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type Name = String type Name = String
data Form = F | T

| Var Name
| Not Form
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type Name = String type Name = String
data Form =F | T data Form = F | T
Var Name Var Name

| |

| Not Form | Not Form
| And Form Form | And Form Form
| |

Or Form Form Or Form Form
deriving Eq deriving Eq

Example: Or (Var "p") (Not(Var "p")) Example: Or (Var "p") (Not(Var "p"))

More readable: symbolic infix constructors, must start with :

data Form = F | T | Var Name
| Not Form

| Form :&: Form

| Form :|: Form

deriving Eq
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show T = "T"

Pretty printing

par :: String -> String
par s = |r(|| ++ s ++ |I)II

instance Show Form where
show F = "F"
show T = "T"
show (Var x) = x

Pretty printing




instance Show Form where
show F = "F"
show T = "T"
show (Var x) = x
show (Not p) = par("~" ++ show p)
show (p :&: q) = par(show p ++ " & " ++ show q)
show (p :1: q) = par(show p ++ " | " ++ show q)
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Pretty printing Pretty printing
par :: String -> String par :: String -> String
par g = |I(Il ++ s ++ |r)|l par s = |r(|| ++ s ++ |I)II
instance Show Form where instance Show Form where
show F = "F" show F = "F"
show T = "T" show T = "T"
show (Var x) = x show (Var x) = x
show (Not p) = par("™" ++ show p) show (Not p) = par("™" ++ show p)
show (p :&: q) = par(show p ++ " & " ++ show q)
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Pretty printing Pretty printing
par :: String -> String par :: String -> String
par g = |I(Il ++ s ++ |r)|l par s = |r(|| ++ s ++ |I)II

instance Show Form where
show F = "F"
show T = "T"
show (Var x) = x
show (Not p) = par("™" ++ show p)
show (p :&: q) = par(show p ++ " & " ++ show q)
show (p :|: q) = par(show p ++ " | " ++ show q)

> Var "p" :&: Not(Var "p")




Pretty printing

par :: String -> String
par g = |I(Il ++ s ++ |r)|l

instance Show Form where
show F = "F"
show T = "T"
show (Var x) = x
show (Not p) = par("~" ++ show p)
show (p :&: q) = par(show p ++ " & " ++ show q)
show (p :1: q) = par(show p ++ " | " ++ show q)

> Var "p" :&: Not(Var "p")
p & ("p))
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Syntax versus meaning

Form is the syntax of boolean formulas, not their meaning:

Not (Not T) and T mean the same but are different:
Not(Not T) /=T
What is the meaning of a Form?

Its valuel!?

But what is the value of Var "p" ?

-— Wertebelegung
type Valuation = [(Name,Bool)]
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eval :: Valuation -> Form -> Bool
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eval :: Valuation -> Form -> Bool eval :: Valuation -> Form -> Bool
eval _ F = False eval _ F = False
eval _ T = True
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-— Wertebelegung -— Wertebelegung

type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool
eval _ F = False
eval T = True

eval v (Var x) = fromJust(lookup x V)

type Valuation =

eval :: Valuation
eval _ F = False
eval _ T = True
eval v (Var x)

eval v (Not p)

[(Name,Bool)]

-> Form -> Bool

fromJust (lookup x V)
not(eval v p)




-— Wertebelegung
type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool
eval _ F = False
eval T = True

eval v (Var x) = fromJust(lookup x V)
eval v (Not p) = not(eval v p)

eval v (p :&: q) = eval v p && eval v q
eval v (p :l: q) =eval vp || eval v q

-— Wertebelegung
type Valuation = [(Name,Bool)]

eval :: Valuation -> Form -> Bool
eval _ F = False
eval T = True

eval v (Var x) = fromJust(lookup x v)
eval v (Not p) = not(eval v p)

eval v (p :&: q) = eval v p && eval v q
eval v (p :l: q) =eval vp || eval v q

> eval [("a",False), ("b",False)]
(Not(Var "a") :&: Not(Var "b"))

BI% Il valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

E& 1| valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[1]




1%\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[1]

vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]

vals ["b"]

EI% A\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[]]

vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- wvals xs ]

vals ["b"]
= [("b" ,False) v | v <- vals []] ++
[("b",True):v | v <- vals []]

1%\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals []1 = [[]]

vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]

vals ["b"]

= [("b",False):v | v <- vals []] ++
[("b",True):v | v <= vals []]

= [("b",False):[]1] ++ [("b",True):[]1]

= [[("b",False)], [("b",True)]]

ValS [llall’ Ilbll]

EI% A\l valuations for a given list of variable names:

vals :: [Name] -> [Valuation]

vals [1 = [[]]

vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]

vals ["b"]

= [("b",False):v | v <- vals []] ++
[("b",True):v | v <- vals []]

= [("b",False):[]1] ++ [("b",True):[]1]

= [[("b",False)], [("b",True)]]

vals [!Ia",llbil]
= [("a”,False):v I v <- vals [”b"]] 44
[("a”,True):v I v <- vals ["b"]]




S% Al valuations for a given list of variable names: —

vals :: [Name] -> [Valuation] Does vals construct all valuations?

vals []1 = [[]]
vals (x:xs) = [ (x,False):v | v <- vals xs ] ++
[ (x,True):v | v <- vals xs ]

vals ["b"]

= [("b",False):v | v <- vals []] ++
[("b",True):v | v <= vals []]
[("b",False):[]] ++ [("b",True):[]1]
[[("b",False)], [("b",True)]]

vals ["a","b"]

= [("a",False):v | v <- vals ["b"]] ++

[("a",True):v | v <- vals ["b"]]

[[("a",False), ("b",False)], [("a",False),("b",True)]] ++
[[("a",True), ("b",False)], [("a",True), ("b",True)]]
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Does vals construct all valuations? Does vals construct all valuations?

prop_valsl xs =

prop_valsl xs =
length(vals xg) == 2 ° length xs

length(vals xs) ==

prop_vals2 xs =
distinct (vals xs)




Does vals construct all valuations?

prop_valsl xs =
length(vals xs) == 2 ° length xs
prop_vals2 xs =
distinct (vals xs)

distinct :: Eq a => [a] -> Bool
distinct [] = True
distinct (x:xs) = not(elem x xs) && distinct xs
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| Code — ghc — 62x21

TCast login: Fri Dec 5 ©8:09:36 on ttys@e4
122:~ nipkow$ cd Teaching/FP/1415/Code/
122:Code nipkow$ ghci

GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc—prim ... linking ... done.
Loading package integer—gmp ... linking ... done.
Loading package base ... linking ... done.

Prelude> :1 Form

[1 of 1] Compiling Form

0k, modules loaded: Form.
*Form> quickCheck prop_valsl
Loading package array-0.4.8.1 ... linking ... done.
Loading package deepseq-1.3.0.1 ... linking ... done.
Loading package old-locale-1.0.0.5 ... linking ... done.
Loading package time-1.4.8.1 ... linking ... done.
Loading package random-1.0.1.1 ... linking ... done.
Loading package containers-0.5.0.0 ... linking ... done.
Loading package pretty-1.1.1.0 ... linking ... done.
Loading package template-haskell ... linking ... done.
Loading package QuickCheck-2.6 ... linking ... done.

(32 tests)

( Form.hs, interpreted )
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E | Code — ghc — 6221

wCast login: Fri Dec 5 08:09:36 on ttys@e4

122:~ nipkow$ cd Teaching/FP/1415/Code/

122:Code nipkow$ ghci

GHCi, version 7.6.3: http://www.haskell.org/ghc/
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> :1 Form

[1 of 1] Compiling Form

0Ok, modules loaded: Form.
*Form> quickCheck prop_valsl

:? for help

( Form.hs, interpreted )

Restrict size of test cases:

prop_valsl’ xs =
length xs <= 10 ==>
length(vals xs) == 2 " length xs
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Satisfiable and tautology
Restrict size of test cases:
satisfiable :: Form -> Bool
prop_valsl’ xs =
length xs <= 10 ==>
length(vals xs) == 2 " length xs
prop_vals2’ xs =
length xs <= 10 ==> distinct (vals xs)
Demo
Ly )&
Satisfiable and tautology Satisfiable and tautology
satisfiable :: Form -> Bool satisfiable :: Form -> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form —-> Bool

satisfiable p = or [eval v p | v <- vals(vars p)]

tautology :: Form -> Bool
tautology = not . satisfiable . Not

vars :: Form -> [Name]
vars F = []
vars T = []
vars (Var x)
vars (Not p)

[x]

vars p




pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

> vals (vars p0)

pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

> vals (vars p0)

[[("a",False), ("b",False)], [("a",False),

[("a",True), ("b",False)], [("a",True),

("b",True)],
("b",True )]1]

pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

> vals (vars p0)

[[("a",False), ("b",False)],

[("a",True), ("b",False)], [("a",True),

> [ eval v p0 | v <- vals (vars p0) ]

[("a",False),

("b",True)],
("b",True )]1]




pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

> vals (vars p0)

[[(a",False), ("b",False)], [("a",False),("b",True)]l,
[("a",True), ("b",False)], [("a",True), ("b",True )]1]

> [ eval v pO | v <- vals (vars p0) 1]

[True, False, False, Truel

> satisfiable pO

True

pO :: Form
p0 = (Var "a" :&: Var "b") :|:
(Not (Var "a") :&: Not (Var "b"))

> vals (vars p0)

[[("a",False), ("b",False)], [("a",False),("b",True)],
[("a",True), ("b",False)], [("a",True), ("b",True )]1]

> [ eval v p0 | v <- vals (vars p0) ]

[True, False, False, Truel

> satisfiable pO

True

Simplifying a formula: Not inside?

isSimple :: Form -> Bool

Simplifying a formula: Not inside?

isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)




- Not inside?

isSimple (Not p)

isOp (Not p)
isOp (p :&: @)

isSimple (p :&: Q)

Simplifying a formula: Not inside?

Bool
= not (isOp p)

True
True
True
False
= 1isSimple p && isSimple q

Simplifying a formula
isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)
where
isOp (Not p) = True
isOp (p :&: q@) = True
isOp (p :1: @) = True
LS
Simplifying a formula
isSimple :: Form -> Bool
isSimple (Not p) = not (isOp p)
where
isOp (Not p) = True
isOp (p :&: q@) = True
isOp (p :1: @) = True
isOp p = False
isSimple (p :&: q) = 1isSimple p && isSimple q

- Not inside?

isSimple (Not p)

isOp (Not p)
isOp (p :&: @)

isSimple (p :&: Q)
isSimple (p :

Simplifying a formula: Not inside?

Bool
= not (isOp p)

True
True
True
False
= 1isSimple p && isSimple q
= 1isSimple p && isSimple q




Simplifying a formula: Not inside! Simplifying a formula: Not inside!

simplify :: Form -> Form

Simplifying a formula: Not inside! Simplifying a formula: Not inside!

simplify :: Form -> Form simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p) simplify (Not p) = pushNot (simplify p)
where

pushNot (Not p) =




LIS LJIES!
Simplifying a formula: Not inside! Simplifying a formula: Not inside!
simplify :: Form -> Form simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p) simplify (Not p) = pushNot (simplify p)
where where
pushNot (Not p) = p pushNot (Not p) = p
pushNot (p :&: q) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p =
=)@ ma
Simplifying a formula: Not inside! Simplifying a formula: Not inside!
simplify :: Form -> Form simplify :: Form -> Form
simplify (Not p) = pushNot (simplify p) simplify (Not p) = pushNot (simplify p)
where where
pushNot (Not p) = p pushNot (Not p) = p
pushNot (p :&: g) = pushNot p :|: pushNot g pushNot (p :&: q) = pushNot p :|: pushNot g
pushNot (p :|: q) = pushNot p :&: pushNot q pushNot (p :|: q) = pushNot p :&: pushNot q
pushNot p = Not p pushNot p = Not p
simplify (p :&: q) = simplify q :&: simplify g
simplify (p :|: @) = simplify p :|: simplify g
simplify p = p




Quickcheck

Quickcheck

—-— for QuickCheck: test data generator for Form
instance Arbitrary Form where
arbitrary = sized prop
where
prop 0 =
oneof [return F,
return T,
1liftM Var arbitraryl]
propn | n >0 =
oneof
[return F,
return T,
1iftM Var arbitrary,
1iftM Not (prop (n-1)),
1iftM2 (:&:) (prop(n ‘div‘ 2)) (prop(m ‘div‘ 2)),
1iftM2 (:|:) (prop(n ‘div‘ 2)) (prop(n ‘div‘ 2))]

prop_simplify p

isSimple(simplify p)

8.4 Structural induction




Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
Base case: Prove P(Empty) and

Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

To prove property P(t) for all finite t :: Tree a
Base case: Prove P(Empty) and

Induction step: Prove P(Node x t1 t2)
assuming the induction hypotheses P(t1) and P(t2).
(x, t1 and t2 are new variables)

Example

flat :: Tree a -> [a]
flat Empty = []
flat (Node x tl t2) =
flat t1 ++ [x] ++ flat t2

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Empty = Empty
mapTree f (Node x tl t2) =

Node (f %) (mapTree f t1) (mapTree f t2)

H|&|.emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t

Induction step:
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Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1)
IH2: flat (mapTree f t2)

map f (flat ti1)
map f (flat t2)

H|&|.emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))
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Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))

H|&|.emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x tl t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))

= flat (Node (f x) (mapTree f t1) (mapTree f t2))




@)% .emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)

H|&|.emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

—— by IH1 and IH2

map £ (flat (Node x tl1 t2))
= map f (flat t1 ++ [x] ++ flat t2)

@)% .emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

To show: flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

-- by IH1 and IH2
map f (flat (Node x tl t2))

map f (flat t1l ++ [x] ++ flat t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)

The general (regular) case

data T a = ...




@)% .emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f t1) map f (flat ti1)
IH2: flat (mapTree f t2) map f (flat t2)

flat (mapTree f (Node x tl t2)) =
map f (flat (Node x tl1 t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)
-- by IH1 and IH2
map f (flat (Node x tl t2))
map f (flat t1l ++ [x] ++ flat t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)
-- by lemma distributivity of map over ++

To show:

Note: Base case and -- by def of ... omitted

LS|

.emma flat (mapTree f t) = map f (flat t)

Proof by structural induction on t
Induction step:

IH1: flat (mapTree f ti1) map f (flat t1)
IH2: flat (mapTree f t2) map f (flat t2)

flat (mapTree f (Node x t1 t2)) =
map f (flat (Node x tl t2))

flat (mapTree f (Node x t1 t2))
flat (Node (f x) (mapTree f t1) (mapTree f t2))
flat (mapTree f t1) ++ [f x] ++ flat (mapTree f t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)
—— by IH1 and IH2
map £ (flat (Node x tl1 t2))
map f (flat t1 ++ [x] ++ flat t2)
map f (flat t1) ++ [f x] ++ map f (flat t2)
—— by lemma distributivity of map over ++

To show:

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T




Structural induction for Tree

data Tree a = Empty | Node a (Tree a) (Tree a)

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T
To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)
assuming the induction hypotheses P(x;) for all js.t. t; =T a




data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
th > ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(Ci x1 ... xp,)
assuming the induction hypotheses P(x;) for all j s.t.

Example of non-regular type: data T = C [T]

The general (regular) case

tJ,-:Ta

The general (regular) case

data T a = ...

Assumption: T is a regular data type:

Each constructor C; of T must have a type
t1 => ... >t, >Ta
such that each t; is either T a or does not contain T

To prove property P(t) for all finite t :: T a:
prove for each constructor C; that P(C; x1 ... xp,)
assuming the induction hypotheses P(x;) for all js.t. t; =T a

Example of non-regular type: data T = C [T]

e So far, only batch programs:

The problem

e Haskell programs are pure mathematical functions:

Haskell programs have no side effects
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The problem The problem
e Haskell programs are pure mathematical functions: e Haskell programs are pure mathematical functions:
Haskell programs have no side effects Haskell programs have no side effects
e Reading and writing are side effects: e Reading and writing are side effects:
Interactive programs have side effects
(=]« LIIEN

An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

An impure solution

Most languages allow functions to perform 1/0
without reflecting it in their type.

Assume that Haskell were to provide an input function

inputInt :: Int
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Most languages allow functions to perform /O
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int
Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

An impure solution

Most languages allow functions to perform 1/0
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int
Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

inputInt - inputInt = 0

An impure solution

Most languages allow functions to perform /O
without reflecting it in their type.

Assume that Haskell were to provide an input function
inputInt :: Int
Now all functions potentially perform side effects.

Now we can no longer reason about Haskell like in mathematics:

inputInt - inputlnt
inputInt + inputlnt

0
2*xinputInt

are no longer true.

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:
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The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a

is the type of (I/O) actions that return a value of type a.

Example

Char: the type of pure expressions that return a Char

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a
is the type of (1/0) actions that return a value of type a.
Example

Char: the type of pure expressions that return a Char

I0 Char: the type of actions that return a Char

The pure solution

Haskell distinguishes expressions without side effects
from expressions with side effects (actions) by their type:

I0 a
is the type of (I/O) actions that return a value of type a.
Example

Char: the type of pure expressions that return a Char
I0 Char: the type of actions that return a Char

I0 (): the type of actions that return no result value
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e Type () is the type of empty tuples (no fields).

O

e Type () is the type of empty tuples (no fields).
e The only value of type () is (), the empty tuple.

O

e Type () is the type of empty tuples (no fields).
e The only value of type () is (), the empty tuple.

e Therefore 10 () is the type of actions
that return the dummy value ()
(because every action must return some value)

Basic actions

e getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result




Basic actions

e getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output,
and returns no result

e return :: a -> I0 a

Performs no action,
just returns the given value as a result

LES) L) ES|
Basic actions Basic actions
e getChar :: IO Char e getChar :: IO Char
Reads a Char from standard input, Reads a Char from standard input,
echoes it to standard output, echoes it to standard output,
and returns it as the result and returns it as the result
e putChar :: Char -> I0 () e putChar :: Char -> I0 ()
Writes a Char to standard output, Writes a Char to standard output,
and returns no result and returns no result
e return :: a —> I0 a
Performs no action,
LIES (m)(=]
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LGS
Sequencing: do
A sequence of actions can be combined into a single action
with the keyword do
Example

get2 :: I0 7
get2 = do x <- getChar

Basic actions

e getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output,
and returns no result
e return :: a -> I0 a

Performs no action,
just returns the given value as a result




Sequencing: do

A sequence of actions can be combined into a single action
with the keyword do

Example

get2 :: I0 7

LGS
Sequencing: do
A sequence of actions can be combined into a single action
with the keyword do
Example

get2 :: I0 7

get2 = do x <- getChar get2 = do x <- getChar -- result is named x
getChar
=)@ ma
Sequencing: do Sequencing: do
A sequence of actions can be combined into a single action A sequence of actions can be combined into a single action
with the keyword do with the keyword do
Example Example

get2 :: I0 7

get2 = do x <- getChar -- result is named x
getChar —-— result is ignored
y <- getChar

get2 :: I0 7

get2 = do x <- getChar -- result is named x
getChar -- result is ignored
y <- getChar
return (x,y)
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Basic actions

e getChar :: IO Char

Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

e putChar :: Char -> I0 ()

Writes a Char to standard output,
and returns no result
e return :: a -> I0 a

Performs no action,
just returns the given value as a result

LES
Sequencing: do
A sequence of actions can be combined into a single action
with the keyword do
Example

get2 :: I0 (Char,Char)
get2 = do x <- getChar
getChar
y <- getChar
return (x,y)

-— result is named x
-- result is ignored

NS

General format (observe layout!):

do ap

dn

(#

Sequencing: do

A sequence of actions can be combined into a single action
with the keyword do

Example

get2 :: I0 (Char,Char)
get2 = do x <- getChar
getChar
y <- getChar
return (x,y)

-— result is named x
-- result is ignored
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General format (observe layout!): General format (observe layout!):

do ap do a;

an EN

where each a; can be one of where each a; can be one of

e an action
Effect: execute action

e an action

Effect: execute action
e x <- action

Effect: execute action :: I0 a, give result the name x :: a

e x <- action

Effect: execute action :: I0 a, give result the name x :: a
e let x = expr

Effect: give expr the name x
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Derived primitives
General format (observe layout!):

do ap

Write a string to standard output:
dn

putStr :: String -> I0 O
where each a; can be one of

e an action

Effect: execute action
e x <- action

Effect: execute action :: I0 a, give result the name x :: a
e let x = expr

Effect: give expr the name x

Lazy: expr is only evaluated when x is needed!




Read a line from standard input:

getlLine :: IO String

Read a line from standard input:

getLine :: I0 String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

Read a line from standard input:

getlLine :: IO String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

do xs <- getLine

Read a line from standard input:

getLine :: I0 String
getlLine = do x <- getChar

if x == ’\n’ then
return []
else

do xs <- getLine
return (x:xs)




Example
Read a line from standard input:
Prompt for a string and display its length:
getlLine :: IO String
getLine = do x <- getChar
if x == ’\n’ then
return []
else
do xs <- getLine
return (x:xs)
Actions are normal Haskell values and can be combined as usual,
for example with if-then-else.
5y )&
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Prompt for a string and display its length:

strlen :: I0 ()

Prompt for a string and display its length:

strlen :: I0 ()

strLen = do putStr "Enter a string: "
xs <- getline
putStr "The string has "
putStr




Prompt for a string and display its length:

strlen :: I0 ()

strLen = do putStr "Enter a string: "
xs <- getline
putStr "The string has "
putStr (show (length xs))
putStrln " characters"

> strlen

Enter a string: abc

Prompt for a string and display its length:

strlen :: I0 ()

strLen = do putStr "Enter a string: "
xs <- getline
putStr "The string has "
putStr (show (length xs))
putStrLn " characters"

> strlen

Enter a string: abc
The string has 3 characters

(=)@ (=)@
Example Example
Prompt for a string and display its length: Prompt for a string and display its length:
strlen :: IO () strlen :: I0 ()
strLen = do putStr "Enter a string: " strLen = do putStr "Enter a string: "
xs <- getline xs <- getline
putStr "The string has " putStr "The string has "
putStr (length xs) putStr (show (length xs))
putStrLn " characters"
(=)@ (=)@
Example Example




class Read a where
read :: String -> a

LGS LGS
How to read other types How to read other types
Input string and convert
LIS LGS
How to read other types How to read other types
Input string and convert Input string and convert
Useful class: Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.
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How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.

Example:

How to read other types

Input string and convert

Useful class:

class Read a where
read :: String -> a

Most predefined types are in class Read.

Example:

getInt :: IO Integer getInt :: I0 Integer

getInt = do xs <- getline getInt = do xs <- getline
return (read xs)
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Case study Case study

The game of Hangman
in file hangman.hs

The game of Hangman
in file hangman.hs




