Script generated by TTT

Title: Nipkow: Info2 (28.11.2014)
Date: Fri Nov 28 07:35:43 GMT 2014
Duration: 65:44 min

Pages: 62

Lists

From the Prelude:

data [a]l = [0 | (:) a [a]

Lists

From the Prelude:

data [a]l = [1 | (:) a [a]

Lists

From the Prelude:

data [a]l = [1 | (:) a [a]
deriving Eq

=@ o
Lists Lists
From the Prelude: From the Prelude:
data [a] = [1 | (:) a [a] data [a] = [1 | (:) a [a]
deriving Eq deriving Eq
The result of deriving Eq: The result of deriving Eq:
instance Eq a => Eq [a] where instance Eq a => Eq [a] where
] == [] = True (] == [] = True
(x:x8) == (y:ys) = x ==y & Xs == ys (x:xs8) == (y:ys) = x ==y && Xs == ys
_ == _ = False _ == _ = False
Defined explicitly:
instance Show a => Show [a] where
show xs = "[" ++ concat cs ++ "]"
=@ o
Lists Tree

From the Prelude:

data [a]l = [1 | (:) a [a]
deriving Eq

The result of deriving Eq:

instance Eq a => Eq [a] where

0 == [] = True
(x:x8) == (y:ys) = x ==y & Xs == ys
== = False

Defined explicitly:

instance Show a => Show [a] where
show xs = "[" ++ concat cs ++ "]"
where cs = Data.List.intersperse ", " (map show xs)

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eg, Show)

C
(#

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq, Show)

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eg, Show)

Some trees: Some trees:
Empty Empty
Node 1 Empty Empty
||

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq, Show)

Some trees:

Empty

Node 1 Empty Empty

Node 1 (Node 2 Empty Empty) Empty

Node 1 Empty (Node 2 Empty Empty)

Node 1 (Node 2 Empty Empty) (Node 3 Empty Empty)

Tree

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eg, Show)

Some trees:

Empty

Node 1 Empty Empty

Node 1 (Node 2 Empty Empty) Empty

Node 1 Empty (Node 2 Empty Empty)

Node 1 (Node 2 Empty Empty) (Node 3 Empty Empty)

find :: a -> Tree a -> Bool find :: Ord a => a -> Tree a -> Bool
find _ Empty = False
)]
find :: Ord a => a -> Tree a -> Bool find :: Ord a => a -> Tree a -> Bool
find _ Empty = False find _ Empty = False
find x (Node a 1 r) find x (Node a 1 1)
| x <a = find x 1
| a<x = find xr

| otherwise

ma &
-- assumption: < is a linear ordering
find :: Ord a => a -> Tree a -> Bool find :: Ord a => a -> Tree a -> Bool
find _ Empty = False find _ Empty = False
find x (Node a 1 r) find x (Node a 1 1)
| x <a = find x 1 | x <a = find x 1
| a<x = find x T | a<x = find xr
| otherwise = True | otherwise = True
ma &
insert :: Ord a => a -> Tree a -> Tree a insert :: Ord a => a -> Tree a -> Tree a

insert x Empty Node x Empty Empty
insert x (Node a 1 r)

m)e ocs
insert :: Ord a => a -> Tree a -> Tree a insert :: Ord a => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty insert x Empty = Node x Empty Empty
insert ¥ (Node a 1 r) insert x (Node a 1 r)

| x <a = | x <a = Node a (insert x 1) r

m)e ocs
insert :: Ord a => a -> Tree a -> Tree a insert :: Ord a => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty insert x Empty = Node x Empty Empty
insert ¥ (Node a 1 r) insert x (Node a 1 r)

| * <a = Node a (insert x 1) r | x <a = Node a (insert x 1) r
| a < x = Node al (insert x r) | a<x = Node a l (insert x r)
| otherwise = | otherwise = Node a lr

NS

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert ¥ (Node a 1 r)

| x <a = Node a (insert x 1) r

| a < x = Node al (insert x r)

| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

E

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert x (Node a 1 r)

| x <a = Node a (insert x 1) r

| a<x = Node a l (insert x r)

| otherwise = Node a lr
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))
= Node 5 Empty (insert 6 (Node 7 Empty Empty))

NS

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert ¥ (Node a 1 r)

| * <a = Node a (insert x 1) r

| a < x = Node al (insert x r)

| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))
= Node 5 Empty (insert 6 (Node 7 Empty Empty))
= Node 5 Empty (Node 7 (insert 6 Empty) Empty)

E

QuickCheck for Tree

import Control.Monad
import Test.QuickCheck

—-— for QuickCheck: test data generator for Trees
instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized tree
where
tree 0 = return Empty
treen | n>0 =
oneof [return Empty,
1iftM3 Node arbitrary (tree (n ‘div‘ 2))
(tree (n ‘div‘ 2))]

NS

insert :: Ord a => a -> Tree a -> Tree a
insert x Empty Node x Empty Empty
insert ¥ (Node a 1 r)

| x <a = Node a (insert x 1) r

| a < x = Node al (insert x r)

| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

= Node 5 Empty (insert 6 (Node 7 Empty Empty))

= Node 5 Empty (Node 7 (insert 6 Empty) Empty)
Node 5 Empty (Node 7 (Node 6 Empty Empty) Empty)

E

QuickCheck for Tree

import Control.Monad
import Test.QuickCheck

—-— for QuickCheck: test data generator for Trees
instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized tree
where
tree 0 = return Empty
treen | n>0 =
oneof [return Empty,
1iftM3 Node arbitrary (tree (n ‘div‘ 2))
(tree (n ‘div‘ 2))]

C
g

prop_find_insert x y t =
find x (insert y t) == 777

E

prop_find_insert x y t =
find x (insert y t) == (x == y || find x t)

prop_find_insert prop_find_insert :: Int -> Int -> Tree Int -> Bool
prop_find_insert x y t = prop_find_insert x y t =

find x (insert y t) == (x == y || find x t) find x (insert y t) == (x == y || find x t)

LIS LIS
Edit distance (see Thompson)

prop_find_insert :: Int -> Int -> Tree Int -> Bool
prop_find_insert x y t = Problem: how to get from one word to another,

find x (insert y t) == (x ==y || find x t) with a minimal number of “edits”.

(Int not optimal for QuickCheck)

Example: from "fish" to "chips"

Applications: DNA Analysis,

(m]@) (m]&]
Edit distance (see Thompson)
data Edit = Change Char
| Copy
| Delete
| Insert Char
deriving (Eq, Show)
Problem: how to get from one word to another,
with a minimal number of “edits”.
Example: from "fish" to "chips"
Applications: DNA Analysis, Unix diff command
CES &
data Edit = Change Char data Edit = Change Char
| Copy | Copy
| Delete | Delete
| Insert Char | Insert Char
deriving (Eq, Show) deriving (Eq, Show)
transform :: String -> String -> [Edit] transform :: String -> String -> [Edit]
transform [] ys =

data Edit

transform ::

transform

= Change Char

| Copy

| Delete

| Insert Char
deriving (Eq, Show)

String -> String -> [Edit]

[l ys = map Insert ys

data Edit

transform ::

transform
transform
transform

Change Char

Delete
Insert Char
deriving (Eq, Show)

| Copy
|
|

(] ys
xs []

(x:x8)

| x =1y

String -> String -> [Edit]

map Insert ys
replicate (length xs) Delete

(y:ys)

Copy

data Edit

transform ::

transform
transform
transform

| x ==y

= Change Char

| Copy

| Delete

| Insert Char
deriving (Eq, Show)

String -> String -> [Edit]

(1 ys map Insert ys
xs [= replicate (length xs) Delete
(x:xs) (y:ys)

= Copy : transform xs ys

data Edit

transform ::

transform
transform
transform
| x ==y
| otherw

Change Char

Delete
Insert Char
deriving (Eq, Show)

| Copy
|
|

(] ys
xs []

(x:x8)

ise

String -> String -> [Edit]

map Insert ys
replicate (length xs) Delete

1ys)

Copy :
best

transform xs ys

best :: [[Edit]] -> [Edit]
best [x] =X
best (x:xs)

best :: [[Edit]] -> [Edit]

best [x] =X

best (x:xs)
| cost x <= cost b =X
| otherwise =D
where b = best xs

cost :: [Edit] -> Int

cost = length . filter (/=Copy)

Example: What is the edit distance
from "trittin" to "tarantino"?

best :: [[Edit]] -> [Edit]

best [x]

=X

data Edit = Change Char

| Copy
| Delete

| Insert Char
deriving (Eq, Show)

transform :: String -> String -> [Edit]

transform [] ys map Insert ys

transform xs [] = replicate (length xs) Delete
transform (x:xs) (y:ys)

| x ==y = Copy : transform xs ys

| otherwise = best [Change y : transform xs ys,

Delete : transform xs (y:ys),
Insert y : transform (x:xs) ys]

Example: What is the edit distance
from "trittin" to "tarantino"?

transform "trittin" "tarantino" = 7

Complexity of transform: time O

Example: What is the edit distance
from "trittin" to "tarantino"?

transform "trittin" "tarantino" = 7?7

Complexity of transform: time O(3™7")

Example: What is the edit distance
from "trittin" to "tarantino"?

transform "trittin" "tarantino" = 7

Complexity of transform: time O(3™"")

The edit distance problem can be solved in time O(mn)
with dynamic programming

transform [] ys
transform xs [] =
transform (x:xs) (y:ys)

map Insert ys

| x ==y = Copy :

| otherwise = Dbest [Change y o
Delete
Insert y :

replicate (length xs) Delete

transform xs ys

transform xs ys,

: transform xs (y:ys),

transform (x:xs) ys]

(@] |
Constructors are functions tool!
8.2 The general case
data T a1 ... ap =
G tin ... i | - .
. Constructors can be used just like other functions
Cn 1 oo ok,
defines the constructors
G oot - ... tig, —> T a1 ... ap
C, :: ty —> tok, => T a1 ... a
LES LGS
Constructors are functions tool!
data Edit = Change Char
| Copy
| Delete
| Insert Char
derivi Eq, Sh . . .
eriving (Eq ow) Constructors can be used just like other functions
transform :: String -> String -> [Edit]
Example

map Just [1, 2, 3] = [Just 1, Just 2, Just 3]

But constructors can also occur in patterns!

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

e a variable (incl. _)

e a literal like 1, 7a’, "xyz", ...

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

e a variable (incl. _)
e a literal like 1, ’a’, "xyz", ...

e atuple (p1, ..., pn) where each p; is a pattern

=% 1.3 Case study: boolean formulas

Patterns revisited

Patterns are expressions that consist only of constructors and
variables (which must not occur twice):
A pattern can be

* a variable (incl. _)
e a literal like 1, ’a’, "xyz", ...
e atuple (p1, ..., pn) where each p; is a pattern

e a constructor pattern C p; ... p, where
C is a data constructor (incl. True, False, [] and (:))
and each p; is a pattern

(@
B

insert :: Ord a => a -> Tree a -> Tree a

insert x Empty = Node x Empty Empty
insert x (Node a 1 1)

| x <a = Node a (imsert x 1) r

| a < x = Node a1l (insert x r)

| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

(3

T O @D <>y T4 E il Q=
%
insert :: Ord a => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty
insert x (Node a 1 r)
| x <a = Node a (insert x 1) r
| a < x = Node a1l (insert x r)
| otherwise = Node a 1 r
Example

insert 6 (Node 5 Empty (Node 7 Empty Empty))

