) loop :: String -> String -> [String] -> I0Q)
loop guessed missed gals = loop guessed missed gals =
do let word’ =

map (\x -> if x ‘elem‘ guessed
then x else ’-7)

word

@
E

C

guess :: String -> I0 ()
guess word = loop "" "" gallows where
loop :: String —-> String -> [String] -> I0(Q)

loop guessed missed gals =

do let word’ =
map (\x -> if x ‘elem‘ guessed

then x else ’-?)

word
writeAt (1,1)

:: String -> I0 ()

guess
guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0Q)

loop guessed missed gals

do let word’ =

map (\x -> if x ‘elem‘ guessed
then x else ’-’)

word

writeAt (1,1)

(head gals ++ "\n"

=SS =%
guess :: String -> I0 () guess :: String -> 10 O
guess word = loop "" "" gallows where guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0(Q) loop :: String -> String -> [String] -> I0Q)
loop guessed missed gals = loop guessed missed gals =
do let word’ = do let word’ =
map (\x -> if x ‘elem‘ guessed map (\x -> if x ‘elem‘ guessed
then x else ’-7) then x else ’-7)
word word
writeAt (1,1) writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++ (head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")
=%

guess :: String -> I0 ()

guess word = loop "" "" gallows where
loop :: String —-> String -> [String] -> I0(Q)
loop guessed missed gals =

do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-7)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==

guess :: String -> I0 ()
guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0Q)
loop guessed missed gals

do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-7)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==
then putStrLn ("YOU ARE DEAD: " ++ word)

guess :: String -> I0 ()

guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0(Q)
loop guessed missed gals =

do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-?)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==
then putStrLn ("YOU ARE DEAD: " ++ word)
else if word’ == word then putStrLn "YOU WIN!'"

guess :: String -> I0 ()
guess word = loop "" "" gallows where
loop :: String -> String -> [String] -> I0Q)
loop guessed missed gals

do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-7)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==
then putStrLn ("YOU ARE DEAD: " ++ word)
else if word’ == word then putStrLn "YOU WIN!'"
else do c <- getChar
let ok = c ‘elem‘ word

guess :: String -> I0 ()

guess word = loop "" "" gallows where

loop :: String —-> String -> [String] -> I0(Q)
loop guessed missed gals =
do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-?)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==
then putStrLn ("YOU ARE DEAD: " ++ word)

else if word’ == word then putStrLn "YOU WIN!'"
else do c <- getChar
let ok = ¢ ‘elem‘ word

loop (if ok then c:guessed else guessed)

& TIT

@D < ¢ D 4) @ Fiogas Q =

guess ::

String -> I0 ()

or
guess word = loop "" "" gallows where S—
loop :: String -> String -> [String] -> I0Q)
loop guessed missed gals =
do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-’)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==
then putStrLn ("YOU ARE DEAD: " ++ word)

else if word’ == word then putStrLn "YOU WIN!'"
else do c <- getChar
let ok = ¢ ‘elem‘ word

loop (if ok then c:guessed else guessed)
(if ok then missed else missed++[c])

guess :: String -> I0 ()

guess word = loop "" "" gallows where

loop :: String -> String -> [String] -> I0(Q)
loop guessed missed gals =
do let word’ =
map (\x -> if x ‘elem‘ guessed
then x else ’-7)
word
writeAt (1,1)
(head gals ++ "\n" ++ "Word: " ++ word’ ++
"\nMissed: " ++ missed ++ "\n")

if length gals ==
then putStrLn ("YOU ARE DEAD: " ++ word)

else if word’ == word then putStrLn "YOU WIN!'"
else do c <- getChar
let ok = ¢ ‘elem‘ word

loop (if ok then c:guessed else guessed)
(if ok then missed else missed++[c])
(if ok then gals else tail gals)

o &

Once 10, always I0

RN (@ |
Once 10, always 10 [BUR) Once I0, always I0 WY
You cannot add 1/O to a function without giving it an I0 type You cannot add 1/0 to a function without giving it an I0 type
For example
sq :: Int -> Int cube :: Int -> Int
SqQ X = X*X cube X = X * s5q X
RN (@ |
Once 10, always 10 [BUR) Once I0, always I0 WY

You cannot add 1/O to a function without giving it an I0 type

For example

cube :: Int -> Int
cube x = x * 8q X

sq :: Int -> Int
§Q X = X*X

Let us try to make sq print out some message:

sq X = do putStr("I am in sq!")
return (x*x)

What is the type of sq now?

You cannot add 1/O to a function without giving it an I0 type

For example

cube :: Int -> Int
cube X = X * s5q X

sq :: Int -> Int
8Q X = X*X

Let us try to make sq print out some message:

sq x = do putStr("I am in sq!")
return (x*x)

What is the type of sq now? Int -> I0 Int

Separate 1/O from processing to reduce I0 creep:

Haskell is a pure functional language
Functions that have side effects must show this in their type
1/O is a side effect

(=)@
Separate 1/O from processing to reduce I0 creep: Separate 1/O from processing to reduce I0 creep:
main :: I0 O main :: I0 O
main = do s <- getLine main = do s <- getLine
let r = process s let r = process s
putStrln r putStrln r
main main

process :: String -> String
process s =

The simple way

Separate 1/O from processing to reduce I0 creep:
main :: I0 O
main = do s <- getLine

let r = process s

putStrln r

main
process :: String —> String
process s = ...

: I NEN .
The simple way The simple way
e type FilePath = String e type FilePath = String

® readFile :: FilePath -> IO String

The simple way The simple way
e type FilePath = String e type FilePath = String
® readFile :: FilePath -> IO String ® readFile :: FilePath -> IO String
Reads file contents lazily, Reads file contents lazily,
only as much as is needed
The simple way The simple way

e type FilePath = String
® readFile :: FilePath -> I0 String
Reads file contents lazily,
only as much as is needed
e writeFile :: FilePath -> String -> I0 (O

Writes whole file

e type FilePath = String

® readFile :: FilePath -> IO String

Reads file contents /azily,

only as much as is needed
e writeFile :: FilePath -> String -> I0 ()
Writes whole file

e appendFile :: FilePath -> String -> I0 ()

5]
]

[
g
g

The simple way

e type FilePath = String

® readFile :: FilePath -> IO String
Reads file contents lazily, import System.IO
only as much as is needed

e writeFile :: FilePath -> String -> I0 (O
Writes whole file

e appendFile :: FilePath -> String -> I0 ()

Appends string to file

| o || |
Handles

5]

[
!

Handles

data Handle data Handle

Opaque type, implementation dependent

L NEN | ||, |
Handles EI& Handles
data Handle data Handle
Opaque type, implementation dependent Opaque type, implementation dependent
Haskell defines operations to read and write characters Haskell defines operations to read and write characters
from and to files, represented by values of type Handle. from and to files, represented by values of type Handle.
Each value of this type is a handle: a record used by the
Haskell run-time system to manage /O with file system
objects.
- L NEN - | ||, |
Files and handles Files and handles

e data IOMode = ReadMode | WriteMode e data I0OMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode | AppendMode | ReadWriteMode
e openFile :: FilePath -> I0OMode -> I0 Handle

Creates handle to file and opens file

Files and handles

e data I0OMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode

e openFile :: FilePath -> I0Mode -> IO Handle

Creates handle to file and opens file

G

Files and handles

e data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode

e openFile :: FilePath -> I0OMode -> I0 Handle

Creates handle to file and opens file

5

e hClose :: Handle —> I0 () e hClose :: Handle -> I0 ()
Closes file
Basic actions
e getChar :: I0 Char

By convention
all 10 actions that take a handle argument begin with h

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

In ReadMode EI® In ReadMode HI&

e hGetChar :: Handle -> I0 Char e hGetChar :: Handle -> IO Char
® hGetLine :: Handle -> IO String ® hGetLine :: Handle -> IO String
e hGetContents :: Handle -> IO String

Reads the whole file /azily

In WriteMode (EI® In WriteMode EI®&

e hPutChar :: Handle -> Char -> I0 ()
e hPutStr :: Handle -> String -> I0 ()
e hPutStrLn :: Handle -> String -> I0 ()

hPutChar :: Handle -> Char -> I0 ()
hPutStr :: Handle -> String -> I0 ()
hPutStrLn :: Handle -> String -> I0 ()
hPrint :: Show a => Handle -> a -> I0 ()

stdin and stdout EI& stdin and stdout . E/%

e stdin :: Handle e stdin :: Handle
stdout :: Handle stdout :: Handle
e getChar = hGetChar stdin

putChar = hPutChar stdout

C
E

There is much more in the|Standard 10 Library|

